
HAL Id: lirmm-00368545
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00368545v2

Submitted on 20 Jun 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Computing Galled Networks from Real Data
Daniel Huson, Regula Rupp, Vincent Berry, Philippe Gambette, Christophe

Paul

To cite this version:
Daniel Huson, Regula Rupp, Vincent Berry, Philippe Gambette, Christophe Paul. Computing Galled
Networks from Real Data. Bioinformatics, 2009, 25 (12), pp.i85-i93. �10.1093/bioinformatics/btp217�.
�lirmm-00368545v2�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00368545v2
https://hal.archives-ouvertes.fr

[10:06 15/5/2009 Bioinformatics-btp217.tex] Page: i85 i85–i93

BIOINFORMATICS Vol. 25 ISMB 2009, pages i85–i93
doi:10.1093/bioinformatics/btp217

Computing galled networks from real data
Daniel H. Huson1,∗, Regula Rupp1, Vincent Berry2, Philippe Gambette2

and Christophe Paul2
1Center for Bioinformatics ZBIT, Tübingen University, Sand 14, 72076 Tübingen, Germany and 2Laboratoire
d’Informatique, de Robotique et de Microélectronique de Montpellier (LIRMM, UMR 5506, CNRS), Université
Montpellier II, 161, rue Ada, 34392 Montpellier Cedex 5, France

ABSTRACT

Motivation: Developing methods for computing phylogenetic
networks from biological data is an important problem posed by
molecular evolution and much work is currently being undertaken
in this area. Although promising approaches exist, there are no tools
available that biologists could easily and routinely use to compute
rooted phylogenetic networks on real datasets containing tens or
hundreds of taxa. Biologists are interested in clades, i.e. groups of
monophyletic taxa, and these are usually represented by clusters
in a rooted phylogenetic tree. The problem of computing an optimal
rooted phylogenetic network from a set of clusters, is hard, in general.
Indeed, even the problem of just determining whether a given
network contains a given cluster is hard. Hence, some researchers
have focused on topologically restricted classes of networks, such
as galled trees and level-k networks, that are more tractable, but
have the practical draw-back that a given set of clusters will usually
not possess such a representation.
Results: In this article, we argue that galled networks (a
generalization of galled trees) provide a good trade-off between
level of generality and tractability. Any set of clusters can be
represented by some galled network and the question whether a
cluster is contained in such a network is easy to solve. Although
the computation of an optimal galled network involves successively
solving instances of two different NP-complete problems, in practice
our algorithm solves this problem exactly on large datasets
containing hundreds of taxa and many reticulations in seconds, as
illustrated by a dataset containing 279 prokaryotes.
Availability: We provide a fast, robust and easy-to-use
implementation of this work in version 2.0 of our tree-handling
software Dendroscope, freely available from
http://www.dendroscope.org.
Contact: huson@informatik.uni-tuebingen.de

1 INTRODUCTION
Developing appropriate methods for computing phylogenetic
networks from biological data has been described as one of the
five most important challenges posed to mathematics by biology
(Cohen, 2004) and there is a lot of recent work focused on this
topic (Doolittle and Bapteste, 2007): One area of research is
recombination networks, which have been studied in the context
of population genetics for many years, e.g. (Hein, 1993; Lyngsø
et al., 2005; Song and Hein, 2005), and have recently received

∗To whom correspondence should be addressed.

more attention in the guise of galled trees and related concepts,
e.g. (Gusfield and Bansal, 2005; Gusfield et al., 2003; Huson
and Kloepper, 2005). Here, the task is to compute a rooted
phylogenetic network from a set of binary sequences. A second area
is hybridization networks (Bordewich et al., 2007; Huson et al.,
2005; Linder and Rieseberg, 2004), where the goal is to compute
a rooted phylogenetic network from a set of incongruent trees. A
third area is HGT networks, where the goal usually is to explain the
discrepancies between gene trees (or gene content) and a species
tree, e.g (Hallett and Lagergren, 2001; Mirkin et al., 2003). Another
area of research focuses on the computation of rooted networks from
triplets (van Iersel et al., 2008).

One type of unrooted phylogenetic network, called a split network
(Bandelt and Dress, 1992), is widely used as a tool for displaying
incompatible datasets. Its popularity is probably due to the existence
of a user-friendly program (Huson and Bryant, 2006) that contains
a number of methods, such as Neighbor-net (Bryant and Moulton,
2002) or the Z-closure super network method (Huson et al., 2004),
for computing such networks.

The current state of the art for rooted phylogenetic networks, on
the other hand, can be characterized as follows: there are many
promising directions to follow and some rudimentary software
implementations (Huber et al., 2007; Than et al., 2008; van Iersel
and Kelk, 2008). However, there is no tool currently available that
biologists could easily and routinely use on real data. This is an
unfortunate state of affairs, because biologists are more interested
in rooted networks than in unrooted networks, just as they are
more interested in rooted trees than in unrooted ones. (Unrooted
networks are very different from rooted networks, so constructions
for unrooted networks usually do not carry over to rooted networks.)

The aim of this article is to help fill this gap by providing a
theoretically well-founded and practically well-implemented and
easy-to-use method for computing rooted phylogenetic networks
from a set of clusters, for example, extracted from a set of
phylogenetic trees, or directly from sequences. Our approach is
based on the concept of a galled network, which is a generalization
of the concept of a galled tree. Continuing work started Huson and
Kloepper (2007), here we make new contributions to a number of
topics, including: complexity of the cluster containment problem,
existence of a galled network, desirability of the decomposition
property, role of incompatibility statements, complexity and solution
of the (RMSC) problem, formulation, complexity and solution of the
MinimumAttachment problem (MAP), user-friendly, robust and fast
implementation of all algorithms, aimed at real data. We believe that
galled networks provide a good trade-off between level of generality
and ease of practical computability.

© 2009 The Author(s)
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/
by-nc/2.0/uk/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

http://www.dendroscope.org
http://creativecommons.org/licenses/

[10:06 15/5/2009 Bioinformatics-btp217.tex] Page: i86 i85–i93

D.H.Huson et al.

As we will show in this article, one main advantage of galled
networks is that the Cluster Containment problem is easy to
solve for them. This is not true for general rooted phylogenetic
networks (Kanj et al., 2008). In consequence, one can easily verify
algorithmically that a galled network actually contains all the
clusters that it claims to represent and a user of the network can
easily locate a cluster of interest. Galled networks are particularly
applicable if the dataset can basically be represented by a tree, to
which some reticulations are attached. In such cases, the computed
network explicitly provides a possible evolutionary scenario. In
more complicated situations (such as in population studies of
sexually reproducing organisms), the network should only be seen
as an abstract representation of the given cluster set.

We provide an implementation of our method aimed at
phylogenetic trees (as input) in the new version 2.0 of our
Dendroscope software (Huson et al., 2007). We plan also to integrate
the code into our SplitsTree software (Huson and Bryant, 2006),
where it will be applicable to character sequences, too.

We demonstrate the performance of our algorithms using two
different datasets. The first is a collection of six trees on plant
species, the size of the trees ranging from 19 to 65 taxa, on which
we compare the performance of our algorithms with results reported
in Bordewich et al. (2007). The second dataset is a collection of
nine trees, each on 279 prokaryotes (Auch et al., manuscript in
preparation). These examples demonstrate that our methods can be
applied to reasonably large datasets in acceptable runtimes (usually
only seconds).

2 GALLED NETWORKS COMPARED WITH
GALLED TREES, LEVEL K NETWORKS AND
MORE GENERAL ROOTED PHYLOGENETIC
NETWORKS

Let X be a set of taxa. A rooted phylogenetic network N on X
consists of a connected, directed, acyclic graph with a single node
of in-degree 0, called the root, together with a bijective labeling λ

of X onto the set of all leaves of N , i.e. all nodes of out-degree 0.
All nodes of in-degree ≤1 are called tree nodes and all others are
called reticulate nodes or simply reticulations. Any edge leading to
a reticulate node is called a reticulate edge, and all others are called
tree edges.

A cluster C of X is any proper subset of X , explicitly excluding
both the empty set ∅ and the full set X . Let C be a set of clusters
on X . We say that a rooted phylogenetic network N represents C in
the hardwired sense, if there exists a one-to-one mapping between
the set of clusters C and the set of tree edges in N such that for each
cluster C the set of leaves reachable below the corresponding edge
e is labeled precisely by C. For example, cluster networks, which
we introduced in Huson and Rupp (2008), represent clusters in the
hardwired sense, and can be computed efficiently.

We say that a rooted phylogenetic network N represents C in the
softwired sense, or N is a softwired network, if for every cluster
C ∈C there exists some tree edge e in N and some switching of all
reticulate nodes in N such that the set of leaves reachable below e
is labeled precisely by C. By a switching of a reticulate node r, we
mean a choice of exactly one ingoing edge of r that is considered
‘turned on’, whereas all other ingoing edges are considered ‘turned
off’. In the following, when we say that a cluster is represented by a

tree edge in a network then we will always mean this in the softwired
sense.

The basic idea behind the concept of a softwired network is that
it describes the evolution of multiple genes or loci: the evolutionary
history of any given gene or locus is described by a tree, embedded
in the network and containing exactly one of the ingoing edges for
each reticulate node of the network.

Let C be a set of clusters on X . In practice, such a set of clusters
is usually given as the set of all clusters present in a collection of
rooted phylogenetic trees, or may come from an alignment of binary
sequences. In a number of papers mentioned above, the authors
invoke the parsimony principle to argue that the best network to
compute to represent a set of clusters (in the softwired sense) is
one that minimizes the number of reticulation nodes contained in
the network, as the underlying evolutionary events, for example,
speciation by hybridization, are considered ‘expensive’. As we will
show later, there may be cases where saving a reticulation results
in two completely unrelated parts of the phylogeny being linked
together, so we will slightly alter the aim of the minimization so as
to address this problem.

The problem of computing a miminal rooted phylogenetic
network N that represents a given set of clusters C in the softwired
sense is known to be hard. In fact, even just the cluster containment
problem of determining whether a given cluster C is represented by
some given network N , is already NP-complete, see (Kanj et al.,
2008).

Due to the computational difficulties associated with the general
problem, researchers have studied rooted phylogenetic networks that
fulfill certain topological constraints. In Gusfield and colleagues
(2003) introduced the concept of a galled tree, based on a condition
introduced in Ma et al. (1998) and Wang et al. (2001), in which each
biconnected component (as defined below) of the network contains
at most one reticulate node. Other authors have generalized this to
level k networks (van Iersel et al., 2008), allowing at most k reticulate
nodes in any biconnected component. A practical drawback of these
definitions is that for a given set of clusters there might not exist
such a network (for a fixed level k). So, any tool based on these
concepts is liable to disappoint its users on some datasets.

In Huson and Kloepper (2007) we started developing an
alternative generalization of galled trees called galled networks.

Definition 1. A rooted phylogenetic network N is called a galled
network, if for every reticulation r in N and every pair of reticulation
edges p and q with target node r there exists a tree cycle, that is,
an undirected cycle in N that passes through p followed by q and
otherwise contains only tree edges.

The main idea behind this definition is that a galled network may
be obtained by attaching one or more reticulations to a rooted
phylogenetic ‘backbone’ tree, see Figure 1. A useful and easy
consequence of this is that every reticulate node r in a galled
network N is a cut node that separates the set of all nodes that are
descendants of r from all other nodes in N (Huson and Kloepper,
2007). This corresponds to a biological scenario in which reticulate
events (such hybridization or horizontal gene transfer events) are
quite rare.

As already mentioned, one advantage of galled networks over
other restricted classes of rooted networks is that for any input set of
clusters there always exists a corresponding galled network, unlike

i86

[10:06 15/5/2009 Bioinformatics-btp217.tex] Page: i87 i85–i93

Computing galled networks

kjihgfedcba

r
r’p

q p’
q’

*

Fig. 1. A galled network containing two reticulations r and r′. The tree
cycles associated with r and r′ are emphasized using dashed and dotted lines,
respectively. In contrast to a galled tree, in which all cycles are edge-disjoint,
these two tree cycles share an edge, namely the one marked ∗.

edcba ihgf

v w

e f

Fig. 2. Any set of clusters on X can be represented by a galled network
using a construction that is illustrated here for X ={a,...,i}. For all leaves
except the one labeled by the first taxon (in this example, a), the source of
each leaf edge is a reticulate node that is connected to two parent nodes v
and w. Any cluster C of X that contains the first taxon is represented by
the tree edge e, whereas any cluster that does not contain the first taxon is
represented by the tree edge f , in the softwired sense.

in the case of galled trees or level k networks (Fig. 2). Moreover,
the cluster containment problem is easy to solve:

Lemma 1. (Cluster containment for galled networks). The cluster
containment for galled networks problem can be efficiently solved.

Proof. We need to show how to determine whether a given tree
edge e= (v,w) in a galled network N can represent a given cluster
C. Let Le denote the set of all leaves below the node w that are
reachable from w via a path of tree edges, and let Re denote the set
of all reticulate nodes below w that are reachable from w via a path
of tree edges, followed by a single reticulate edge. The taxa that
label the nodes in Le are contained in every cluster represented by
e. As every reticulate node r in a galled network N is a cut node, we
have two possibilities. Either the set Yr of taxa below r is contained
in every cluster represented by e, which happens when all parent
nodes of r are descendants of w. Or Yr is an optional subset in the
sense that a cluster represented by e must either contain all of Yr or
none of Yr . Finally, e represents C if and only if there exists a set
R⊆Re such that C =Le ∪ ⋃

r∈R
Yr . �

3 DECOMPOSITION OF PHYLOGENETIC
NETWORKS

Let C be a set of clusters on X . Two clusters A,B∈C are called
compatible, if they either are disjoint, or one contains the other, and

are called incompatible, otherwise. We call C pairwise compatible,
if all pairs of clusters in C are compatible. A basic result of
phylogenetics states that a set of clusters C on X can be represented
by a rooted phylogenetic tree, if and only if C is pairwise compatible.

We define the incompatibility graph IG(C)= (V ,E) for C as the
graph with node set V =C and edge set E such that any two clusters
A,B∈C are connected by an edge if and only if they are incompatible
with each other.

Recall from basic graph theory that a connected component of an
undirected graph G is defined as any maximal set of nodes U in G
with the property that any two nodes in U are connected by a path in
G. Similarly, a biconnected component is a subgraph of G induced
by a maximal set of nodes U such that any two nodes v,w∈U are
connected by two different (undirected) paths that are node-disjoint
(except at v and w).

Let N be a rooted phylogenetic network that represents a set of
clusters C. Because a cluster C may be represented by more than
one edge in N , we define an edge assignment ε to be a mapping
that chooses for each cluster C ∈C a single tree edge ε(C) in N that
represents it.

We say that N is a decomposable representation of C, or simply
that N is decomposable, if there exists an edge assignment ε such
that:

• for all pairs of clusters A,B∈C we have: the two edges ε(A)
and ε(B) lie in the same biconnected component of N if and
only if A and B lie in the same connected component of the
incompatibility graph IG(C).

By definition, cluster networks (Huson and Rupp, 2008) and
split networks (Bandelt and Dress, 1992) are always decomposable.
However, an example due to Yun Song shows that this property does
not hold for more general rooted phylogenetic networks (Gusfield
et al., 2007). As we illustrate in Figure 3, it is sometimes possible
to save one reticulation by replacing two completely unlinked and
unrelated configurations, each containing two reticulations, by one
configuration containing only three reticulations. This construction
does not reflect biology as it may link together totally unrelated and
arbitrarily distant parts of a phylogeny, thus resulting in misleading
networks, possibly bringing together nematodes and apes, for
example.

To avoid this problem, but also for computational reasons,
we propose to focus on decomposable representations. As a
consequence, we may decompose our task as follows (Gusfield
and Bansal, 2005; Huson et al., 2005). Suppose we are given a
set of clusters C on X as input. We first compute the connected
components of IG(C) [either naively in time O(|C|2) by building
the incompatibility graph, or directly, in subquadratic time (Charbit
et al., 2008)]. Then, for each non-trivial connected component C′ ⊆C
of IG(C) we compute a rooted phylogenetic network N ′ for C′. All
these will then be fitted together to produce as output a final network
N for C.

We say that two taxa x,y∈X are separated if there exists a cluster
A∈C with |{x,y}∩A|=1. When considering such a subproblem C′,
we identify or collapse all taxa that are not separated by any cluster
in C′.

As a consequence, throughout the next sections of the article, we
may assume that for a set of clusters C on X the two following
properties hold.

i87

[10:06 15/5/2009 Bioinformatics-btp217.tex] Page: i88 i85–i93

D.H.Huson et al.

e

dc

q

h

r

b

p

a

u

s

o'a'b'h'c'd'dchbao o o'a'b'h'c'd'dchbao

s
p p'r'

u u'

e e'

r
q q'

(a) Phylogenetic network (b) Decomposable representation (c) Non-decomposable representation

Fig. 3. (a) A minimum rooted network N that represents the clusters C={{a}, {b}, {c}, {d},{o}, {h},{a,b}, {a,b,h},{b,h}, {c,d}, {c,d,h}, {a,b,c,d,h}, {a,b,c,d}}
using two reticulate nodes r and s. Note the role of the reticulate edge labeled u is to switch off the taxon h so that the cluster {a,b,c,d} can be represented by
the tree edge e. (b) Two copies of N embedded into a decomposable network requiring four reticulations to represent all clusters in C and a second set C′ of
corresponding ones on {o′,a′,b′,c′,d′,h′}. (c) This network also represents all described clusters, but uses only three reticulations. However, we clearly see
that this improvement is gained at an undesirable price: decomposability is abandoned (all clusters in C are compatible with all clusters in C′, yet they are all
represented in the same biconnected component of the network) and so two completely unrelated parts of the phylogeny are linked together via reticulation
edges.

(P1) The incompatibility graph IG(C) has only one connected
component.

(P2) Every pair of taxa in X is separated.

In effect, our algorithm processes all connected components of the
incompatibility graph sequentially.

4 DETERMINING A MINIMUM SET OF
RETICULATIONS

As discussed above, one way to think of galled networks is that
they are constructed by attaching a number of reticulations to a
phylogenetic tree. Hence, to compute a galled network that uses
a minimum number of reticulations, we will first determine a
minimum set of reticulations [the Maximum Compatible Subset
(MCS) problem, discussed in this section], which will then be
attached optimally to the tree part of the network (the MAP,
discussed in the next section).

Problem 1. (MCS). Let C be a set of clusters on X . The Maximum
Compatible Subset (MCS) problem is to remove a minimum set of
taxa R from X so that the set of clusters C|X \R induced by X \R is
compatible.

For a general set of clusters, this is equivalent to the ‘Maximum
Compatible Tree’ (MCT) problem, which is known to be NP-hard
(Steel and Hamel, 1996). We refer to the MCS problem in which
the instances are restricted to sets of clusters C on X for which
properties (P1) and (P2) hold as the RMCS problem. We next state
that the RMCS problem is hard:

Lemma 2. (RMCS problem is hard). Let C be a set of clusters on X
with properties (P1) and (P2). Solving the MCS problem is NP-hard
for such input.

A proof is given in the Appendix A.
In Berry and Nicolas (2006), an FPT algorithm is presented for

solving the MCT problem for a set of rooted phylogenetic trees on X .

This algorithm can be employed to solve the RMCS problem,
too, simply by encoding each cluster C as an appropriate rooted
phylogenetic tree.

In this article, we formulate a new algorithm for solving RMCS
directly, which we call the seed-growing algorithm. This algorithm
goes straight to the heart of the problem and thus performs very
well in practice. For each pair of incompatible clusters A,B∈C we
define an incompatibility statement consisting of the three terms
A\B,A∩ B,B \A, and we use L to denote the list of all such
statements for C (Fig. 4a–c). To solve the RMCS problem, we must
find a minimum set of taxa R⊂X that resolves each incompatibility
statement in L, that is, for each incompatibility statement in L at
least one term is a subset of R .

The algorithm maintains a set S of candidate solutions, called
seeds. Each seed s∈S is labeled by the number rank(s) of
incompatibility statements that it has been shown to resolve in
succession, starting from the beginning of the list L. Initially, the
three parts of the first incompatibility statement are chosen as seeds,
and we set rank(s)=1 for each such seed s. The algorithm then
proceeds by repeatedly choosing among all seeds of minimum
size a seed s∗ that maximizes rank(s∗). If rank(s∗)=|L|, then s∗
is an optimal solution of the RMCS problem and the algorithm
halts. Otherwise, if s∗ resolves the (rank(s∗)+1)-th incompatibility
statement X,Y ,Z , we increment rank(s∗) by 1. Otherwise, we
define three new seeds s1 =s∗∪X, s2 =s∗∪Y and s3 =s∗∪Z , with
rank(s1)= rank(s2)= rank(s3)= rank(s∗)+1, add these to S and
remove s∗ from S.

Note that this algorithm is more than just a greedy heuristic, as
it is guaranteed to find an optimal solution. Moreover, although the
MCS problem has the flavor of a hitting set-, vertex cover- or edge
cover problem, it is, in fact, a new problem.

Lemma 3. (Performance of the seed-growing algorithm). If a solution
to the Maximum Compatible Subset problem has size k for a given set
of incompatibility statements H, then the seed growing will find it by
considering at most 3k+1 seeds, and the algorithm has a worst-case
time complexity of O(k|H|3k).

i88

[10:06 15/5/2009 Bioinformatics-btp217.tex] Page: i89 i85–i93

Computing galled networks

Fig. 4. (a) A set of clusters C on X ={a,b,c,x,y}, (b) the incompatibility graph IG(C), (c) the corresponding list L of incompatibility statements solved by
choosing {x,y} as the solution of the MCS problem; and (d) a galled network N obtained by solving the MAP. Here, the top and bottom parts of the network
are labeled T and B, respectively. The edges of the top part are labeled by the non-trivial clusters that they represent and the leaves are labeled by their taxa.
Link edges are shown as dashed lines.

A proof is given in the Appendix A.

5 THE MAP
Let C be a set of clusters on X and R�X a minimum subset of
taxa such that the restriction of C to X \R, denoted by C|X \R,
is compatible. Let T be the rooted phylogenetic tree on X \R
that represents C|X \R, and let L(e) denote the cluster in C|X \R
represented by an edge e of T . For each tree edge e of T , let
C(e)={C ∈C |C\R=L(e)} denote the set of all clusters in C that
are mapped to L(e) under the restriction of C to X \R, and let
R(e)={r ∈R∩C |C ∈C(e)} denote the set of all reticulate taxa that
map to the cluster L(e). We will refer to T as the top part.

Let C|R denote the restriction of C to the taxon set R and let
Ĉ|R denote the set of all maximal clusters (by containment) in C|R.
We now define a graph B associated with Ĉ|R, as follows: each
cluster C ∈ Ĉ|R is represented by a node v(C) and each taxon r ∈R is
represented by a node v(r) and we place an edge from v(C) to v(r)
for all taxa r contained in the cluster C. We will refer to B as the
bottom part (Fig. 4d).

Problem 2. (Attachment problem). The Attachment problem is to
define a set of link edges from nodes in the top part T to nodes in
the bottom part B such that the resulting graph is a galled network
that represents the input set of clusters C.

More precisely, we aim at representing all clusters in C(e) by the
edge e in T and all clusters in C|R by the in-edges of the nodes of
the form v(C), with C ∈ Ĉ|R. To ensure this, the link set must fulfill
the following properties.

(A1) For every edge e of T and every taxon r ∈R(e) there exists a
link from some descendent node of e in T to either v(r) or to
some node of the form v(C) in B, where C ∈ Ĉ|R contains r.

(A2) For every node of the form v(C) in B, with C ∈ Ĉ|R, there
exists exactly one link from some node in T to v(C).

(A3) For every edge e in T and r ∈R such that C(e) contains
some C ∈C that does not contain r, there exists a path from
some node in T , that is not a descendant of e, to v(r).

Property (A1) ensures that we can reach v(r) from any edge e in
T that has a cluster C ∈C(e) that contains r. Property (A2) ensures
that all nodes of the form v(C) in B obtain in-degree 1. We do not
allow an in-degree > 1 to ensure that only nodes of the form v(r)
for r ∈R will be reticulate nodes. For example, in Figure. 4d, the
node above x and y is only attached to the node labeled b, and not

to the node labeled c or to the parent of the two nodes labeled c
and d, etc. Finally, property (A3) ensures that the node v(r) can be
avoided from any edge e in T that must represent a cluster that does
not contain r.

Our goal is to minimize the number of edges used to solve the
following Attachment problem.

Problem 3. (MAT). Find a collection of links that has all properties
(A1)–(A3) and is of minimum size.

In general, this is hard to solve.

Lemma 4. (The MAT Problem is hard). The decision problem
whether there exists a solution to the Attachment problem that uses
at most k edges is NP-complete.

A proof is given in the Appendix A.
The above reduction also proves that the MAT problem is W[2]-

hard, remaining intractable even when parameterized by k, and so
it is unlikely that an O(f (k)·poly(n)) algorithm can be obtained.
The instances of this problem that are of interest in practice are
usually quite small and so a branch-and-bound approach is adequate.
Alternatively, the problem can be posed as an ILP with binary
variables that determine whether a possible link edge is used or
not and inequalities that ensure that the properties (A1)–(A3) hold.
The optimization goal is then to minimize the sum of the binary
variables.

The following complication must also be taken into account. After
solving the MAP for a set of clusters C on X and a given reticulation
set R, assume there exists an edge e along the path from the root
of the top part T to a node v(r), with r ∈R, that represents a cluster
C that does not contain r. Assume further that e has the property
that the ‘lowest single ancestor’ of v(r) (Huson and Rupp, 2008) lies
below e. Then we need to create an additional edge to connect v(r) to
a node above e to be able to turn off the taxon r in the representation
of the cluster C.

6 IMPLEMENTATION IN DENDROSCOPE
As our goal is not only to solve the theoretical aspects of galled
networks, but also to provide a robust and easy to use tool so
that biologists can benefit immediately from these results, we have
implemented all presented algorithms in a new version 2.0 of our
program Dendroscope (Huson et al., 2007).

Originally designed as a tool for drawing phylogenetic trees, this
new version of Dendroscope is geared toward analyzing multiple
trees using both consensus trees and rooted networks. When asked

i89

[10:06 15/5/2009 Bioinformatics-btp217.tex] Page: i90 i85–i93

D.H.Huson et al.

to produce a rooted network, the program provides the user with the
choice of either computing a rooted ‘cluster network’, as recently
introduced in (Huson and Rupp, 2008), or of computing an ‘optimal
galled network’, as described in this article.

Input is a set of rooted trees on X . The program proceeds by
extracting the set of all clusters C from the input, or, alternatively,
all clusters contained in at least a fixed percentage of the input trees.
If the given phylogenetic trees are on overlapping, but non-identical
taxon sets, our implementation uses the Z-closure method (Huson
et al., 2004) to infer clusters on the full taxon set.

The incompatibility graph is then computed and the list of
connected components is generated. Each such component is
‘compacted’, i.e. every maximal subset of taxa which is not
separated by any cluster in the component is represented by only
one of the taxa in the subset. For each compacted component C′ on
X ′ ⊆X , we determine the smallest set R⊂X ′ such that C′|X ′−R is
compatible, and then produce an optimal solution of the MAP for the
component. The solution found is encoded as a set of clusters with
the property that the Hasse diagram of the set of clusters is precisely
the rooted network structure that we are looking for. This is a useful
trick, because it makes ‘uncompacting’ clusters and putting together
the results from different components straightforward to do.

However, the structure of a galled network cannot always be
completely described in terms of a set of generating clusters in this
way: it may be necessary to add a direct edge from a node v to
one of its descendants w, namely to be able to completely turn off
a reticulate node in the representation of some cluster. To address
this, we maintain a list of pairs of clusters that describe pairs of
such nodes that are to be joined by additional edges after the Hasse
diagram of the modified cluster set has been computed.

In Section 2, we showed that the cluster containment problem
is easy for galled networks. Based on this, our implementation
contains an algorithm that verifies that a computed galled network
does indeed contain all clusters that are present in the input.

Dendroscope was designed to handle very large trees. In this vein,
we have been careful to ensure that our implementation of galled
networks works well on large datasets, too. The running time of the
algorithm depends on the maximum number of reticulations required
by any compacted component of the incompatibility graph. If this
number is reasonable, then our implementation will happily work
well on trees containing hundreds or thousands of taxa.

As discussed above, to obtain an optimal galled network we
must solve a number of instances of two problems that are both
computationally hard, the Maximum Compatible Subset problem
and the MAP. To avoid frustrating the user, when attempting to solve
an instance of either problems, the user is presented with a cancelable
progress bar dialog. If he or she decides to cancel a computation,
then the program takes the best partial solution found so far and then
greedily extends it to a full solution in very short time. In this way,
the program can always be used to produce a valid galled network,
even when the user does not have the time to wait for a guaranteed
optimal one.

7 APPLICATION TO REAL DATA

7.1 Application to grasses
An algorithm for computing the optimal number of hybridization
nodes in a rooted phylogenetic network N that displays both of
two given input trees is presented by Bordewich et al. (2007),

Table 1. For all possible pairs of five trees on grasses (Grass
Phylogeny Working Group, 2001), we report the number of taxa shared
by both trees, the number of hybridization nodes and run-time reported in
(Bordewich et al., 2007) and the number of reticulate nodes and run-time
obtained using the algorithm described in this article.

First Second Common Hybrid Time Reticulate Time(s)
tree tree taxa nodes nodes

ndhF phyB 40 14 11 h 9 <2s
ndhF rbcL 36 13 11.8 h 8 <2s
ndhF rpoC2 34 12 26.3 h 10 <2s
ndhF waxy 19 9 320 s 6 <2s
ndhF ITS 46 >15 2days 23 <2s
phyB rbcL 21 4 1s 6 <2s
phyB rpoC2 21 7 180 s 4 <2s
phyB waxy 14 3 1 s 3 <2s
phyB ITS 30 8 19 s 9 <2s
rbcL rpoC2 26 13 29.5 h 9 <2s
rbcL waxy 12 7 230 s 4 <2s
rbcL ITS 29 >9 2days 15 <2s
rpoC2 waxy 10 1 1 s 2 <2s
rpoC2 ITS 31 >10 2days 14 <2s
waxy ITS 15 8 620 s 5 <2s

a computationally hard problem, as they show. At present, their
implementation does not provide an actual network that attains
the number, but this is under development (C.Semple, personal
communication).

Bordewich and colleagues study five different trees on a grass
(Poaceae) dataset provided by the Grass Phylogeny Working Group
(Grass Phylogeny Working Group, 2001), ranging in size from 19
to 65 taxa. They apply their algorithm on all pairs of trees in the
input set, in each case restricting the input trees to the set of taxa
that both trees have in common. They report the optimal number of
hybridization nodes and the computational time required. In Table 1,
we list their results and compare them with the results obtained
by running our new algorithm on the same datasets. We show the
networks obtained in Figure 5.

There are two important observations to be made. The first is that
the number of hybridization nodes and reticulate nodes is not always
the same. The networks considered by Bordewich and colleagues are
more general, so a smaller number of hybridization nodes is possible.
On the other hand, they search for a network that contains both
trees as subtrees, whereas our algorithm seeks only to represent their
clusters. In all cases where we report a lower number of reticulations,
it is true that at least one of the two input trees is not contained in
the network as a tree (although all its clusters are). At first glance,
this may seem a weakness of our approach. However, biologists are
usually focused on the clades or monophyletic groups rather than on
the trees that contain them, and so in practice this is not a problem.

The second observation is that the runtime required by our
algorithm was < 2 seconds in all cases, whereas the algorithm by
Bordewich and colleagues took a number of days in some cases,
without completion.

7.2 Application to prokaryotes dataset
To test the algorithm on a larger dataset, we considered nine different
gene trees on a set of 279 prokaryotes (Auch et al., manuscript in
preparation). To evaluate the running time on an extremely hard

i90

[10:06 15/5/2009 Bioinformatics-btp217.tex] Page: i91 i85–i93

Computing galled networks

Fig. 5. Galled networks computed by Dendroscope, using the algorithms presented in this article, for 15 different pairs of trees on grasses (Grass
Phylogeny Working Group, 2001), see Table 1.

dataset, we ran our algorithm on the set of all 1334 clusters contained
in the nine trees. As it turned out, most clusters are involved in
one large incompatibility component with 13 337 incompatibility
statements. Our code for solving the Maximum Compatible Subset
problem required < 10 min. to solve this component, whereas the
code for solving the Minimum Attachment problem was unable to
find a guaranteed minimum solution within an acceptable time. The
network produced used 179 reticulate nodes. For a less difficult
dataset, we ran the algorithm on all clusters contained in more
than one input tree. This gave rise to a dataset of 655 clusters and
the most difficult incompatibility component had 29 incompatibility

statements, which required 4 reticulations to resolve. In this case, the
galled network was obtained in less than 2 seconds, and we display
it in Figure 6.

ACKNOWLEDGEMENTS
This work was initiated by DHH and RR during the Phylogeny
Programme at the Newton Institute of Cambridge University in
2007. We would like to thank Magnus Bordewich, Vincent Moulton
and Charles Semple for many helpful discussions, and Johannes

i91

[10:06 15/5/2009 Bioinformatics-btp217.tex] Page: i92 i85–i93

D.H.Huson et al.

Fig. 6. A galled network on 279 prokaryote species, computed from all
clusters that are contained in more than one of nine different gene trees.

Fischer for giving us feedback on the article. Thanks to Alexander
Auch for providing the nine gene trees on prokaryotes.

Funding: DFG (to R.R.)grant Hu 566/5-1. French ANR project
ANR-08-EMER-011-01.

Confllict of Interest: none declared.

REFERENCES
Bandelt,H.J. and Dress,A.W.M. (1992) A canonical decomposition theory for metrics

on a finite set. Adv. Math., 92, 47–105.
Berry,V. and Nicolas,F. (2006) Improved parameterized complexity of the maximum

agreement subtree and maximum compatible tree problems. IEEE/ACM TCBB, 3,
289–302.

Bordewich,M. et al.(2007) A reduction algorithm for computing the hybridization
number of two trees. Evol. Bioinform., 3, 86–98.

Bryant,D. and Moulton,V. (2002) NeighborNet: An agglomerative method for the
construction of planar phylogenetic networks. In Guigó,R. and Gusfield,D. (eds),
Algorithms in Bioinformatics, WABI 2002. vol. 2452, Lecture Notes in Computer
Science, Springer Berlin/Heidelberg, pp. 375–391.

Charbit,P. et al. (2008) A note on computing set overlap classes. Inform. Process. Lett.,
108, 186–191.

Cohen,J.E. (2004) Mathematics is Biology’s next microscope, only better; Biology is
Mathematics’ next Physics, only better. PLoS Biol., 2, e439.

Doolittle,W.F. and Bapteste,E. (2007) Pattern pluralism and the tree of life hypothesis.
Proc. Natl Acad. Sci. USA, 104, 2043–2049.

Grass Phylogeny Working Group. (2001) Phylogeny and subfamilial classification of
the grasses (poaceae). Ann. M. Bot. Gard., 88, 373–457.

Gusfield,D. and Bansal,V. (2005) A fundamental decomposition theory for phylogenetic
networks and incompatible characters. In Proceedings of the Ninth International
Conference on Research in Computational Molecular Biology (RECOMB).
Cambridge, MA, USA, pp. 217–232.

Gusfield,D. et al. (2003) Efficient reconstruction of phylogenetic networks with
constrained recombination. In Proceedings of the IEEE Computer Society
Conference on Bioinformatics. Stanford, CA, USA, pp. 363.

Gusfield,D. et al. (2007) A decomposition theory for phylogenetic networks and
incompatible characters. J. Computat. Biol., 14, 1247–1272.

Hallett,M. and Lagergren,J. (2001) Efficient algorithms for lateral gene transfer
problems. In 5th Annual RECOMB Montreal, April 22–25, pp. 149–156.

Hein,J. (1993) A heuristic method to reconstruct the history of sequences subject to
recombination. J. Mol. Evol. 36, 396–405.

Huber,K.T.et al.(2007) Reconstructing the evolutionary history of polyploids from
multilabeled trees. Mol. Biol. Evol., 23, 1784–1791.

Huson,D.H. and Kloepper,T.H. (2005) Computing recombination networks from binary
sequences. Bioinformatics, 21 (Suppl. 2), ii159–ii165. ECCB.

Huson,D.H. and Bryant,D. (2006) Application of phylogenetic networks in evolutionary
studies. Mol. Biol. Evol., 23, 254–267.

Huson,D.H and Kloepper,T.H. (2007) Beyond galled trees - decomposition and
computation of galled networks. In Proceedings of the Eleventh International
Conference on Research in Computational Molecular Biology (RECOMB).
Vol. 4453 of Lecture Notes in Computer Science, Oakland, CA, USA, pp. 211–225.

Huson,D.H. and Rupp,R. (2008) Summarizing multiple gene trees using cluster
networks. In Crandall,K. and Lagergren,J. (eds), Algorithms in Bioinformatics,
WABI 2008. Vol. 5251 in Lecture Notes in Bioinformatics (LNBI). Springer,
Berlin/Heidelberg, pp. 211–225.

Huson,D.H. et al. (2004) Phylogenetic super-networks from partial trees. IEEE/ACM
TCBB, 1, 151–158.

Huson,D.H. et al.(2005) Reconstruction of reticulate networks from gene trees. In
Proceedings of the Ninth International Conference on Research in Computational
Molecular Biology (RECOMB), Vol. 3500 of Lecture Notes in Computer Science.
Springer Verlag, Heidelberg, pp. 233–249.

Huson,D.H. et al. (2007) Dendroscope: an interactive viewer for large phylogenetic
trees. BMC Bioinformatics, 8, 460.

Kanj,I.A. et al. (2008) Seeing the trees and their branches in the network is hard. Theor.
Comput. Sci., 401, 153–164.

Linder,C.R. and Rieseberg,L.H. (2004) Reconstructing patterns of reticulate evolution
in plants. Am. J. Bot., 91, 1700–1708.

Lyngsø,R.B. et al. (2005) Minimum recombination histories by branch and bound. In
Proceedings of the Workshop on Algorithms in Bioinformatics (WABI). Mallorca,
Spain, pp. 239–250.

Ma,B.et al. (1998) Fixed topology alignment with recombination. In Proceedings of the
9th Annual Symposium on Combinatorial Pattern Matching (CPM’98). Vol. 1448
of Lecture Notes in Computer Science. pp. 174–188.

Mirkin,B.G. et al. (2003) Algorithms for computing parsimonious evolutionary
scenarios for genome evolution, the last universal common ancestor and domiance
of horizontal gene transfer in the evolution of prokaryotes. BMC Evol. Biol.,
3, 2.

Steel,M. and Hamel,A. (1996) Finding a maximum compatible tree is NP-hard for
sequences and trees. Appl. Math. Lett., 9, 55–60.

i92

[10:06 15/5/2009 Bioinformatics-btp217.tex] Page: i93 i85–i93

Computing galled networks

Song,Y.S. and Hein,J. (2005) Constructing minimal ancestral recombination graphs.
J. Comp. Biol., 12, 147–169.

Than,C. et al. (2008) Phylonet: a software package for analyzing and reconstructing
reticulate evolutionary relationships. BMC Bioinformatics, 9, 1–16.

van Iersel,L. and Kelk,S. (2008) Constructing the simplest possible phylogenetic
network from triplets. In Proceedings of ISAAC’08, Vol. 5369, Springer,
Berlin/Heidelberg, Gold Coast, Australia, pp. 472–483.

van Iersel,L. et al. (2008) Constructing level-2 phylogenetic networks from
triplets. In International Conference on Computational Molecular Biology
(RECOMB). Vol. 4955 of Lecture Notes in Computer Science, Springer Verlag,
Berlin/Heidelberg, pp. 450–462.

Wang,L. et al. (2001) Perfect phylogenetic networks with recombination. In
Proceedings of the 16th ACM Symposium on Applied Computing (SAC’01).
Las Vegas, NV, USA, pp. 46–50.

APPENDIX

Proof of Lemma 2: RMCS is hard
We consider the decision problem of knowing whether there exists
a set of k taxa whose removal resolves all the incompatibilities in a
set of clusters, shown to be hard in Steel and Hamel (1996).

We then show by reduction of this decision problem for general
cluster sets that the decision problem for a set of clusters with
properties (P1) and (P2) is NP-hard, which implies the NP-hardness
of the MCS problem for such input. Let C be a set of clusters
on X , not necessarily fulfilling properties (P1) and (P2). Set X ′ =
X ∪{o}, where o is some new taxon not contained in X , and let C1
denote the set of all trivial clusters, i.e. clusters which contain only
one taxon. Define C′ = (C\C1)∪{X }∪{{o,x} |x∈X }. Note that by
construction, the set of clusters C′ on X ′ has properties (P1) and (P2).
We prove that there is a solution R′ of size k+1 of the restricted
problem for C′ iff there is a solution R of size k of the general
problem for C.

⇒: Let R′ be a solution of the restricted problem for C′ of size
k+1, there are two cases to consider.

Case 1. o∈R′. Then R=R′ \{o} is of size k and removes all the
incompatibilities from C.

Case 2. o /∈R′. In this case, the set R′ must contain all but one
element of X , that is, |R′|=k+1=|X |−1, because otherwise there
would remain two clusters of the form {o,x} and {o,y}, which are
incompatible. Then any subset R⊂X of size |X |−2=k is a valid
solution for C, because a collection of clusters on only two taxa
cannot be incompatible.

⇐: Let R be a solution of the general problem for C of size
k. We consider R′ =R∪{o}. This set has size k+1, removes all
incompatibilities between clusters {o,x} as it removes taxon o. All
other incompatibilities are removed because R⊂R′. �

Proof of Lemma 3: Performance of the seed-growing
algorithm
We claim that if a minimum element s∈S contains k taxa, then S
contains at most 3k+1 sets. Consider the enumeration tree of seeds
generated by the algorithm. For the purpose of this proof, let the level

of a node v be the number of edges in the path from the root of the
enumeration tree to v. At the beginning of an iteration, the algorithm
chooses a seed s of minimum cardinality |s|. By construction, the
level of the corresponding node will be at most |s|. If s solves the
next incompatibility, then no new nodes are added to the enumeration
tree. Otherwise, three new nodes are added, each representing some
seed whose cardinality is strictly larger than that of s. Thus, the
enumeration tree will have at most k+1 different levels, and each
level will have at most three times as many nodes as the previous
level. This implies that the number of seeds considered in S is at
most 3k+1. �

Proof of Lemma 4: The MAT Problem is hard
Here, we sketch a reduction of the Set Cover (SC) problem to
the MAT problem. Further details of the proof will be provided
elsewhere. Recall that in the SC problem, we are given a collection
of sets C on a set X and a number k. The question is: does there
exist a subset S ⊆C of k sets that covers X ? We will construct an
instance of MAT that has a solution using m+k edges if and only if
SC has a solution using k sets, with m=|C|. Let d be an auxiliary
taxon not contained in X and define X ′ =X ∪{d}. We construct a
phylogenetic tree T with root ρ and m+1 leaves. Set R(e0)=X ′ for
the first leaf edge e0 = (ρ,v0) of T and set R(ei)={d} for all other
leaf edges e1 = (ρ,v1),...,em = (ρ,vm) of T . This defines the top
part of the graph used in the Attachment problem. For the bottom
part, B, define one cluster node v(C∪{d}) for each set C ∈C and one
reticulate node v(r) for each r ∈X ′. Place an edge from v(C∪{d})
to v(r) for each taxon r contained in C∪{d}. Note that we can
assume that each r ∈X is contained in at least two different sets
in C, otherwise we can reduce the instance of SC to a smaller one.
This observation ensures that any solution to the MAT problem will
fulfill property (A3). We will now prove the following claim: if
there exists a solution of this instance of MAT using m+k edges,
then there is one in which the node v0 is only connected to nodes of
the form v(C∪{d}), with C ∈C. It follows from properties (A1) and
(A2) that there are k edges that connect v0 to B and m edges that
connect nodes v1,...,vm to B. Since all edges departing from v0 lead
to cluster nodes in B, then this set of cluster nodes defines a subset
of clusters S that covers X ′, and thus, also X , providing a solution
to the SC problem of size k. Now, to prove the claim, assume one
of the edges departing from v0 leads directly to a node of the form
v(r) in B, for some taxon r ∈X ′. If there is a cluster node v(C∪{d})
connected to v0 with x∈C∪{d}, then we can remove the edge from
v0 to v(r), as it is superfluous. Otherwise, there exists a cluster node
v(C∪{d}) that is attached below some node vi in T , with i>0. In
this case, we modify the solution as follows: redirect the edge from
v0 to v(r) so that it leads to v(C∪{d}) and redirect the edge from vi
to v(C∪{d}) so that it leads to v(r). This is repeated until all children
of v0 are cluster nodes.

Vice versa, it is also not difficult to see that any solution with k
sets of an instance of the SC problem leads to a solution with m+k
edges of this simplified case of the MAT problem. �

i93

