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34392 Montpellier Cedex 5, France

Received 8 December 2006; received in revised form 28 August 2007; accepted 9 January 2008

Abstract

This paper presents a density estimator based upon a histogram computed on a fuzzy partition. We prove the consistency of

this estimator in the Mean Squared Error (MSE). We give the optimal bin width of the estimator which minimizes the Asymptotic

Integrated Mean Squared Error (AIMSE).

c© 2008 Elsevier B.V. All rights reserved.

1. Introduction

The histogram is probably the oldest1 and most widely used density estimator for the presentation and exploration

of observed data. A histogram is constructed by partitioning a given reference interval (or domain) D of R
d (we will

just focus on the univariate case d = 1) into p bins Ak and counting the number Acck of observations that belong to

each cell Ak .

Acck =
n
∑

i=1

1Ak
(X i ). (1)

From these counts, we can derive a consistent estimate f̂hist(x) of the underlying probability density function f (x) at

any point x of Ak , computed by:

f̂hist(x) =
Acck

nh
. (2)

However, the histogram estimate has some weaknesses and, particularly, the choice of reference interval and number

of cells (or bin width) have a marked effect on the estimated density. In the last 5 years, some authors have suggested

that the effect of partitioning arbitrariness can be reduced by replacing the crisp partition by a fuzzy partition (Runkler,
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1 Probably dating from the works of John Graunt in 1662. See Westergaard (1968).
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2004; Van Den Berg, 2001; Strauss et al., 2000; Strauss and Comby, 2002). In the present paper, we propose a density

estimator based upon a fuzzy partition. We define this kind of partition in Section 2 and present our estimator in

Section 3. The MSE consistency is demonstrated in Section 4 and the optimal bandwidth for AIMSE minimization is

provided in Section 5.

2. Preliminary concepts

First, the classical subsets of R can be generalized in fuzzy subsets of R.

Definition 1. The fuzzy subset F is defined by its membership function

µF : R→ L = [0, 1]

assigning the value µF (x) ∈ L to each element x ∈ R which is the membership degree of x in F .

The crisp partition, i.e. where Ak are p classical subsets of R, can then be generalized in a fuzzy partition, i.e. where

Ak are p fuzzy subsets of R.

Definition 2. Let D = [a, b] ⊂ R be the domain of the partition. Let m1 < m2 < · · · < m p be p fixed nodes of D,

such that m1 = a and m p = b, with p ≥ 3, and ∀k 6= p, mk+1 − mk = h = constant , so, mk = a + (k − 1)h. Let

m0 := a − h and m p+1 := b+ h. Let D′ = [m0, m p+1] ⊂ R be the extended domain of the partition. We say that the

set of the p fuzzy subsets A1,A2, . . . , Ap, identified with their membership functions µA1(x),µA2(x), . . . , µAp (x)

defined on D′, form a strong uniform fuzzy partition of the universe, if they fulfil

(1) µAk
(mk) = 1,

(2) if x 6∈ [mk−1, mk+1], µAk
(x) = 0,

(3) µAk
(x) monotically increases on [mk−1, mk] and µAk

(x) monotically decreases on [mk, mk+1],
(4) ∀x ∈ D′, ∃k, such that µAk

(x) > 0,
(5) ∀x ∈ D,

∑p

k=1 µAk
(x) = 1 (strength condition),

(6) ∀x ∈ [0, h], µAk
(mk − x) = µAk

(mk + x),
(7) ∀x ∈ [mk, mk+1], µAk

(x) = µAk−1(x − h) and µAk+1(x) = µAk
(x − h).

Proposition 1. Let (Ak)k=1,...,p be a strong uniform fuzzy partition on D, extended on D′, then

1. ∀x ∈ D, ∃!k0 ∈ {1, . . . , p − 1}, such that ∀k 6∈ {k0, k0 + 1}, µAk
(x) = 0, and µAk0

(x)+ µAk0+1(x) = 1.

2. for k = 1, . . . , p,
∫ mk+1

mk−1
µAk

(x)dx = h.

3. ∃K A : [−1, 1] −→ [0, 1] even, such that, µAk
(x) = K A(

x−mk

h
)1[mk−1,mk+1] and

∫ 1
−1 K A(u)du = 1.

Table 1 provides illustrative examples of membership functions of strong uniform fuzzy partitions that are

obtainable by point (3) of Proposition 1. The first column contains the crisp partition, the second one, the cosine

partition and the last column, a triangular fuzzy partition, formed by fuzzy triangular numbers.

Table 1

Strong uniform fuzzy partition examples

Crisp Cosine Triangular

K A(x) = 1
[− 1

2
, 1

2
]
(x) 1

2 (cos(πx)+ 1)1[−1,1](x) (1− |x |)1[−1,1](x)

3. Fuzzy-partition-based histogram density estimator

The accumulated value Acck is the key feature of the histogram technique. It represents the number of observations

in complete agreement with the label represented by the restriction of the real line to the interval (or bin) Ak . As the

partitioning is highly arbitrary, the histogram technique is known to be very sensitive to the choice of both reference

interval and number of cells (or bin width). As mentioned before, the effect of this arbitrariness can be reduced by

replacing the crisp partition by a fuzzy partition of the real line. The paper Loquin and Strauss (2006) underlines
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this property of the fuzzy histogram. Note that this approach is quite similar to the binned kernel density estimator

approach (Hardle and Scott, 1992; Scott and Sheather, 1985).

Let (Ak)k=1,...,p be a strong uniform fuzzy partition of D, then the natural extension of expression (1) induces a

distributed vote:

Acck =
n
∑

i=1

µAk
(X i ).

As far as the density estimator (2) is concerned, since Ak is a fuzzy subset, expression (2) no longer holds for any

x ∈ Ak , but normalized accumulators Acck

nh
now have degrees of truth inherited from the fuzzy nature of Ak . Then,

the Acck

nh
value is more true at mk than at any other point of D. We propose to once again use the concept of strong

uniform fuzzy partition of p fuzzy subsets to provide an interpolation of the p points (mk,
Acck

nh
) on D.

Definition 3. The fuzzy histogram density estimator defined on D is given by

fnh(x) =
1

nh

p
∑

k=1

AcckµBk
(x),

where (Bk)k=1,...,p is a strong uniform fuzzy partition defined on D.

It can easily be shown that fnh ≥ 0, and
∫

fnh(x)dx = 1 and that fnh goes through the p points (mk,
Acck

nh
).

4. MSE consistency

One way to evaluate fnh is via some measure of its local difference from f . One of the most common measures is

the Mean Squared Error:

MSE(x) , E f [ fnh(x)− f (x)]2.

Besides, we have MSE(x) = b2(x)+σ 2(x), where b2(x) is the squared bias and σ 2(x) is the variance of the estimator

fnh in x . We will bound b2(x) and σ 2(x) under the following assumptions

Assumption 1. f is a C2 function with bounded derivatives,

Assumption 2. K A and K B , as defined by point (3) of Proposition 1, are square integrable.

Prior to bounding b2(x) and σ 2(x), useful equalities are provided to easily approximate them. Let mck be the center

of [mk, mk+1]. Thanks to a change of variable u ← X i−mk

h
, point (3) of Proposition 1, and the Taylor expansion of f ,

we have

E f [µ
p
Ak

(X i )] =
r
∑

m=1

hm f (m−1)(mck)

∫ 1

−1

K
p
A(u)

(

u −
1

2

)m−1

du +O(hr+1), (3)

E f [µ
p
Ak+1

(X i )] =
r
∑

m=1

hm f (m−1)(mck)

∫ 1

−1

K
p
A(u)

(

u +
1

2

)m−1

du +O(hr+1), (4)

for f Cr with bounded derivatives.

Squared bias bounding

For x ∈ [mk, mk+1], the fuzzy histogram density estimator is given by

fnh(x) = fnh(mk)µBk
(x)+ fnh(mk+1)µBk+1(x),

with fnh(mk) =
Acck

nh
and fnh(mk+1) =

Acck+1

nh
. The squared bias is given by

b2
k (x) = (E f [ fnh(x)] − f (x))2. (5)
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By implementing expressions (3) and (4) with p = 1 and r = 2 (see Assumption 1), we get

E f [ fnh(mk)] =

n
∑

i=1

E f [µAk
(X i )]

nh
= f (mck)−

h

2
f ′(mck)+O(h2),

E f [ fnh(mk+1)] =

n
∑

i=1

E f [µAk+1(X i )]

nh
= f (mck)+

h

2
f ′(mck)+O(h2).

Therefore,

E f [ fnh(x)] = f (mck)+
h

2
f ′(mck)(µBk+1(x)− µBk

(x))+O(h2). (6)

Now, for x ∈ [mk, mk+1], f (x) can be approximated by

f (x) = f (mck)+ (x − mck) f ′(mck)+O(h2). (7)

Therefore, from expressions (5)–(7),

b2
k (x) = f ′(mck)

2

[

h

2
(µBk+1(x)− µBk

(x))+ (mck − x)

]2

+O(h4).

For x ∈ D, the squared bias is bounded by

b2(x) ≤ max
k=1,...,p−1

f ′(mck)
2

[

h

2
(µBk+1(x)− µBk

(x)+ 1)

]2

, because mck − x ≤
h

2

b2(x) ≤ max
k=1,...,p−1

f ′(mck)
2
[

hµBk+1(x)
]2

, because µBk
(x)+ µBk+1(x) = 1

b2(x) ≤ max
k=1,...,p−1

f ′(mck)
2h2. (8)

Variance bounding

The variance of the estimator (4), for x ∈ [mk, mk+1], is given by σ 2
k (x) = E f ( fnh(x)− E f [ fnh(x)])2.

Let us define ηi,k = µAk
(X i )− E f [µAk

(X i )]. We can easily obtain:

σ 2
k (x) =

1

(nh)2
E f

(

µBk
(x)

n
∑

i=1

ηi,k + µBk+1(x)

n
∑

i=1

ηi,k+1

)2

=
1

(nh)2
µ2

Bk
(x)

n
∑

i=1

E f (ηi,k)
2 +

1

(nh)2
2µBk

(x)µBk+1(x)

n
∑

i=1

E f (ηi,kηi,k+1)

+
1

(nh)2
µ2

Bk+1
(x)

n
∑

i=1

E f (ηi,k+1)
2.

By implementing expressions (3) and (4) with p = 2 and r = 1 (see Assumption 1), we get

E f (ηi,k)
2 = E f [µAk

(X i )
2] − E f [µAk

(X i )]
2,

= h f (mck
)

∫ 1

−1

K 2
A(u)du − h2 f 2(mck

)+O(h2),

E f (ηi,k+1)
2 = E f [µAk+1(X i )

2] − E f [µAk+1(X i )]
2,

= h f (mck
)

∫ 1

−1

K 2
A(u)du − h2 f 2(mck

)+O(h2),
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E f (ηi,kηi,k+1) = E f [µAk+1(X i )µAk
(X i )] − E f [µAk+1(X i )]E f [µAk

(X i )],

= h f (mck
)

∫ 1

0

K A(u)K A(u − 1)du − h2 f 2(mck
)+O(h2).

Which leads to

σ 2
k (x) =

f (mck
)

nh

[

µ2
Bk

(x)

∫ 1

−1

K 2
A(u)du + 2µBk

(x)µBk+1(x)

∫ 1

0

K A(u)K A(u − 1)du

+µ2
Bk+1

(x)

∫ 1

−1

K 2
A(u)du

]

−
f 2(mck

)

n
+O

(

1

n

)

.

According to Cauchy–Schwartz,
∫ 1

0 K A(u)K A(u − 1)du ≤
∫ 1
−1 K 2

A(u)du. Therefore

σ 2
k (x) ≤

f (mck
)

nh

∫ 1

−1

K 2
A(u)du.

For x ∈ D, the variance is bounded by

σ 2(x) ≤

max
k=1,...,p−1

f (mck
)

nh

∫ 1

−1

K 2
A(u)du. (9)

Conclusion

The following theorem summarizes inequalities (8) and (9).

Theorem 2. Under Assumptions 1 and 2,

MSE(x) ≤ max
k=1,...,p−1

f ′(mck)
2h2 +

max
k=1,...,p−1

f (mck
)

nh

∫ 1

−1

K 2
A(u)du,

hence, ∀x ∈ D, fnh(x) is consistent in the MSE, i.e.

h −→ 0 and nh −→ +∞ H⇒ M SE(x) −→ 0.

5. IMSE consistency and optimization

Optimization of our estimator consists of finding the bandwidth h∗ which minimizes the upper bound of the IMSE,

given by IMSE =
∫

D
MSE(x)dx . We proved that this upper bound, called AIMSE for Asymptotic Integrated Mean

Squared Error, is given by:

AIMSE = h2C1

∫

D

f ′(x)2dx +
C2

nh
, (10)

with C1 =
∫ 1

0 K 2
B(u)du

∫ 1
−1 K 2

A(u)du+2
∫ 1

0 K B(u)K B(u−1)du
∫ 1

0 K A(u)K A(u−1)du+
∫ 0
−1 K 2

B(u)du
∫ 1
−1 K 2

A(u)du

and C2 =
1
4

∫ 1
0 (K B(y − 1)− K B(y))2dy + 2

∫ 1
0 K B(y)ydy − 5

12 , hence

h∗ =

(

C2

2nC1

∫

D
f ′(x)2dx

)
1
3

(11)

which leads to AIMSE∗ = O(n−2/3).
This AIMSE result (10), which you can find in a different form in Waltman et al. (2005), is a generalization of

the AIMSE of the classical histogram, which can be found in Scott (1992, 1979). Indeed, with K A(x) = K B(x) =
1
21[−1,1](x), expression (10) becomes

AIMSE =
h2

12

∫

D

f ′(x)2dx +
1

nh
.
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6. Conclusion

Here we have presented a histogram density estimator based upon a fuzzy partition. We have proved its consistency

in MSE and obtained its optimal bin width for AIMSE minimization. The main advantage of this tool is that it

improves the robustness of the histogram density estimator with respect to the partitioning arbitrariness. Illustrations

of this fuzzy histogram density estimator property are provided in Loquin and Strauss (2006).
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