
HAL Id: lirmm-00368545
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00368545v1

Submitted on 16 Mar 2009 (v1), last revised 20 Jun 2009 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Computing Galled Networks from Real Data
Daniel Huson, Regula Rupp, Vincent Berry, Philippe Gambette, Christophe

Paul

To cite this version:
Daniel Huson, Regula Rupp, Vincent Berry, Philippe Gambette, Christophe Paul. Computing Galled
Networks from Real Data. ISMB/ECCB’09: 17th Annual Conference on Intelligent Systems for
Molecular Biology & 8th European Conference on Computational Biology, Jun 2009, pp.i85-i93,
�10.1093/bioinformatics/btp217�. �lirmm-00368545v1�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00368545v1
https://hal.archives-ouvertes.fr

BIOINFORMATICS Vol. 00 no. 00 2009
Pages 1–9

Computing Galled Networks from Real Data
Daniel H. Huson 1∗, Regula Rupp 1, Vincent Berry 2, Philippe Gambette 2 and
Christophe Paul 2

1 Center for Bioinformatics ZBIT, Tübingen University, Sand 14, 72076 Tübingen, Germany
2 Laboratoire d’Informatique, de Robotique et de Microélectronique de Montpellier (LIRMM, UMR
5506, CNRS), Université Montpellier II, 161, rue Ada, 34392 Montpellier Cedex 5, France

ABSTRACT
Motivation: Developing methods for computing phylogenetic
networks from biological data is an important problem posed by
molecular evolution and much work is currently being undertaken in
this area. Although promising approaches exist, there are no tools
available that biologists could easily and routinely use to compute
rooted phylogenetic networks on real datasets containing tens or
hundreds of taxa. Biologists are interested in clades, that is, groups
of monophyletic taxa, and these are usually represented by clusters
in a rooted phylogenetic tree. The problem of computing an optimal
rooted phylogenetic network from a set of clusters, is hard, in general.
Indeed, even the problem of just determining whether a given network
contains a given cluster is hard. Hence, some researchers have
focused on topologically restricted classes of networks, such as
galled trees and level-k networks, that are more tractable, but have
the practical draw-back that a given set of clusters will usually not
possess such a representation.
Results: In this paper we argue that galled networks (a generalization
of galled trees) provide a good trade-off between level of generality
and tractability. Any set of clusters can be represented by some
galled network and the question whether a cluster is contained in
such a network is easy to solve. Although the computation of an
optimal galled network involves solving instances of two different NP-
complete problems, in practice our algorithm solves this problem
exactly on large datasets containing hundreds of taxa and many
reticulations in seconds, as illustrated by a dataset containing 279
prokaryotes.
Availability: We provide a fast, robust and easy-to-use implementation
of this work in version 2.0 of our tree-handling software Dendroscope,
freely available from http://www.dendroscope.org.

1 INTRODUCTION
Developing appropriate methods for computing phylogenetic
networks from biological data has been described as one of the five
most important challenges posed to mathematics by biology [1] and
there is a lot of recent work focused on this topic [2]: One area of
research is recombination networks, which have been studied in the
context of population genetics for many years, e.g. [3, 4, 5], and
have recently received more attention in the guise of galled trees
and related concepts, e.g. [6, 7, 8]. Here, the task is to compute
a rooted phylogenetic network from a set of binary sequences. A
second area is hybridization networks, [9, 10, 11], where the goal is
to compute a rooted phylogenetic network from a set of incongruent

∗to whom correspondence should be addressed

trees. A third area is HGT networks, where the goal usually is to
explain the discrepancies between gene trees (or gene content) and
a species tree, e.g [12, 13]. Another area of research focuses on the
computation of rooted networks from triplets [14].

One type of unrooted phylogenetic network, so-called split
networks [15], is widely used as a tool for displaying incompatible
datasets and their popularity is probably due to the existence of a
user-friendly program [16] that contains a number of methods, such
as Neighbor-net [17] or the Z-closure super network method [18],
for computing them.

The current state of the art for rooted phylogenetic networks,
on the other hand, can be characterized as follows: there are
many promising directions to follow and some rudimentary software
implementations [19, 20, 21]. However, there is no tool currently
available that biologists could easily and routinely use on real data.
This is an unfortunate state of affairs, because biologists are more
interested in rooted networks than in unrooted networks, just as they
are more interested in rooted trees than in unrooted ones. (Unrooted
networks are very different from rooted networks, so constructions
for unrooted networks usually do not carry over to rooted networks.)

The aim of this paper is to help fill this gap by providing a
theoretically well-founded and practically well-implemented and
easy-to-use method for computing rooted phylogenetic networks
from a set of clusters, for example extracted from a set of
phylogenetic trees, or directly from sequences. Our approach is
based on the concept of a galled network, which is a generalization
of the concept of a galled tree. Continuing work started in [22],
here we make new contributions to a number of topics, including:
complexity of the cluster containment problem, existence of a
galled network, desirability of the decomposition property, role of
incompatibility statements, complexity and solution of the RMSC
problem, formulation, complexity and solution of the Minimum
Attachment problem, user-friendly, robust and fast implementation
of all algorithms, aimed at real data. We believe that galled networks
provide a good trade-off between level of generality and ease of
practical computability.

As we will show in this paper, one main advantage of galled
networks is that the Cluster Containment problem is easy to solve
for them. This is not true for general rooted phylogenetic networks
[23]. In consequence, one can easily verify algorithmically that a
galled network actually contains all the clusters that it claims to
represent and a user of the network can easily locate a cluster of
interest. Galled networks are particularly applicable if the dataset
is basically a tree, to which some reticulations are attached. In
such cases, the computed network explicitly provides a possible

c© Oxford University Press 2009. 1

Daniel H. Huson et al

evolutionary scenario. In more complicated situations (such as in
population studies of sexually reproducing organisms) the network
should only be seen as an abstract representation of the given cluster
set.

We provide an implementation of our method aimed at
phylogenetic trees (as input) in the new version 2.0 of our
Dendroscope software [24]. We plan to also integrate the code into
our SplitsTree software [16], where it will be applicable to character
sequences, too.

We demonstrate the performance of our algorithms using two
different datasets. The first is a collection of 6 trees on plant species,
the size of the trees ranging from 19 to 65 taxa, on which we
compare the performance of our algorithms with results reported
in [11]. The second dataset is a collection of 9 trees, each on 279
prokaryotes [25]. These examples demonstrate that our methods
can be applied to reasonably large datasets in acceptable runtimes
(usually only seconds).

2 GALLED NETWORKS COMPARED WITH
GALLED TREES, LEVEL-K-NETWORKS AND
MORE GENERAL ROOTED PHYLOGENETIC
NETWORKS

Let X be a set of taxa. A rooted phylogenetic network N on X
consists of a connected, directed, acyclic graph with a single node
of in-degree 0, called the root, together with a bijective labeling λ
of X onto the set of all leaves of N , that is, all nodes of out-degree
0. All nodes of in-degree≤ 1 are called tree nodes and all others are
called reticulate nodes or simply reticulations. Any edge leading to
a reticulate node is called a reticulate edge, and all others are called
tree edges.

A cluster C of X is any proper subset of X , explicitly excluding
both the empty set ∅ and the full set X . Let C be a set of clusters
on X . We say that a rooted phylogenetic network N represents C in
the hardwired sense, if there exists a one-to-one mapping between
the set of clusters C and the set of tree edges in N such that for each
cluster C the set of leaves reachable below the corresponding edge
e is labeled precisely by C. For example, cluster networks, which
we introduced in [26], represent clusters in the hardwired sense, and
can be computed efficiently.

We say that a rooted phylogenetic network N represents C in the
softwired sense, or N is a softwired network, if for every cluster
C ∈ C there exists some tree edge e in N and some switching of all
reticulate nodes in N such that the set of leaves reachable below e
is labeled precisely by C. By a switching of a reticulate node r we
mean a choice of exactly one ingoing edge of r that is considered
“turned on”, whereas all other ingoing edges are considered “turned
off”. In the following, when we say that a cluster is represented by a
tree edge in a network then we will always mean this in the softwired
sense.

The basic idea behind the concept of a softwired network is that
it describes the evolution of multiple genes or loci: the evolutionary
history of any given gene or locus is described by a tree, embedded
in the network, and containing exactly one of the ingoing edges for
each reticulate node of the network.

Let C be a set of clusters on X . In practice, such a set of clusters
is usually given as the set of all clusters present in a collection of
rooted phylogenetic trees, or may come from an alignment of binary
sequences. In a number of papers mentioned above, the authors

kjihgfedcba

r
r’p

q p’
q’

*

Fig. 1. A galled network containing two reticulations r and r′. The tree
cycles associated with r and r′ are emphasized using dashed and dotted
lines, respectively. In contrast to a galled tree, in which all cycles are edge-
disjoint, these two tree cycles share an edge, namely the one marked ∗.

invoke the parsimony principle to argue that the best network to
compute to represent a set of clusters (in the softwired sense) is
one that minimizes the number of reticulation nodes contained in
the network, as the underlying evolutionary events, for example
speciation by hybridization, are considered “expensive”. As we will
show later, there may be cases where saving a reticulation results
in two completely unrelated parts of the phylogeny being linked
together, so we will slightly alter the aim of the minimization so
as to address this problem.

The problem of computing a miminal rooted phylogenetic
network N that represents a given set of clusters C in the softwired
sense is known to be hard. In fact, even just the Cluster Containment
problem of determining whether a given cluster C is represented by
some given network N , is already NP-complete, see [23].

Due to the computational difficulties associated with the general
problem, researchers have studied rooted phylogenetic networks
that fulfill certain topological constraints. In [6], Gusfield and
colleagues introduced the concept of a galled tree, based on a
condition introduced in [27, 28], in which each biconnected
component (as defined below) of the network contains at most
one reticulate node. Other authors have generalized this to level-
k networks [14], allowing at most k reticulate nodes in any
biconnected component. A practical draw-back of these definitions
is that for a given set of clusters there might not exist such a network
(for a fixed level k). So, any tool based on these concepts is liable to
disappoint its users on some datasets.

In [22] we started developing an alternative generalization of
galled trees called galled networks.

DEFINITION 1. A rooted phylogenetic network N is called a
galled network, if for every reticulation r in N and every pair of
reticulation edges p and q with target node r there exists a tree cycle,
that is, an undirected cycle in N that passes through p followed by
q and otherwise contains only tree edges.

The main idea behind this definition is that a galled network
may be obtained by attaching one or more reticulations to a rooted
phylogenetic “backbone” tree, see Figure 1.

While this definition allows one reticulation r′ to be placed below
another reticulation r in N , if the lowest single ancestor [26] of r′

(defined as the lowest node which lies on every path from the root
to r′) also lies below r, it does not allow more general “reticulations
of reticulations”. A useful and easy consequence of this is that every

2

edcba ihgf

v w

e f

Fig. 2. Any set of clusters on X can be represented by a galled network
using a construction that is illustrated here for X = {a, . . . , i}. For all
leaves except the one labeled by the first taxon (in this example, a), the
source of each leaf edge is a reticulate node that is connected to two parent
nodes v and w. Any cluster C ofX that contains the first taxon is represented
by the tree edge e, whereas any cluster that does not contain the first taxon
is represented by the tree edge f , in the softwired sense.

reticulate node r in a galled network N is a cut node that separates
the set of all nodes that are descendants of r from all other nodes in
N [22].

As already mentioned, one advantage of galled networks over
other restricted classes of rooted networks is that for any input
set of clusters there always exists a corresponding galled network,
unlike in the case of galled trees or level-k networks (see Figure 2).
Moreover, the cluster containment problem is easy to solve:

LEMMA 1 (Cluster Containment for Galled Networks). The
Cluster Containment for Galled Networks problem can be efficiently
solved.

PROOF. We need to show how to determine whether a given tree
edge e = (v, w) in a galled networkN can represent a given cluster
C. Let Le denote the set of all leaves below the node w that are
reachable from w via a path of tree edges, and let Re denote the
set of all reticulate nodes below w that are reachable from w via a
path of tree edges, followed by a single reticulate edge. The taxa
that label the nodes in Le are contained in every cluster represented
by e. Note that every reticulate node r in a galled network N is a
so-called cut node that separates all descendants of r from all other
nodes in the network. Hence, for every node r in Re we have two
possibilities. Either the set Yr of taxa below r is contained in every
cluster represented by e, if all parent nodes of r are descendants of
w. Or Yr is an optional subset in the sense that a cluster represented
by emust either contain all of Yr or none of Yr . Finally, e represents
C if and only if there exists a set R ⊆ Re such that C = Le ∪⋃
r∈R

Yr . �

3 DECOMPOSITION OF PHYLOGENETIC
NETWORKS

Let C be a set of clusters on X . Two clusters A,B ∈ C are
called compatible, if they either are disjoint, or one contains the
other, and are called incompatible, otherwise. We call C pairwise
compatible, if all pairs of clusters in C are compatible. A basic
result of phylogenetics states that a set of clusters C on X can be

represented by a rooted phylogenetic tree, if and only if C is pairwise
compatible.

We define the incompatibility graph IG(C) = (V,E) for C as
the graph with node set V = C and edge set E such that any two
clusters A,B ∈ C are connected by an edge if and only if they are
incompatible with each other.

Recall from basic graph theory that a connected component of an
undirected graph G is defined as any maximal set of nodes U in G
with the property that any two nodes in U are connected by a path in
G. Similarly, a biconnected component is a subgraph of G induced
by a maximal set of nodes U such that any two nodes v, w ∈ U are
connected by two different (undirected) paths that are node-disjoint
(except at v and w).

Let N be a rooted phylogenetic network that represents a set of
clusters C. Because a cluster C may be represented by more than
one edge inN , we define an edge assignment ε to be a mapping that
chooses for each cluster C ∈ C a single tree edge ε(C) in N that
represents it.

We say that N is a decomposable representation of C, or simply
that N is decomposable, if there exists an edge assignment ε such
that:

• For all pairs of clusters A,B ∈ C we have: the two edges ε(A)
and ε(B) lie in the same biconnected component of N if and
only if A and B lie in the same connected component of the
incompatibility graph IG(C).

By definition, cluster networks [26] and split networks [15] are
always decomposable. However, an example due to Yun Song [29]
shows that minimum rooted phylogenetic networks generally are
not. As we illustrate in Figure 3, it is sometimes possible to
save one reticulation by replacing two completely unlinked and
unrelated configurations, each containing two reticulations, by one
configuration containing only three reticulations. This construction
does not reflect biology as it may link together totally unrelated and
arbitrarily distant parts of a phylogeny, thus resulting in misleading
networks, possibly bringing together nematodes and apes, for
example.

Note that this problem does not present itself within a given
component because there, by definition, any two appearing clusters
are connected by a chain of overlapping incompatible clusters that
link them together. For example, in Figure 3 a cluster consisting of
d and d′ would draw all clusters from C and C′ into one component
and there the configuration shown in (c) would seem appropriate.

To avoid this problem, but also for computational reasons,
we propose to focus on decomposable representations. As a
consequence, we may decompose our task as follows [7, 10].
Suppose we are given a set of clusters C on X as input. We first
compute the connected components of IG(C) (either naively in
time O(|C|2) by building the incompatibility graph, or directly,
in subquadratic time [30]). Then, for each non-trivial connected
component C′ ⊆ C of IG(C) we compute a rooted phylogenetic
network N ′ for C′. All these will then be fitted together to produce
as output a final network N for C.

We say that two taxa x, y ∈ X are separated if there exists a
cluster A ∈ C with |{x, y} ∩ A| = 1. When considering such a
subproblem C′, we identify or collapse all taxa that are not separated
by any cluster in C′.

3

Daniel H. Huson et al

e

dc

q

h

r

b

p

ao

u

s

o'a'b'h'c'd'dchbao o'a'b'h'c'd'dchbao

s
p p'r'

u u'

e e'

r
q q'

(a) Phylogenetic network (b) Decomposable representation (c) Non-decomposable representation

Fig. 3. (a) A minimum rooted network N that represents the clusters C =
{
{a}, {b}, {c}, {d},{o}, {h},{a, b}, {a, b, h},{b, h}, {c, d}, {c, d, h},

{a, b, c, d, h}, {a, b, c, d}
}

using two reticulate nodes r and s. Note the role of the reticulate edge labeled u is to switch off the taxon h so that the cluster
{a, b, c, d} can be represented by the tree edge e. (b) Two copies of N embedded into a decomposable network requiring 4 reticulations to represent all
clusters in C and a second set C′ of corresponding ones on {o′, a′, b′, c′, d′, h′}. (c) This network also represents all described clusters, but uses only 3
reticulations. However, we clearly see that this improvement is gained at an undesirable price: decomposability is abandoned (all clusters in C are compatible
with all clusters in C′, yet they are all represented in the same biconnected component of the network) and so two completely unrelated parts of the phylogeny
are linked together via reticulation edges.

As a consequence, throughout the next sections of the paper, we
may assume that for a set of clusters C on X the two following
properties hold:

(P1) The incompatibility graph IG(C) has only one connected
component.

(P2) Every pair of taxa in X is separated.

In effect, our algorithm processes all connected components of the
incompatibility graph sequentially.

4 DETERMINING A MINIMUM SET OF
RETICULATIONS

As discussed above, one way to think of galled networks is that
they are constructed by attaching a number of reticulations to a
phylogenetic tree. Hence, to compute a galled network that uses
a minimum number of reticulations, we will first determine a
maximum set of reticulations (the Maximum Compatible Subset
problem, discussed in this section), which will then be attached
optimally to the tree part of the network (the Minimum Attachment
problem, discussed in the next section).

PROBLEM 1 (Maximum Compatible Subset). Let C be a set of
clusters on X . The Maximum Compatible Subset (MCS) problem is
to remove a minimum set of taxaR from X so that the set of clusters
C|X\R induced by X \R is compatible.

For a general set of clusters, this is equivalent to the “Maximum
Compatible Tree” (MCT) problem, which is known to be NP-hard
[31]. We refer to the MCS problem in which the instances are
restricted to sets of clusters C on X for which properties (P1) and
(P2) hold as the Restricted MCS (RMCS) problem. We next state
that the RMCS problem is hard:

LEMMA 2 (Restricted MCS problem is hard). Let C be a set
of clusters on X with properties (P1) and (P2). Solving the MCS
problem is NP-hard for such input.

A proof is given in the Appendix.
In [32], an FPT algorithm is presented for solving the MCT

problem for a set of rooted phylogenetic trees on X . This algorithm
can be employed to solve the RMCS problem, too, simply by
encoding each cluster C as an appropriate rooted phylogenetic tree.

In this paper we formulate a new algorithm for solving RMCS
directly, which we call the seed-growing algorithm. This algorithm
goes straight to the heart of the problem and thus performs very
well in practice. For each pair of incompatible clusters A,B ∈ C
we define an incompatibility statement consisting of the three terms
A \ B,A ∩ B,B \ A, and we use L to denote the list of all such
statements for C (see Figure 4(a)–(c)). To solve the RMCS problem,
we must find a minimum set of taxa R ⊂ X that resolves each
incompatibility statement in L, that is, for each incompatibility
statement in L at least one term is a subset of R .

The algorithm maintains a set S of candidate solutions, called
seeds. Each seed s ∈ S is labeled by the number rank(s) of
incompatibility statements that it has been shown to resolve in
succession, starting from the beginning of the list L. Initially, the
three parts of the first incompatibility statement are chosen as seeds,
and we set rank(s) = 1 for each such seed s. The algorithm then
proceeds by repeatedly choosing among all seeds of minimum size
a seed s∗ that maximizes rank(s∗). If rank(s∗) = |L|, then s∗

is an optimal solution of the RMCS problem and the algorithm
halts. Otherwise, if s∗ resolves the (rank(s∗)+1)-th incompatibility
statement X,Y, Z, we increment rank(s∗) by one. Otherwise, we
define three new seeds s1 = s∗∪X , s2 = s∗∪Y and s3 = s∗∪Z,
with rank(s1) = rank(s2) = rank(s3) = rank(s∗)+1, add these
to S and remove s∗ from S.

Note that this algorithm is more than just a greedy heuristic, as
it is guaranteed to find an optimal solution. Moreover, although the
MCS problem has the flavor of a hitting set-, vertex cover- or edge
cover problem, it is, in fact, a new problem.

LEMMA 3 (Performance of the seed-growing algorithm). If a
solution to the Maximum Compatible Subset problem has size k for

4

a given set of incompatibility statements H , then the seed-growing
will find it by considering at most 3k+1 seeds, and the algorithm has
a worst-case time complexity of O(k|H|3k).

A proof is given in the Appendix.

5 THE MINIMUM ATTACHMENT PROBLEM
Let C be a set of clusters on X and R (X a minimum subset of
taxa such that the restriction of C to X \ R, denoted by C|X\R,
is compatible. Let T be the rooted phylogenetic tree on X \ R
that represents C|X\R, and let L(e) denote the cluster in C|X\R
represented by an edge e of T . For each tree edge e of T , let
C(e) = {C ∈ C | C \ R = L(e)} denote the set of all clusters
in C that are mapped to L(e) under the restriction of C to X \R, and
let R(e) = {r ∈ R ∩C | C ∈ C(e)} denote the set of all reticulate
taxa that map to the cluster L(e). We will refer to T as the top part.

Let C|R denote the restriction of C to the taxon set R and let Ĉ|R
denote the set of all maximal clusters (by containment) in C|R. We
now define a graph B associated with Ĉ|R, as follows: each cluster
C ∈ Ĉ|R is represented by a node v(C) and each taxon r ∈ R is
represented by a node v(r) and we place an edge from v(C) to v(r)
for all taxa r contained in the cluster C. We will refer to B as the
bottom part. (See Figure 4(d)).

PROBLEM 2 (Attachment problem). The Attachment problem is
to define a set of link edges from nodes in the top part T to nodes in
the bottom part B such that the resulting graph is a galled network
that represents the input set of clusters C.

More precisely, we aim at representing all clusters in C(e) by the
edge e in T and all clusters in C|R by the in-edges of the nodes of
the form v(C), with C ∈ Ĉ|R. To ensure this, the link set must
fulfill the following properties:

(A1) For every edge e of T and every taxon r ∈ R(e) there exists a
link from some descendent node of e in T to either v(r) or to
some node of the form v(C) in B, where C ∈ Ĉ|R contains r.

(A2) For every node of the form v(C) in B, with C ∈ Ĉ|R, there
exists exactly one link from some node in T to v(C).

(A3) For every edge e in T and r ∈ R such that C(e) contains some
C ∈ C that does not contain r, there exists a path from some
node in T , that is not a descendant of e, to v(r).

Property (A1) ensures that we can reach v(r) from any edge e in
T that has a cluster C ∈ C(e) that contains r. Property (A2) ensures
that all nodes of the form v(C) in B obtain in-degree 1. We do not
allow an in-degree larger than 1 to ensure that only nodes of the form
v(r) for r ∈ R will be reticulate nodes. For example, in Figure 4(d),
the node above x and y is only attached to the node labeled b, and
not to the node labeled c or to the parent of the two nodes labeled c
and d, etc. Finally, property (A3) ensures that the node v(r) can be
avoided from any edge e in T that must represent a cluster that does
not contain r.

Our goal is to minimize the number of edges used to solve the
Attachment problem:

PROBLEM 3 (Minimum Attachment Problem (MAT)). Find a
collection of links that has all properties (A1)–(A3) and is of
minimum size.

In general, this is hard to solve:

LEMMA 4 (The MAT Problem is hard). The decision problem
whether there exists a solution to the Attachment problem that uses
at most k edges is NP-complete.

A proof is given in the Appendix.
The instances of this problem that are of interest in practice

are usually quite small and so a branch-and-bound approach is
adequate. The above reduction also proves that the MAT problem
is W[2]-hard, remaining intractable even when parameterized by
k, and so it is unlikely that an O(f(k) · poly(n)) algorithm can
be obtained. Alternatively, the problem can be posed as an ILP
with binary variables that determine whether a possible link edge
is used or not and inequalities that ensure that the properties (A1)–
(A3) hold. The optimization goal is then to minimize the sum of the
binary variables.

The following complication must also be taken into account:
After solving the Minimum Attachment problem for a set of clusters
C on X and a given reticulation set R, assume there exists an edge
e along the path from the root of the top part T to a node v(r), with
r ∈ R, that represents a cluster C that does not contain r. Assume
further that e has the property that the “lowest single ancestor” of
v(r) [26] lies below e. Then we need to create an additional edge to
connect v(r) to a node above e to be able to turn off the taxon r in
the representation of the cluster C.

6 IMPLEMENTATION IN DENDROSCOPE
As our goal is not only to solve the theoretical aspects of galled
networks, but also to provide a robust and easy to use tool so
that biologists can benefit immediately from these results, we have
implemented all presented algorithms in a new version 2.0 of our
program Dendroscope [24].

Originally designed as a tool for drawing phylogenetic trees, this
new version of Dendroscope is geared toward analyzing multiple
trees using both consensus trees and rooted networks. When asked
to produce a rooted network, the program provides the user with the
choice of either computing a rooted “cluster network”, as recently
introduced in [26], or of computing an “optimal galled network”, as
described in this paper.

Input is a set of rooted trees on X . The program proceeds by
extracting the set of all clusters C from the input, or, alternatively,
all clusters contained in a fixed percentage of the input trees. If
the given phylogenetic trees are non-overlapping, but non-identical
taxon sets, our implementation uses the Z-closure method [18] to
infer clusters on the full taxon set.

The incompatibility graph is computed and the list of connected
components is generated. Each such component is “compacted”,
that is, every maximal subset of taxa that is not separated by any
cluster in the component is represented by only one of the taxa in
the subset. For each compacted component C′ on X ′ ⊆ X , we
determine the smallest setR ⊂ X ′ such that C′|X ′−R is compatible,
and then produce an optimal solution of the Minimum Attachment
problem for the component. The solution found is encoded as a
set of clusters with the property that the Hasse diagram of the set
of clusters is precisely the rooted network structure that we are
looking for. This is a useful trick, because it makes “uncompacting”
clusters and putting together the results from different components
straightforward to do.

However, the structure of a galled network cannot always be
completely described in terms of a set of generating clusters in this

5

Daniel H. Huson et al

{a, b}, {a, b, x},
{a, x}, {b, x},
{b, y}, {c, d},

{c, d, x, y}, {c, x},
{d, y}, {x, y}

{x,y} {a,b}

{a,b,x} {a,x}

{b,x}

{b,y}{c,d}
{c,x} {c,d,x,y}

{d,y}

({b}, {a}, {x})
({a}, {b}, {x})
({a}, {b}, {y})
({a, x}, {b}, {y})
({a, b}, {x}, {c, d, y})
({a, b}, {x}, {c})
({a, b}, {x}, {y})
({a}, {x}, {b})
({a}, {x}, {c, d, y})
({a}, {x}, {c})
({a}, {x}, {y})

({x}, {b}, {y})
({b}, {x}, {c, d, y})
({b}, {x}, {c})
({b}, {x}, {y})
({b}, {y}, {c, d, x})
({b}, {y}, {d})
({b}, {y}, {x})
({d}, {c}, {x})
({c}, {d}, {y})
({c}, {x}, {y})
({d}, {y}, {x})

{a,b}

{d,y}

yx

{x,y}

c

{b,x}

a db
{b,y}

{a,x}

{a,b,x}

{c,x}

{c,d,x,y}
{c,d} T

B

(a) Set of clusters C (b) Incompatibility graph (c) Incompatibility statements (d) Galled network for C

Fig. 4. (a) A set of clusters C on X = {a, b, c, x, y}, (b) the incompatibility graph IG(C), (c) the corresponding list L of incompatibility statements solved
by choosing {x, y} as the solution of the MCS problem, and (d) a galled network N obtained by solving the Minimum Attachment problem. Here, the top
and bottom parts of the network are labeled T and B, respectively. The edges of the top part are labeled by the non-trivial clusters that they represent and the
leaves are labeled by their taxa. Link edges are shown as dashed lines.

way: it may be necessary to add a direct edge from a node v to
one of its descendants w, namely to be able to completely turn off
a reticulate node in the representation of some cluster. To address
this, we maintain a list of pairs of clusters that describe pairs of
such nodes that are to be joined by additional edges after the Hasse
diagram of the modified cluster set has been computed.

In Section 2 we showed that the Cluster Containment problem
is easy for galled networks. Based on this, our implementation
contains an algorithm that verifies that a computed galled network
does indeed contain all clusters that are present in the input.

Dendroscope was designed to handle very large trees. In this
vein, we have been careful to ensure that our implementation of
galled networks works well on large datasets, too. The running time
of the algorithm depends on the maximum number of reticulations
required by any compacted component of the incompatibility graph.
If this number is reasonable, then our implementation will happily
work well on trees containing hundreds or thousands of taxa.

As discussed above, to obtain an optimal galled network we
must solve a number of instances of two problems that are both
computationally hard, the Maximum Compatible Subset problem
and the Minimum Attachment problem. To avoid frustrating the
user, when attempting to solve an instance of either problem, the
user is presented with a cancelable progress bar dialog. If she
decides to cancel a computation, then the program takes the best
partial solution found so far and then greedily extends it to a full
solution in very short time. In this way, the program can always be
used to produce a valid galled network, even when the user does not
have the time to wait for a guaranteed optimal one.

7 APPLICATION TO REAL DATA
Application to grasses An algorithm for computing the optimal
number of hybridization nodes in a rooted phylogenetic network N
that displays both of two given input trees is presented by Bordewich
and colleagues in [11], a computationally hard problem, as they
show. At present their implementation does not provide an actual
network that attains the number, but this is under development
(personal communication).

Bordewich and colleagues study five different trees on a grass
(Poaceae) data set provided by the Grass Phylogeny Working Group
[33], ranging in size from 19 to 65 taxa. They apply their algorithm
on all pairs of trees in the input set, in each case restricting the input
trees to the set of taxa that both trees have in common. They report
the optimal number of hybridization nodes and the computational

First Second Common Hybrid time Reticulate time
tree tree taxa nodes nodes

ndhF phyB 40 14 11h 9 < 2s
ndhF rbcL 36 13 11.8h 8 < 2s
ndhF rpoC2 34 12 26.3h 10 < 2s
ndhF waxy 19 9 320s 6 < 2s
ndhF ITS 46 > 15 2d 23 < 2s
phyB rbcL 21 4 1s 6 < 2s
phyB rpoC2 21 7 180s 4 < 2s
phyB waxy 14 3 1s 3 < 2s
phyB ITS 30 8 19s 9 < 2s
rbcL rpoC2 26 13 29.5h 9 < 2s
rbcL waxy 12 7 230s 4 < 2s
rbcL ITS 29 > 9 2d 15 < 2s

rpoC2 waxy 10 1 1s 2 < 2s
rpoC2 ITS 31 > 10 2d 14 < 2s
waxy ITS 15 8 620s 5 < 2s

Table 1. For all possible pairs of five trees on grasses [33], we report the
number of taxa shared by both trees, the number of hybridization nodes and
run-time reported in [11], and the number of reticulate nodes and run-time
obtained using the algorithm described in this paper.

time required. In Table 1 we list their results and compare them
with the results obtained by running our new algorithm on the same
datasets. We show the networks obtained in Figure 5.

There are two important observations to be made. The first is that
the number of hybridization nodes and reticulate nodes is not always
the same. The networks considered by Bordewich and colleagues
are more general, so a smaller number of hybridization nodes is
possible. On the other hand, they search for a network that contains
both trees as subtrees, whereas our algorithm seeks only to represent
their clusters. In all cases where we report a lower number of
reticulations it is true that at least one of the two input trees is not
contained in the network as a tree (although all its clusters are). At
first glance, this may seem a weakness of our approach. However,
biologists are usually focused on the clades or monophyletic groups
rather than on the trees that contain them, and so in practice this is
not a problem.

The second observation is that the runtime required by our
algorithm was less than 2 seconds in all cases, whereas the algorithm
by Bordewich and colleagues took a number of days in some cases,
without completion.

6

o

diarrhena

bromus

brachypodi

melicaa

anisopogon

lygeum

oryza

olyra

pariana

pseudosasa

thysanolae

danthoniop

zea

pennisetum

molinia

eragrostis

aristida

pharus

anomochloa

flagellari

o

stipagrost

austrodant

danthonia

eragrostis

phragmites

arundo

zea

pennisetum

chasmanthi

tr i t icum

avena

pseudosasa

leersia

puelia

joinvillea

baloskion

o

zea

pennisetum

gynerium
chasmanthi

centropodi

spartina
pappophoru

micraira

molinia

stipagrost

amphipogon
austrodant

danthonia

avena
bromus

anisopogon

lygeum

ehrharta
pseudosasa

joinvillea

o

zea

miscanthus

pennisetum

danthoniop

glycerias

trit icum

melicaa

lygeum

oryza

pariana

eremitis

austrodant

karoochloa

merxmuel_m

centropodi

merxmuel_r

chusquea

pharus

anomochloa

o

amphipogon

nardus

trit icum
avena

stipa

ampelodesm

melicaa

anisopogon

chusquea
leersia
ehrharta

arundo

gynerium

thysanolae

zea
pennisetum

aristida

spartina

austrodant

streptocha

o

trit icum

bromus

avena

eragrostis

molinia

phragmites

chasmanthi

thysanolae

zea

miscanthus

pennisetum

danthonia

aristida

oryza

chusquea

pseudosasa

lithachne

puelia

anomochloa

joinvillea

flagellari

o

chasmanthi

zea

miscanthus

pennisetum

panicum

thysanolae

aristida

molinia

phragmites

eragrostis

danthonia

avena

bromus

anisopogon

nardus

lygeum

oryza

ehrharta

olyra

pseudosasa

joinvillea

o

trit icum

lygeum

glycerias

melicaa

oryza

pariana

eremitis

chusquea

zea

miscanthus

pennisetum

danthoniop

pharus

anomochloa

o

molinia

trit icum
bromus
avena

diarrhena

brachypodi

nardus
lygeum

nassella

glycerias
melicaa

anisopogon

oryza
ehrharta
chusquea
lithachne

phragmites
thysanolae

zea
miscanthus
pennisetum
panicum
danthonia

aristida
sporobolus
eragrostis

chasmanthi

pharus
streptocha
joinvillea

o

arundo

gynerium

stipagrost
aristida
phragmites
molinia

zea
miscanthus

pennisetum
chasmanthi
thysanolae

eragrostis
centropodi

pappophoru

merxmuel_r

austrodant
karoochloa
danthonia

merxmuel_m
amphipogon
avena
bromus
stipa
pseudosasa
oryza
joinvillea

o

oryza

trit icum

zea

miscanthus

pennisetum

austrodant

karoochloa

merxmuel_m

merxmuel_r

centropodi

chusquea

anomochloa

o
austrodant
karoochloa

merxmuel_m

danthonia

stipagrost
aristida

eragrostis

amphipogon
arundo
centropodi

merxmuel_r

eriachne

trit icum
bromus
avena
stipa

leersia
oryza
chusquea
lithachne

molinia
phragmites

gynerium
zea
miscanthus
pennisetum
thysanolae

chasmanthi
joinvillea

o

zea

miscanthus

pennisetum

oryza

lygeum

austrodant

karoochloa

centropodi

merxmuel_r

merxmuel_m

o

merxmuel_m
danthonia

amphipogon

austrodant
karoochloa

merxmuel_r
centropodi

spartina
eragrostis

stipagrost
aristida
arundo

bromus
avena

nardus
lygeum

stipa

anisopogon
oryza
ehrharta

molinia
phragmites

gynerium

micraira

zea
miscanthus

pennisetum
panicum

chasmanthi

thysanolae

joinvillea

o

trit icum

lygeum

glycerias

melicaa

oryza

chusquea

zea

miscanthus

pennisetum

austrodant

karoochloa

merxmuel_r

merxmuel_m

centropodi

pharus

Fig. 5. Galled networks computed by Dendroscope, using the algorithms presented in this paper, for fifteen different pairs of trees on grasses [33], see Table 1.

Application to prokaryotes dataset To test the algorithm on a
larger dataset, we considered nine different gene trees on a set
of 279 prokaryotes [25]. To evaluate the running time on an
extremely hard dataset, we ran our algorithm on the set of all 1334
clusters contained in the nine trees. As it turned out, most clusters
are involved in one large incompatibility component with 13337
incompatibility statements. Our code for solving the Maximum
Compatible Subset problem required less than 10 minutes to
solve this component, whereas the code for solving the Minimum
Attachment problem was unable to find a guaranteed minimum

solution within an acceptable time. The network produced used 179
reticulate nodes. For a less difficult dataset, we ran the algorithm
on all clusters contained in more than one input tree. This gave rise
to a dataset of 655 clusters and the most difficult incompatibility
component had 29 incompatibility statements, which required 4
reticulations to resolve. In this case, the galled network was obtained
in less than 2 seconds, and we display it in Figure 6.

7

Daniel H. Huson et al

Yersinia_pestis_CO92
Sodalis_glossinidius_morsitans

Baumannia_cicadellinicola_Homalodisca_coagulata

Candidatus_Blochmannia_floridanus

Shigella_boydii_Sb227
Shigella_flexneri_2a

Pasteurella_multocida
Shewanella_oneidensis

Vibrio_cholerae
Vibrio_parahaemolyticus
Thiomicrospira_crunogena_XCL-2
Pseudomonas_fluorescens_Pf-5
Pseudomonas_aeruginosa
Psychrobacter_arcticum_273-4
Saccharophagus_degradans_2-40
Chromohalobacter_salexigens_DSM_3043

Xanthomonas_citri
Xanthomonas_campestris

Burkholderia_cenocepacia_AU_1054
Burkholderia_mallei_ATCC_23344
Ralstonia_eutropha_H16
Rhodoferax_ferrireducens_T118
Bordetella_parapertussis
Azoarcus_sp_EbN1

Neisseria_gonorrhoeae_FA_1090
Chromobacterium_violaceum

Nitrosomonas_europaea

Coxiella_burnetii

Bartonella_quintana_Toulouse

Rhizobium_etli_CFN_42
Rhodopseudomonas_palustris_BisA53
Bradyrhizobium_japonicum
Caulobacter_crescentus

Jannaschia_CCS1
Roseobacter_denitrificans_OCh_114

Gluconobacter_oxydans_621H
Magnetospirillum_magneticum_AMB-1
Ehrlichia_canis_Jake
Ehrlichia_ruminantium_Gardel
Wolbachia_endosymbiont_of_Drosophila_melanogaster
Rickettsia_prowazekii
Rickettsia_felis_URRWXCal2
Campylobacter_jejuni
Helicobacter_pylori_26695
Wolinella_succinogenes

Bdellovibrio_bacteriovorus

Desulfovibrio_desulfuricans_G20
Syntrophus_aciditrophicus_SB

Anaeromyxobacter_dehalogenans_2CP-C
Mycoplasma_gallisepticum
Mycoplasma_penetrans
Mycoplasma_synoviae_53
Mycoplasma_capricolum_ATCC_27343

Staphylococcus_epidermidis_ATCC_12228
Staphylococcus_haemolyticus

Streptococcus_mutans
Streptococcus_pyogenes_M1_GAS

Enterococcus_faecalis_V583
Lactobacillus_johnsonii_NCC_533

Listeria_monocytogenes
Bacillus_cereus_ATCC14579
Bacillus_licheniformis_ATCC_14580

Bacillus_halodurans
Mycobacterium_leprae
Nocardia_farcinica_IFM10152
Corynebacterium_jeikeium_K411
Corynebacterium_diphtheriae

Bifidobacterium_longum
Tropheryma_whipplei_TW08_27
Streptomyces_coelicolor

Prochlorococcus_marinus_CCMP1375

Anabaena_variabilis_ATCC_29413

Gloeobacter_violaceus
Bacteroides_thetaiotaomicron_VPI-5482

Pelodictyon_luteolum_DSM_273
Chlorobium_chlorochromatii_CaD3
Borrelia_garinii_PBi
Treponema_denticola_ATCC_35405
Chlamydia_muridarum

Chlamydophila_abortus_S26_3
Pirellula_sp
Deinococcus_geothermalis_DSM_11300
Aquifex_aeolicus

Syntrophomonas_wolfei_Goettingen
Clostridium_tetani_E88
Rubrobacter_xylanophilus_DSM_9941
Methanopyrus_kandleri
Methanococcus_jannaschii
Halobacterium_sp
Methanospirillum_hungatei_JF-1

Archaeoglobus_fulgidus
Methanosarcina_mazei

Pyrococcus_horikoshii
Thermoplasma_acidophilum
Sulfolobus_solfataricus

Nanoarchaeum_equitans
Aeropyrum_pernix

Fig. 6. A galled network on 279 prokaryote species, computed from all
clusters that are contained in more than one of nine different gene trees.

ACKNOWLEDGEMENTS
This work was initiated by DHH and RR during the Phylogeny
Programme at the Newton Institute of Cambridge University in
2007. RR was supported by DFG grant Hu 566/5-1. This work was
also supported by the French ANR project ANR-08-EMER-011-01.
We would like to thank Magnus Bordewich, Vincent Moulton and
Charles Semple for many helpful discussions, and Johannes Fischer

for giving us feedback on the manuscript. Thanks to Alexander
Auch for providing the nine gene trees on prokaryotes.

REFERENCES
[1]J.E. Cohen. Mathematics is Biology’s next microscope, only better; Biology is

Mathematics’ next Physics, only better. PLoS Biology, 2(12):e439, 2004.
[2]W. F. Doolittle and E. Bapteste. Pattern pluralism and the tree of life hypothesis.

PNAS, 104:2043–2049, 2007.
[3]J. Hein. A heuristic method to reconstruct the history of sequences subject to

recombination. J. Mol. Evol., 36:396–405, 1993.
[4]Y.S. Song and J. Hein. Constructing minimal ancestral recombination graphs. J.

Comp. Biol., 12:147–169, 2005.
[5]R.B. Lyngsø, Y.S. Song, and J. Hein. Minimum recombination histories by branch

and bound. In WABI, pages 239–250, 2005.
[6]D. Gusfield, S. Eddhu, and C. Langley. Efficient reconstruction of phylogenetic

networks with constrained recombination. In Proceedings of the IEEE Computer
Society Conference on Bioinformatics, page 363, 2003.

[7]D. Gusfield and V. Bansal. A fundamental decomposition theory for phylogenetic
networks and incompatible characters. In Proceedings of the Ninth International
Conference on Research in Computational Molecular Biology (RECOMB), pages
217–232, 2005.

[8]D.H. Huson and T.H. Kloepper. Computing recombination networks from binary
sequences. Bioinformatics, 21(suppl. 2):ii159–ii165, 2005. ECCB.

[9]C. R. Linder and L. H. Rieseberg. Reconstructing patterns of reticulate evolution
in plants. Am. J. Bot., 91(10):1700–1708, 2004.

[10]D.H. Huson, T. Kloepper, P.J. Lockhart, and M.A. Steel. Reconstruction of
reticulate networks from gene trees. In Proceedings of the Ninth International
Conference on Research in Computational Molecular Biology (RECOMB),
volume 3500 of LNCS, pages 233–249. Springer Verlag, 2005.

[11]M. Bordewich, S. Linz, K. St. John, and C. Semple. A reduction algorithm for
computing the hybridization number of two trees. Evolutionary Bioinformatics,
3:86–98, 2007.

[12]M. Hallett and J. Lagergren. Efficient algorithms for lateral gene transfer
problems. In 5th Annual RECOMB Montreal, April 22-25, pages 149–156, 2001.

[13]B. G. Mirkin, T. I. Fenner, M. Y. Galperin, and E. V. Koonin. Algorithms
for computing parsimonious evolutionary scenarios for genome evolution, the
last universal common ancestor and domiance of horizontal gene transfer in the
evolution of prokaryotes. BMC Evolutionary Biology, 3:2, 2003.

[14]L. van Iersel, J. Keijsper, S. Kelk, L. Stougie, F. Hagen, and T. Boekhout.
Constructing level-2 phylogenetic networks from triplets. In International
Conference on Computational Molecular Biology (RECOMB), volume 4955 of
LNCS, pages 450–462. Springer Verlag, 2008.

[15]H.-J. Bandelt and A. W. M. Dress. A canonical decomposition theory for metrics
on a finite set. Advances in Mathematics, 92:47–105, 1992.

[16]D.H. Huson and D. Bryant. Application of phylogenetic networks in evolutionary
studies. Molecular Biology and Evolution, 23:254–267, 2006. Software available
from www.splitstree.org.

[17]D. Bryant and V. Moulton. NeighborNet: An agglomerative method for the
construction of planar phylogenetic networks. In R. Guigó and D. Gusfield,
editors, Algorithms in Bioinformatics, WABI 2002, volume LNCS 2452, pages
375–391, 2002.

[18]D.H. Huson, T. Dezulian, T. Kloepper, and M. A. Steel. Phylogenetic super-
networks from partial trees. IEEE/ACM TCBB, 1(4):151–158, 2004.

[19]C. Than, D. Ruths, and L. Nakhleh. Phylonet: A software package for analyzing
and reconstructing reticulate evolutionary relationships. BMC Bioinformatics,
9(322), 2008.

[20]K.T. Huber, B. Oxelman, M. Lott, and V. Moulton. Reconstructing the
evolutionary history of polyploids from multilabeled trees. Molecular Biology
and Evolution, 23(9):1784–1791, 2007.

[21]L. van Iersel and S. Kelk. Constructing the simplest possible phylogenetic network
from triplets. Proceedings of ISAAC’08, 5369:472–483, 2008.

[22]D.H. Huson and T.H. Kloepper. Beyond galled trees - decomposition and
computation of galled networks. In Research in computational biology, volume
4453 of LNCS, pages 211–225, 2007.

[23]I.A. Kanj, L. Nakhleh, C. Than, and G. Xia. Seeing the trees and their branches
in the network is hard. Theor. Comput. Sci., 401(1-3):153–164, 2008.

[24]D.H. Huson, D.C. Richter, C. Rausch, T. Dezulian, M. Franz, and R. Rupp.
Dendroscope: An interactive viewer for large phylogenetic trees. BMC
Bioinformatics, 8:460doi:10.1186/1471-2105-8-460, 2007.

8

[25]A. F. Auch, S. Steigele, D.H. Huson, and S.R. Henz. Horizontal gene transfer in a
common set of prokaryotic genes. In preparation.

[26]D.H. Huson and R. Rupp. Summarizing multiple gene trees using cluster
networks. In Keith Crandall and Jens Lagergren, editors, Algorithms in
Bioinformatics, WABI 2008, number 5251 in LNBI, pages 211–225, 2008.

[27]B. Ma, L. Wang, and M. Li. Fixed topology alignment with recombination. In
Proceedings of the 9th Annual Symposium on Combinatorial Pattern Matching
(CPM’98), volume 1448 of LNCS, pages 174–188, 1998.

[28]L. Wang, K. Zhang, and L. Zhang. Perfect phylogenetic networks with
recombination. In Proceedings of the 16th ACM Symposium on Applied
Computing (SAC’01), pages 46–50, 2001.

[29]D. Gusfield, V. Bansal, V. Bafna, and Y. S. Song. A decomposition theory for
phylogenetic networks and incompatible characters. Journal of Computational
Biology, 14:1247–1272, 2007.

[30]P. Charbit, M. Habib, V. Limouzy, F. de Montgolfier, M. Raffinot, and M. Rao.
A note on computing set overlap classes. Information Processing Letters,
108(4):186–191, 2008.

[31]M. Steel and A. Hamel. Finding a maximum compatible tree is NP-hard for
sequences and trees. Applied Math Letters, 9(2):55–60, 1996.

[32]V. Berry and F. Nicolas. Improved parameterized complexity of the maximum
agreement subtree and maximum compatible tree problems. IEEE/ACM TCBB,
3(3):289–302, 2006.

[33]Grass Phylogeny Working Group. Phylogeny and subfamilial classification of
the grasses (poaceae). Annals of the Missouri Botanical Garden, 88(3):373–457,
2001.

APPENDIX
Proof of Lemma 2: Restricted MCS is hard
We consider the decision problem of knowing whether there exists
a set of k taxa whose removal resolves all the incompatibilities in a
set of clusters, shown to be hard in [31].

We then show by reduction of this decision problem for general
cluster sets that the decision problem for a set of clusters with
properties (P1) and (P2) is NP-hard, which implies the NP-hardness
of the MCS problem for such input. Let C be a set of clusters on
X , not necessarily fulfilling properties (P1) and (P2). Set X ′ =
X ∪ {o}, where o is some new taxon not contained in X , and let C1
denote the set of all trivial clusters, i.e. clusters which contain only
one taxon. Define C′ = (C \ C1) ∪ {X} ∪ {{o, x} | x ∈ X}. Note
that by construction, the set of clusters C′ on X ′ has properties (P1)
and (P2). We prove that there is a solution R′ of size k + 1 of the
restricted problem for C′ iff there is a solution R of size k of the
general problem for C.
⇒: Let R′ be a solution of the restricted problem for C′ of size

k + 1, there are two cases to consider.
Case (1): o ∈ R′. Then R = R′ \ {o} is of size k and removes all
the incompatibilities from C.
Case (2): o /∈ R′. In this case, the set R′ must contain all but
one element of X , that is, |R′| = k + 1 = |X | − 1, because
otherwise there would remain two clusters of the form {o, x} and
{o, y}, which are incompatible. Then any subset R ⊂ X of size
|X |−2 = k is a valid solution for C, because a collection of clusters
on only two taxa cannot be incompatible.
⇐: Let R be a solution of the general problem for C of size k.

We consider R′ = R ∪ {o}. This set has size k + 1, removes all
incompatibilities between clusters {o, x} as it removes taxon o. All
other incompatibilities are removed because R ⊂ R′. �

Proof of Lemma 3: Performance of the seed-growing
algorithm
We claim that if a minimum element s ∈ S contains k taxa, then
S contains at most 3k+1 sets. Consider the enumeration tree of
seeds generated by the algorithm. For the purpose of this proof, let
the level of a node v be the number of edges in the path from the
root of the enumeration tree to v. At the beginning of an iteration,
the algorithm chooses a seed s of minimum cardinality |s|. By
construction, the level of the corresponding node will be at most |s|.
If s solves the next incompatibility, then no new nodes are added to
the enumeration tree. Otherwise, three new nodes are added, each
representing some seed whose cardinality is strictly larger than that
of s. Thus, the enumeration tree will have at most k + 1 different
levels, and each level will have at most 3 times as many nodes as the
previous level. This implies that the number of seeds considered in
S is at most 3k+1. �

Proof of Lemma 4: The MAT Problem is hard
Here we sketch a reduction of the Set Cover (SC) problem to
the MAT problem. Further details of the proof will be provided
elsewhere. Recall that in the SC problem we are given a collection
of sets C on a set X and a number k. The question is: does there
exist a subset S ⊆ C of k sets that covers X ? We will construct an
instance of MAT that has a solution usingm+k edges if and only if
SC has a solution using k sets, with m = |C|. Let d be an auxiliary
taxon not contained in X and define X ′ = X ∪{d}. We construct a
phylogenetic tree T with root ρ and m+ 1 leaves. Set R(e0) = X ′
for the first leaf edge e0 = (ρ, v0) of T and set R(ei) = {d} for
all other leaf edges e1 = (ρ, v1), . . . , em = (ρ, vm) of T . This
defines the top part of the graph used in the Attachment problem.
For the bottom part, B, define one cluster node v(C∪{d}) for each
set C ∈ C and one reticulate node v(r) for each r ∈ X ′. Place
an edge from v(C ∪ {d}) to v(r) for each taxon r contained in
C ∪ {d}. Note that we can assume that each r ∈ X is contained in
at least two different sets in C, otherwise we can reduce the instance
of SC to a smaller one. This observation ensures that any solution to
the MAT problem will fulfill property (A3). We will now prove the
following claim: If there exists a solution of this instance of MAT
using m + k edges, then there is one in which the node v0 is only
connected to nodes of the form v(C ∪ {d}), with C ∈ C. It follows
from properties (A1) and (A2) that there are k edges that connect
v0 to B and m edges that connect nodes v1, . . . , vm to B. Since all
edges departing from v0 lead to cluster nodes in B, then this set of
cluster nodes defines a subset of clusters S that covers X ′, and thus,
also X , providing a solution to the SC problem of size k. Now, to
prove the claim, assume one of the edges departing from v0 leads
directly to a node of the form v(r) in B, for some taxon r ∈ X ′. If
there is a cluster node v(C∪{d}) connected to v0 with x ∈ C∪{d},
then we can remove the edge from v0 to v(r), as it is superfluous.
Otherwise, there exists a cluster node v(C ∪ {d}) that is attached
below some node vi in T , with i > 0. In this case we modify the
solution as follows: redirect the edge from v0 to v(r) so that it leads
to v(C ∪ {d}) and redirect the edge from vi to v(C ∪ {d}) so that
it leads to v(r). This is repeated until all children of v0 are cluster
nodes.

Vice versa, it is also not difficult to see that any solution with k
sets of an instance of the SC problem leads to a solution withm+k
edges of this simplified case of the MAT problem. �

9

