
HAL Id: lirmm-00367258
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00367258

Submitted on 7 Sep 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A New Interpretor for PARI/GP
Bill Allombert

To cite this version:
Bill Allombert. A New Interpretor for PARI/GP. Journal de Théorie des Nombres de Bordeaux, 2008,
20 (3), pp.531-541. �10.5802/jtnb.640�. �lirmm-00367258�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00367258
https://hal.archives-ouvertes.fr

Journal de Théorie des Nombres
de Bordeaux 00 (XXXX), 000–000

A new interpretor for PARI/GP

par Bill Allombert

Contents

1. Introduction 2
2. Design of the old GP interpretor 2
3. Design of the new GP interpretor 3
3.1. The parser 3
3.2. The bytecode compiler 6
3.3. Bytecode evaluation 8
4. New features 9
4.1. Lexically-scoped local variables 9
4.2. Closures and anonymous functions 10
4.3. The GP debugger 11
Acknowledgement 11
References 11

Dedicated to Henri Cohen on his 60th birthday.

Résumé. Quand Henri Cohen et ses collègues décidèrent d’écrire
PARI il y a vingt ans, la création de GP n’était envisagée. Bien
que GP soit devenu très largement l’interface de bibliothèque
PARI la plus utilisée, l’interpréteur gp aussi bien le langage GP
sont primitifs. Paradoxalement, bien que gp permette la manipu-
lation d’objets de très haut niveau, GP lui-même est un langage
primitif qui semble venir des années 70.

Nous avons réécrit GP comme un compilateur/évaluateur com-
biné, implantant plusieurs functionnalités de haut-niveau qui de-
vrait permettre à GP d’entrer dans les années 90.

Abstract. When Henri Cohen and his coworkers set out to write
PARI twenty years ago, GP was an afterthought. While GP has
become the most commonly used interface to the PARI library
by a large margin, both the gp interpretor and the GP language
are primitive in design. Paradoxically, while gp allows to handle

Manuscrit reçu le October 29th 2008.

2 Bill Allombert

very high-level objects, GP itself is a low-level language coming
straight from the seventies.

We rewrote GP as a compiler/evaluator pair, implementing sev-
eral high-level features (statically scoped variables, anonymous
functions, closures as first class objects) that should move GP
into the nineties.

1. Introduction

The PARI/GP computer algebra system [4] is made of two components:
• PARI, a C library of number-theory oriented functions
• GP, a simple scripting language giving access to PARI.

Since the origin, PARI has been the main focus of PARI/GP develop-
ment. As a consequence, the design of the GP interpretor is primitive and
hard to change. As a result, the GP language is slow and limited in features.

The first GP incarnation was written 20 years ago (mainly by Dominique
Bernardi1) as a desktop calculator that would use the then nascent PARI
library to perform multi-precision arithmetic. When support for functions
was added, it became the dominant paradigm for new features: for example
in GP, not only do control statements look syntactically like function calls,
but they are actually implemented as function calls. As a consequence, GP
is a small language in term of features since all the high-level interfaces are
actually defined by the PARI library.

When we started to work on the GP2C compiler [1], the deficiency of GP
became obvious, and the lack of formal specification hindered the project.
As part of our work on GP2C, we documented what the GP interpretor
was doing and wrote a test-suite exercising that behavior.

This finally allowed us to write a new GP interpretor that preserved as
much as advisable the behavior of the old interpretor. This new GP inter-
pretor is used by PARI/GP since version 2.4.2. Some features presented in
this paper are only implemented in version 2.4.3 and later.

2. Design of the old GP interpretor

The old GP interpretor was based on a recursive-descent parser that eval-
uated the code as soon as it was parsed. To perform basic syntax checking
before evaluation, the whole parser was duplicated (minus the evaluating
code) to form a dummy interpretor that only did syntax checking. Expres-
sions where first syntax-checked and then evaluated.

1It was later cleaned up and enhanced by Karim Belabas and Ilya Zakharevich in the mid-
nineties

A new interpretor for PARI/GP 3

This design leads to poor performance since the same expressions need to
be parsed every time they are evaluated. In the example below, we observe
that longer variables name take significantly more time to be evaluated.

? N = 10^7;
? for(i=1,N, Henri_Cohen)
time = 2,720 ms.
? for(i=1,N, ACourseInComputationalAlgebraicNumberTheory)
time = 4,220 ms.

Features implemented by the old GP interpretor were mostly limited
to the ability to call built-in functions, to define new functions and call
them, to use global variables (that did not need to be declared), to define
dynamically-scoped local variables (in a function header only, not in arbi-
trary blocks), and to use them. While a large range of control statements
and control flow operations were available, they were implemented as built-
in PARI functions, not performed by the evaluator properly. However the
interpretor was able to detect control-flow change, i.e. analogs of the C
statements break, continue and return.

The main task performed by the interpretor was to convert built-in GP
function calls to C function calls. For that purpose, built-in GP functions
were associated to a C function pointer and a signature which was a char-
acter string indicating the return type (void, long, int or PARI object
type) and the type of each argument in order.

Special codes denoted arguments of control statement, which should not
be evaluated but passed as a character string for deferred execution, and
optional arguments.

Calling user functions was performed by recursively calling the interpre-
tor on the function text.

3. Design of the new GP interpretor

The new GP interpretor is made of three parts, that are called succes-
sively: a parser, a bytecode compiler and a bytecode evaluator, which are
detailed below.

3.1. The parser.

3.1.1. Input filtering and preprocessing. This stage removes comments and
white spaces from the input and deals with meta-commands and file inclu-
sions.

For this stage we reuse the old gp filtering code. At the end, the output
is a single string.

4 Bill Allombert

3.1.2. Lexical analysis. This stage transforms the input string into a string
of tokens. Each token has an associated syntactic value which is its offset
in the input string and its length.

For this stage, we have written a simple custom lexical analyzer (function
pari lex) which returns the type of the next token in the string along with
its length and position in the string. No semantic values are affected to
tokens at this stage. Semantic values are computed at a later stage from
the offset and length by the compiler. Thus, the lexical analyzer does not
need to allocate memory to store values, and spend time copying them.

3.1.3. Syntactic analysis. This stage builds a binary tree from the string
of tokens. To each node we associate the location of the original expression
in the input string.

For this stage, we reuse the grammar written for GP2C. The formal
description of the grammar (in bison [2] format) is in the source file
src/language/parse.y of the PARI distribution, that we excerpt below.
seq: /*empty*/ | expr | seq ’;’ | seq ’;’ expr

expr: KINTEGER
| KREAL
| KSTRING
| ’\’’ KENTRY
| expr ’(’ listarg ’)’
| KENTRY ’(’ listarg ’)’
| funcid
| lvalue
| matrix
| definition
| lvalue ’=’ expr
| lvalue "++"
...
| lvalue "+=" expr
| ’!’ expr
| ’#’ expr
| expr "||" expr
| expr "&&" expr
| expr "==" expr
...
| expr ’<’ expr
| expr ’+’ expr
...
| expr ’*’ expr
| ’+’ expr

A new interpretor for PARI/GP 5

| ’-’ expr
| expr ’^’ expr
| expr ’~’
| expr ’\’’
| expr ’!’
| expr matrix_index
| ’(’ expr ’)’

matrix_index: ’[’ expr ’,’ expr ’]’
| ’[’ expr ’]’
| ’[’ expr ’,’ ’]’
| ’[’ ’,’ expr ’]’

lvalue: KENTRY | lvalue matrix_index

matrixelts: /*empty*/ | matrixelts ’,’ expr

matrixlines: matrixelts ’;’ matrixelts
| matrixlines ’;’ matrixelts

matrix: ’[’ ’]’
| ’[’ ’;’ ’]’
| ’[’ matrixelts ’]’
| ’[’ matrixlines ’]’

listarg: seq | listarg ’,’ seq

definition: KENTRY ’(’ listarg ’)’ ’=’ seq
| lvalue "->" seq
| ’(’ listarg ")->" seq

The bison program is used to generate a stack automaton that matches
the grammar (function pari parse) and constructs a syntactic tree. This
tree is stored as an indexed array of nodes (defined in the header file
src/language/tree.h). It is a binary tree, each node having a label and
optionally a left child and a right child. Each node carry the following
information:

• function: A label identifying the function of the node (whether this
is a constant, a function call, a list of arguments, etc.)

• left/right child: a left or right child (optional)

6 Bill Allombert

• text start, text length: length and pointer to the start of the corre-
sponding text of the full expression represented by the node and its
children.

We use the location tracking feature of bison to automatically compute
the location of a node from the location of the components tokens.

3.2. The bytecode compiler.

3.2.1. The t CLOSURE PARI object. The purpose of the bytecode compiler
is to convert the syntactic tree to a t CLOSURE PARI object, hold closures
and functions in compiled form. This type has a number of components,
some of them optional:

(1) arity of the object: a small integer.
(2) bytecode, given as pairs of opcodes and operands; each opcode takes

exactly one operand.
(3) program data: a vector of PARI objects that are referenced by the

operands. They can be integers, character strings, or t CLOSURE for
deferred evaluation.

(4) debugging data, for source-level debugging: code position correspond-
ing to each opcode, original names of lexical local variables (as input
by the user).

(5) (optional) source code: a string containing the GP function code as
input by the user. This is used to display the object and for source-
level debugging.

(6) (optional) the closure context.

3.2.2. The bytecode. We designed a simple bytecode targeting an evaluator
that operates on a last-in first-out stack. Each instruction is composed of
a one-byte opcode and an operand, coded as a C long integer.

Generally, executing an instruction involves reading a number of input
data at the top of the stack, removing them, and pushing a number of
output data on the stack which will serve as input to subsequent opcodes.

The major opcode families are
• push: push an object on the stack.
• call : evaluate a function on arguments taken from the top of the

stack.
• typecast : convert the object at the top of the stack to another type,

e.g. convert a C integer to a PARI integer.
• store: store the object at the top of the stack in a variable.
• component : extract a component of an object specified by the value

at the top of the stack.
There are no opcodes for control flow, branching or jumping: this task is
deferred to special functions that take closures as input.

A new interpretor for PARI/GP 7

The PARI library includes a function closure disassemble that allows
to disassemble a t CLOSURE object. The following is a commented example
of disassembly:
? install(closure_disassemble, vG)
? f(x) = 2*x+1
? closure_disassemble(f)
00001 getargs 1 \\ take one argument
00002 pushlong gen_2 \\ push 2
00003 pushlex -1 \\ push argument
00004 callgen2 _*_ \\ call multiply
00005 pushlong gen_1 \\ push 1
00006 callgen2 _+_ \\ call add

Others bytecodes designed to operate on a stack include the JAVA byte-
code targetting the Java virtual machine ([3]), and the internal encoding
of user input in several Hewlett-Packard pocket calculators.

3.2.3. Copy optimisation. This stage is performed before actual compi-
lation. It annotates the syntactic tree, marking nodes associated to sub-
expressions that do not alter GP variables. This allows the compiler to
know whether it is safe to reuse the pointer to an object instead of dupli-
cating the object. Since GP objects are numerous and possibly very large,
removing spurious copying is crucial.

3.2.4. Bytecode compilation. This stage generates a t CLOSURE PARI ob-
ject from a syntactic tree.

The compiler performs a depth-first traversal of the tree, generating
codes for each nodes in turn, in a similar way to the conversion of a syntactic
tree to reverse Polish notation.

As a simple example, consider the expression a∗x+ b∗y + c. The parser
returns the following syntactic tree:

Depth-first traversal of the tree leads to its simplified Reverse Polish No-
tation (RPN): a x ∗ b y ∗ + c +. The compiler actually generates the
following series of pairs of opcodes and operands:
00001 pushdyn a
00002 pushdyn x

8 Bill Allombert

00003 callgen2 _*_
00004 pushdyn b
00005 pushdyn y
00006 callgen2 _*_
00007 callgen2 _+_
00008 pushdyn c
00009 callgen2 _+_

The compiler uses the function signatures to compile built-in function
calls, by generating opcodes to convert arguments to the desired type, and
by generating t CLOSURE PARI objects when the function requires deferred
execution, i.e. it is a control statement.

User functions can unfortunately be redefined at run-time, after compi-
lation, and have to use a different calling convention. They take an integer
n followed by n data. The evaluator reports a run-time error if n is larger
than the function arity; otherwise it completes the number of data to n with
zeros, and calls the function with these arguments. The latter is responsible
for later removing the data from the stack.

The compiler performs other tasks as well:

• it computes the value of immediate data from their text location and
stores them in the program data component of the closure.

• it generates the full text of the closure and stores it in the source code
component of the closure.

• it records, for each opcode, the text location of the corresponding
node and stores them in the debugging data component of the closure.

• it recursively generates closures for objects that require deferred exe-
cution: function definition, arguments of control statement function,
etc. They are also stored in program data component of the closure.

• it generates copy opcodes when necessary, as instructed by the copy
optimizer.

• it generates pairs of instructions that performs garbage collection at
run-time.

The compiler is defined in the file src/language/compile.c.

3.3. Bytecode evaluation. The bytecode evaluator takes a t CLOSURE
PARI object and evaluates each opcode in turn with respect to a global
evaluator stack, then returns, leaving results at the top of the stack. The
evaluator does not perform any branching or jumping by itself. However,
the evaluation of an opcode can lead to the evaluation of another closure,
causing the evaluator to call itself recursively.

A function called by the evaluator can request that the evaluator restore
the stack and return immediately. This mechanism allows to implement
control-flow change functions (break, next and return).

A new interpretor for PARI/GP 9

The evaluator maintains a call-trace stack that is used by the debugger.
Each time it is called, the evaluator creates a call-trace at the top of a stack
and records pointers to the t CLOSURE PARI object it is evaluating, and to
the variable holding the index of the current opcode. When the evaluator
returns, the call-trace is removed from the stack.

The evaluator handles garbage collection, global variables, dynamically-
scoped and lexically-scoped local variables.

The evaluator is defined in the file src/language/eval.c.

4. New features

4.1. Lexically-scoped local variables. The old GP interpretor only al-
lowed to define dynamically-scoped local variables, using the local key-
word, and only at the start of functions. Dynamically-scoped local vari-
ables are inadequate in a large number of situation, because they propagate
through function calls.

We added support for lexically-scoped local variables through the my key-
word. Furthermore, all implicitly declared variables (functions arguments
and loop indices) are now statically scoped as well. While this breaks back-
ward compatibility, this was what users generally intended, and prevents
common mistakes. For instance, in the following pair of functions
ellsquare(e/*mistake*/, P)= elladd(E, P,P);
ellquad(E, P) = ellsquare(E, ellsquare(E, P));

the name of the first argument of ellsquare was mispelled, yet if E is
dynamically-scoped to ellquad, then the function ellquad will work cor-
rectly. Later on, users will wonder why the function ellsquare does not
work outside of ellquad.

A further rationale for this change is that the GP2C compiler does not
support dynamically-scoped variable and treats all local variables as lexi-
cally scoped.

Finally, lexically-scoped variables lead to better run-time performances
and less copying: if a lexically-scoped local variable is passed as argument of
a user function, this function does not see this variable, so cannot change
it; thus an implicit call-by-parameter is used instead of a call-by-value,
which would require copying the variable. Such optimizations cannot be
performed for dynamically-scoped local variables, because user functions
might be redefined at run-time and thus the compiler cannot know whether
a function will modify the variable or not.

The following is an example showing the advantage of lexically-scoped
local variable:
? last(v) = v[#v];
? V = vector(10^3,i,i); N = 10^5;
? my(v=V); for(i=1,N, last(v))

10 Bill Allombert

? ##
*** last result computed in 28 ms.

? local(v=V); for(i=1,N, last(v))
*** Warning: compiler generates copy for ‘v’.

? ##
*** last result computed in 2,940 ms.

As the example shows it is now possible to define new local variables,
either lexically or dynamically scoped, anywhere in the code; their scope
lasts until the end of the current t CLOSURE object.

4.2. Closures and anonymous functions. The introduction of the new
t CLOSURE object allows PARI to handle functions as first-level objects, and
to support anonymous functions and closures.

For this purpose we extended the GP language to allow the definition of
anonymous functions using the following syntax:

(x1, . . . , xn) -> expr

The traditional form
f(x1, . . . , xn) = expr

is now just an alias for

f = (x1, . . . , xn) -> expr .

Evaluating a bare built-in function name (i.e. not followed by parenthe-
ses and arguments, as in f = sin) returns a t CLOSURE PARI object that
evaluates to the function, for compatibility with user-defined functions.

This new feature provide a large number of benefits, in particular func-
tions can take functions as parameters, return functions, be stored in local
variables, in vectors and matrices. A small number of such higher-level
functions have been added (apply, select, vecsort, numerical derivation).
For instance, the following one-liner user function returns representatives
for the elements of (Z/NZ)∗:
invertibles(N) = select(x -> gcd(x,N)==1, vector(N,i,i))

Furthermore, functions now act as closures with respect to lexically-
scoped variables. The closure context is stored in the last component of
the closure, and is strictly read-only. More precisely, change to variables
in the context are only visible inside the closure. Lifting this restriction
would require more fancy garbage collecting than PARI provides.

The following example defines a function pol2func that returns the poly-
nomial function associated to a formal polynomial as a closure:
? pol2func(P, v=’x) = x -> subst(P,v,x);
? P = x^4+1; f = pol2func(P);
? f(2)
%3 = 17

A new interpretor for PARI/GP 11

4.3. The GP debugger. When an error or a user interrupt occurs, the
debugging facility uses the call-trace stack generated by the evaluator and
the debugging data section of t CLOSURE objects to display a source-level
call trace. Furthermore, the compiler is preseeded with the state of variables
at the interrupt point, so expressions can be evaluated in that context. In
case of an user interrupt, it is possible to resume the computation.

The following is an example of session where we diagnose an error:
? f(p) = sum(i=1, p, 1/Mod(i^2+1,p)); \\requires p%4==3
? f(17)
*** at top-level: f(17)
*** ^-----
*** in function f: sum(i=1,p-1,1/Mod(i^2+1,p))
*** ^--------------
*** _/_: impossible inverse modulo: Mod(0, 17).
*** Break loop: type <Return> three times, or Control-d,
*** to go back to GP)

break> i
4
break> Mod(i^2+1, p)
Mod(0, 17)

Acknowledgement

The author would like to thanks Karim Belabas for his advices while
preparing this paper.

References
[1] B. Allombert, GP2C, the GP to C translator , http://pari.math.u-bordeaux.fr/pub/

pari/GP2C/, version 0.0.5pl6, 2008
[2] R. Corbett and R. Stallman, BISON, the GNU parser generator , http://www.gnu.org/

software/bison/, version 2.3, 2006
[3] T. Lindholm and F. Yellin, The Java Virtual Machine Specification , Second Edition,

http://java.sun.com/docs/books/jvms/second_edition/html/VMSpecTOC.doc.html, 1999
[4] the PARI Group, PARI/GP, http://pari.math.u-bordeaux.fr/ version 2.3.4, 2008

Université Montpellier 2, CNRS I3M/LIRMM Place Eugène Bataillon F-34095 Montpellier cedex,
France
E-mail : Bill.Allombert@univ-montp2.fr

