
HAL Id: lirmm-00370586
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00370586

Submitted on 24 Mar 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Proposal for Compilation Techniques of Monitoring
Tasks to Improve Applications Management

Performance
Bernard Kaddour, Joël Quinqueton

To cite this version:
Bernard Kaddour, Joël Quinqueton. Proposal for Compilation Techniques of Monitoring Tasks to
Improve Applications Management Performance. ICNS 2006 - International Conference on Networking
and Services, Jul 2006, Silicon Valley, CA, United States. pp.33-39, �10.1109/ICNS.2006.89�. �lirmm-
00370586�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00370586
https://hal.archives-ouvertes.fr

Proposal for compilation techniques of monitoring tasks to improve
applications management performance

Bernard Kaddour Joël Quinqueton

LIRIS – Université Lyon 1 LIRMM
43 boulevard du 11 novembre 1918 161 rue Ada

 F-69622 Villeurbanne cedex F-34392 Montpellier cedex 5
bkaddour@liris.cnrs.fr jq@lirmm.fr

Abstract

The emergence of middleware solutions and new
services, even on small devices, will need adapted
distributed management solutions which address these
specificities, both in terms of software design and in
terms of performance. We propose a management
system where these high-level and low-level
management concerns are separated. In particular for
JAVA based solutions, we suggest a low-level
management agent tightly tied to the JVM/JVMTI and
able to receive and to manipulate programmable
monitoring expressions. To avoid conflicts with
applications already using JVMTI instrumentation
techniques, we dynamically compile these expressions
into machine code to reduce overload and minimize
performance lost.

1. Introduction

Since some years, more and more smart phones or
personal digital assistants are widely available and
used. These small devices still suffer from some
limitations compared with high end fixed terminals, for
example lower CPU performance or smaller memory
size, but even now days they already have enough
processing capabilities to host complete high Operating
Systems - either Windows or Linux dedicated versions
- and they appear more and more as autonomous
embedded systems. Meanwhile, industrially accepted
middleware solutions appear [4][13] for new
distributed applications. These middleware are
currently available for small devices [14] and even
Multi-Agents Systems based solutions have been
introduced in the research area [2].

Such new distributed applications and services
whose components may partially or totally be executed
by small devices implies high optimizations and new
flexible needs for their management to be effective.

Managing disperse heterogonous entities has
already been investigated in the network community
and standards defined [16][17] but they not address
software management at low-level.

We propose a management system which tries to
take into account these particularities and we introduce
a system where high-level and low-level management
concerns are separated. The high-level management
part relies on messages interception mechanisms
which, coupled with Aspects Oriented Programming
[9] concepts, provides facilities for management
activities to dynamically operate, enhance and manage
JAVA based applications transparently. The low-level
management part introduces and uses programmable
monitoring tasks tightly related to the code of the
managed JAVA entities and is concerned by
performance optimization aspect. Importance of
performance for management has already been
depicted [12], taking as example a manager in charge
of managing hundreds of objects. The massive
incoming of network services for small devices
imposes to take this point into account. We introduce
monitoring tasks that are compiled to minimize
management impact from a performance point of view.

The high-level part is not developed here. In this
article we present in section 2. the principles of our
management system. The section 3. presents the low
level management part and the monitoring tasks.
Section 3.1. depicts interactions with the underlying
JVM/JVMTI and the compilation process whereas
section 3.2. presents ideas used for the code generation.
We conclude with some future works and perspectives.

2. Overview of our management system

The high-level management part of the management
system (named kernel of management system or
KMS) is based upon Aspects Oriented Programming
concepts and uses the AspectWertz [1] (AW) tool to
provide dynamic and flexible management facilities.

Most of these facilities rely on the interception and
filtering of messages exchanged by the managed
application.

Management entities used by the KMS are
activities. They are composed of management
functions and filter functions.

When received by a KMS, either from a human
administrator or from another KMS, an activity can be

deployed: its management functions are executed in a
dedicated environment and its embedded filters are
dynamically plugged to the managed application. The
KMS addresses security issues and provides services to
the activities.

Activities are java .jar files, with one entry
implementing the Activity class known to provide
particular methods. In turn, an activity can delegate
one or many monitoring tasks towards the low–level
part of system. These monitoring tasks are monitoring
expressions (represented as resources in an activity .jar
file) which can keep a watch on the classes or objects’
byte-code at run-time.

3. Monitoring expressions

Monitoring expressions (eMons) and their
associated agent is the core of our monitoring system,
the low-level part of KMS.

Monitoring expressions are mainly composed of (i)
expressions based upon fields and variables present in
the different classes and instances found in the
managed application code and (ii) an event to emit
when one of the expressions becomes true.

eMons can be considered near to the DISMAN [10]
– and its associated MIBs – spirit. They are its
generalization and don’t only limit to SMNP variables
but also consider JAVA software applications and their
JAVA byte-code.

Let’s consider the class:

class C {
static public int value =0;
int field;
public void m() {
int local_m0;
int local_m;
int sum;
:
 sum = …;
}}

Some management task T could ask to be informed

with an ev_value event when the expression C.field
+C.value –C.m().local_m becomes negative. This
could be achieved with:

Watch for: C.field+C.value–C.m().local_m<0
Event: ev_value
To fill up more general needs, we have introduced a

small language to describe eMons, their scopes,
relationships and definitions.

Here's an eMon entry:
eMon_name {

scope =always;
thread=ANY;
active=true;
{
 m is #”C;”m().local_m;
 m0 is #”C;”m().#0; //==local_m0
 C isClass #”C;”;
 float temp_1;
 int temp_2;
}
exp ::= {
 temp_1 =(float)(m0 –m +2);
 {
 #C.field +#C.value -m <0
 }
 temp_2 =@@last();
}
on remove ::= {
 activate another_eMon;
 event callback 12; // ev_value
 #C.m().sum =0;
 }
} }
describing an eMon named "eMon_name".

First is given the scope of the eMon. The scope

defines the way the eMon’s expressions will be
evaluated. It can be "method" for a sole evaluation at
entry and exit method points, “thread” if an evaluation
is required when a thread appears or disappears,
periodical, or “always” if the expressions must be
immediately re-evaluated after a variable/field
modification.

“eMon_name" is not attached to one particular
thread and is defined regardless of the thread which
runs it.

By default, eMons inserted in the system are
considered inactive until someone or something (e.g.
another eMon) explicitly activate them.
"eMon__name" is here marked has active and must be
activate immediately (as long as expressions it is
composed of are defined, for example expressions
including local variables of a method m() are defined
only if at least one thread executes m().).

Follow some declarations. They can be simple
shortcuts for ease, typed or not, in relation with the
monitored code, e.g. (m, m0, C), or some local
temporary variables used for the eMon own needs.

m0 is defined as the local variable at index 0 of
method m() in the class named “C”. Indexes in place
of full named variables (or fields) are allowed as the
monitored code may have been stripped of its variables
names.

temp_1 is an eMon local variable and has not
direct relation with the monitored code. These eMon’s

local variables must be typed. Their introduction was
originally dictated by at least a possibility for the
eMons to dynamically obtain and store informations
available from the monitoring system (e.g. the JAVA
thread number in execution) but also the possibility for
expressions to act as counters measuring the difference
taken between two evaluations of an expression [8].
They evolved and became general purpose variables.

The expressions body, composed of the main
monitoring expression enclosed in brackets. It can be
preceded by expressions to evaluate and store before
the main expression is evaluated whereas following the
main monitoring expression are expressions to proceed
after the main expression evaluation.

To gain in flexibility, some add-ons are allowed:
- built-in functions provided by the system. This set

of functions includes usual system-call functions (kms
date(), kms_arch(), kms_strstr(), ...). From a design
point of view, they can be seen as the public methods
provided by the core KMS.

- Special MIB access functions. As the system is
designed to interact with the SNMP protocol [16], a
group of functions allowing MIB [17] accesses is
included [8]. One function per basic SNMP type: kms
int_mib(), kms_bool_mib(), kms_ostr_mib(),

- built-in functions in relation with the underlying
monitoring system. They can give to an eMon
information directly provided by the JVM. A thread,
object or class ID can be obtained this way by an
eMon.

 - @@last() is the last evaluated value of the main
expression.

The eMon specifies the Time To Live of the
expression and the kind of event the expression will
send when turning true. The TTL can be expressed by
means of a maximum number of activations the
expression can reach or by a duration time.

After that, the expression is removed by the system
from its table of expressions to monitor and a
notification is sent to the activity's owner of the
expression (by mean of an int
expressionReached(int expId) call, a method
implemented by the Activity class). SNMP events are
also supported [12].

These information are provided to the monitoring
system trough the remove and on_remove statements.

When removed, “eMon_name” generates to the
eMon’s activity owner a callback with 12 as parameter
and it activates the sleeping eMon named
“another_eMon”. It finally sets to 0 the local variable
sum defined in the m() method.

Modifying such a monitored code variable is only
allowed at remove time and not in the expressions
body. It is an easy and temporary way to avoid
unwanted monitored code behaviors that are known to
appear then the main monitoring expression is true.

The expected behavior of the KMS (the whole
management system) is such that one can either have
to manage a few eMons introduced by a human
administrator or have to deal with large sets of eMons
automatically introduced by activities. In the last case,
we may excepted redundancies between the eMons.

We are led to take care of performance aspect and
to introduce an algorithm which addresses immediate
re-evaluation of eMon’s expressions as soon as even
only one of their involved variable has been modified.

The needed performance optimization for re-
evaluation of large number of expressions have
similarities with the challenge of filtering high
throughput network which has led to new fast
matching algorithms[18][5].

The common way to speed up expressions
processing is to use real CPU native code. We chose
the IA32(x86) as it is the most representative and
common CPU currently used. It hasn’t specificities
such as large number of registers or long instructions
possibilities. Translation towards most sophisticate
architecture would be possible.

Some differences with usual compilation. First, we
have over the used variables a much more lighter
control than a compiler usually has. Variables are lend
by the JVM and can at the best be read or modified
through get and set functions. An optimization is to
avoid these time consumers Java Native Interface
/JVM Tool Interface (JVMTI) [7] functions as far as
we can and rather use a cache mechanism for the
objects, fields and local variables the expressions need.
Secondly, eMons’ expressions are loosely coupled
with the application code they monitor and are
evaluated asynchronously with the Java code executed
by the JVM. Hence, we can’t statically discover from
the monitored code some registers optimizations for
the eMon’s generated code.

3.1. The overall architecture

The used architecture takes advantage of features
provided by the JVMTI introduced by Sun. At first
available through the JVM Debugger Interface /JVM
Profiler Interface couple, this API offers the possibility
to attach an agent to the original java byte-code. This
agent has facilities to register customized hooks at run-
time to the java byte-code, such as e.g. hooks to be
informed when a field is modified or when a class is
loaded by the JVM.

In particular, it is possible for an agent to modify or
inject new java byte-code in the original one, this is
known as instrumentation[6][11]. Despite attractive as
this injected new byte-code is next automatically
compiled by the underlying JIT, we have not chosen a
pure instrumentation approach for at least two reasons.

First, instrumentation freezes the monitoring
process. When inserted, an eMon is considered as
always active and can’t afterwards easily be removed,
nor we can dynamically add or activate new incoming
eMons. Second, only one agent can modify the byte-
code this way, and that’s the way AspectWerkz [1]
already took to provide Aspects used by the high-level
management part of the system.

Figure 1. Agent architecture.

We then choose the more drastic approach that is to

take in charge the eMons compilation process.
This agent is the monitoring system. First of all the

agent places hook functions to be executed when a
class is loaded, when a thread enters or exits a method,
fields modifications, etc. or when a breakpoint event is
generated by the JVMTI. The agent creates its own
memory zones, mainly the pool of cached variables
and storage areas for eMons compiled code.

When an eMon is inserted in the agent, it is parsed
accordingly to its definition, relationships with its
siblings eMons are created and finally it’s DAG
representation is constructed.

The DAG is constructed in a usual manner with the
partial and incomplete information available as
variables/fields types are generally unknown as this
step, neither are their storage zones and as a

consequence nor are the operations types. This is a
difference with traditional or JIT compilation.

Associated to the DAG nodes are the classes of
variables or fields needed to complete the DAG
compilation plus a fast to compute hashkey.

As DAG nodes are unary or binary operators, the
hashkey is a 32 bits quantity build from the node left
part type, the node right part type and a xor of the left
and right parts node quantities. This key is then used to
find DAGs nodes similarities among eMons DAGs.
Each time a node appears to be used, it’s
usage_number is incremented.

When a new class is loaded the previously
registered loadClass hook function attached to the
JVMTI takes control over the JVM. Then we create
our own representation of this class with fields offsets
or methods ID identifiers and the class is marked as
“known”, considering the build representation accurate
even if the class is later unloaded. This mechanism
speeds up the parsing process but implies that the
monitoring agent doesn’t properly work with hacked
byte-code differently modified in between two
consecutive loads by the JVM.

For classes with variables involved in awaiting
eMons’ DAGs to complete, fields/variables types are
obtained and memory zones are allocated to store static
or member fields and member local variables. All these
storages take place in the pool of cached variables
which are later used by the compiled code.

Current JVMTI doesn't provide for local variables
modification the same modified event mechanism it
allows for fields. In the case of eMons with method
local variables and with a scope sets to always, we
have to manually seek where these variables are
modified in the java byte-code. So, without any
instrumentation modification intents, we walk through
the byte-code methods and look for java op-code
offsets where local variables are modified. Breakpoints
(JVMTI’s breakpoints are simple events sent to a
Breakpoint() event manager) are placed for each one of
the encountered offset and the index of the modified
variable is registered. Finally two tables are created for
the breakpoint event manager.

The first one is an association offset-calls sets
where a calls set is a sequence of call cells, each cell
contains a call execution code towards the compiled
code to execute for the re-evaluation of one expression
using the modified local variable. A call cell can be
empty and is modified accordingly to the eMon
activations/un-activations. Calls sets are modified
accordingly to eMons removal or new eMons arrival.
This two stage call process – rather than one or two
list(s) containing addresses of compiled code to re-
evaluate – was preferred as eMons arrival/removal
remains rare once the java code is in execution. This

Set of DAGs

Pool of cached
variables

eMons compiled
codes

x
y
u
v
…

mov eax, @x
add eax, …

ClassFileLoaded

JVM/JVMTI

call

Calls sets

call
call

call
call

Field modified
Breakpoint

eMons

scheme avoids unnecessary C(agent)/Asm(eMons)
switches and CPU cycles losts.

The second table is an (offset, next offset) hashtable
which tends to improve the breakpoint manager
performance for without loops method code. When
called, the breakpoint manager firstly gets
(GetLocal<Type>()) and updates the modified
variable in the pool of cached variables and then
checks if it is called with the excepted next offset, if
this is the case then the calls sets to execute are
immediately found, otherwise the offset hashtable is
used to obtain the appropriate call-sets.

Emon’s DAGs for which the new incoming class
was the last expected one to complete information
variables are then compiled. The operations types are
evaluated and the associated code generated using the
addresses in the pool of cached variables, empty call
cells waiting for these expressions to be compiled are
filled. The generated code tries to minimize the
expressions re-evaluation process.

3.2. Underlying compilation ideas

To describe how the most often used parts of
expressions are compiled to reduce the overall re-
evaluation process, we’ll treat the case of the (x +y)
+(u *v) expression (E), without object reference for the
sake of simplicity.

Nodes of the expression are labeled with binary
numbers composed of 0 and 1’s. Starting from the root
with an empty label, at each step, left node’s label is
build by concatenating a 0 to its father’s one, right
node label by concatenating a 1. Such an labeling tree
scheme was also used to built fast matching tables in
the network filtering area [18].

Figure 2. Labeled DAG.

It appears that the label of a variable leaf node

describes the path in the DAG from the leaf node
towards the root node an gives the list of the nodes
witch need to be re-evaluated when the variable is
modified. All the other nodes aren’t affected by the
variable modification and their last known result
remains correct.

A bloc is a part of the DAG with only one operator
and able to memorize its last evaluated result. The

expression E is formed of the bloc (x +y) and the bloc
(u *v). The generated code of each bloc can
immediately be obtained from code templates that we
instantiate according to the types, the operation and an
available free register at compile time, tracking of free
registers is done with a usual free registers stack.

The generated code for the bloc (x +y) obtained
from the (int, int, add) code template is:

mem_xy dw 0
ev_xy mov reg, @x; // free reg ==reg
 add reg, @y; // op ==add
 mov mem_xy, reg
 ret
as storage zone of x and y in the cache are known.

The same goes for the bloc (u *v), with the next free
register.

The whole machine code associated to the
expression E is obtained in linear time from the
generated codes of (x +y) and (u *v). It is composed of
an evaluation code if x or y is modified, an evaluation
code if u or v is modified and a complete evaluation
for the most general case.

Here is the evaluation code of E when x or y is
modified:

mem dw 0
_Entree_xy call ev_xy
 add reg, mem_el_uv

mov mem, reg
 ret
A table (modified variable, entry point) is

maintained and later used to select to right evaluation
code to execute (via a call cell) when a variable is
modified.

This way minimizes the re-evaluation of common
sub-expressions, for example in the case of 0 <(x +y)
+(u *v) <5,(x+y >0 && x +y <3); the bloc x +y is
effectively evaluated only once if x (or y) is modified
and never for a modification of u.

A major drawback of the approach is the extra
memory needed compared with a straight forward
compilation of expressions. This is an often seen
counterpart when using cloning techniques [3][15].

Another disadvantage of this approach appears
when considering small expressions with few (e.g. 3)
variables where a usual compilation consummates less
memory and have a better execution time. But when
the number of variables is over 3 or when a common
sub-expression is shared by many expressions, using a
partial re-evaluation mechanism seems better.

It has finally been chosen to use partial re-
evaluation only for DAGs with a usage_number
upper or equal than 3 (the extra-memory used by the
generated code is then acceptable) and if no more than
one object instance is needed.

+
{}

v
{11}

u
{10}

*{1}

y
{01}

x
{00}

+ {0}

4. Future work and conclusion

The purpose of this work is to investigate the
problem of management for distributed applications
with performance aspects in mind. We suggest a
management system with a low-level management part
able to deal with managed software components at run-
time. It uses facilities provided by the JVM/JVMTI
and compiles monitoring expressions on-the-fly to
improve performance of the management system.

Currently both high and low level management
remain too tightly coupled. In particular in the case of
distributed management, complex monitoring
expressions involving instances executed on different
systems (for example variables in the client classes
code and variables in the server classes code) need to
communicate through their associated activities. We
plan to definitively separate the monitoring part of the
management system and enhance agents with
communication abilities for variables values
exchanges, leading to an autonomous distributed
monitoring system.

It has been pointed out that the case of eMons using
only kms_<type>_mib() calls, without further JAVA
references, are to consider. This leads to the creation of
an autonomous program (and not a library) build from
the agent library which could then manage devices
supporting SNMP interactions.

A second investigating field is the creation of MIBs
from which standardized management tools could
interact with the proposed system.

5. References

[1] AspectWerkz, http://aspectwerkz.codehaus.org/,
BEA Systems., 2004.
[2] C. Carabelea, O. Boissier, Multi-Agent Platforms
on Smart Devices: Dream or Reality ?, 1st Smart Object
Conference, 2003.
[3] J. Dean, G. Chambers, Towards better inlining
decisions using inlining trials, LISP and Functional
Programming. p. 273-282, 1994.
[4] EJB, Entreprise JavaBeans Specifications version
2.1, http://java.sun.com/products/ejb/docs.html, 2002.
[5] P. Gupta, N. McKeown, Packet Classification on
Multiple Fields, Proc. ACM SIGCOMM., 1999.
[6] HPROF, A Heap/CPU Profiling Tool in J2SE 5.0,
http://java.sun.com/developer/technicalArticles/Programmin
g/HPROF.html, 2004.
[7] JVMTI, JVM Tool Interface, v1.0,
http://java.sun.com/j2se/1.5.0/docs/guide/jvmti/, 2005.
[8] B. Kaddour, J. Quinqueton, Administration
d'applications distribuées par Aspects et expressions
programmables, GRES'05, 2005.
[9] G. Kiczales & al, Aspect oriented Programming,
Proc. of ECOOP'97, p 220-242, 1997.

[10] R.P.Lopes, J.L. Oliviera, Delegation of expressions
for distributed SNMP information processing. p. 395-408,
Proc. Integrated System Network Management 2003. 2003.
[11] J. Maebe, K. De Bosschere, Instrumenting self-
modifying code, AADEBUG2003, 2003.
[12] J.P. Martin-Flatin, Web-based management of IP
networks and systems, PhD Thesis, 2000.
[13] OMG, http://www.omg.org/, O.M.G., 2004.
[14] OpenCCM, http://openccm.objectweb.org/,
ObjectWeb, 2005.
[15] A. Rigo, Representation-based just-in-time
specialization and the psyco prototype for python, PEPM
2004, p 15-26, 2004.
[16] RFC1905, Operations for Version 2 of the Simple
Network Management Protocol (SNMPv2),
http://www.faqs.org/rfcs/rfc1905.html, 1996.
[17] RFC1907, Information Base for Version 2 of the
Simple Network Management Protocol (SNMPv2),
http://www.faqs.org/rfcs/rfc1907.html, 1996.
[18] V. Srinivasan & al., Packet Classification Using
Tuple Space Search, Proc. ACM SIGCOMM., 1999.

