
HAL Id: lirmm-00370600
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00370600v1

Submitted on 24 Mar 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An Aspects Oriented Approach to Dynamically Manage
Applications

Bernard Kaddour, Joël Quinqueton

To cite this version:
Bernard Kaddour, Joël Quinqueton. An Aspects Oriented Approach to Dynamically Manage Appli-
cations. ICNS: International Conference on Networking and Services, Jul 2006, Slicon Valley, CA,
United States. pp.44-50, �10.1109/ICNS.2006.23�. �lirmm-00370600�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00370600v1
https://hal.archives-ouvertes.fr

An Aspects oriented approach to dynamically manage applications

Bernard Kaddour Joël Quinqueton
LIRIS – Université Lyon 1 LIRMM

43 boulevard du 11 novembre 1918 161 rue Ada
 F-69622 Villeurbanne cedex F-34392 Montpellier cedex 5

bkaddour@liris.cnrs.fr jq@lirmm.fr

Abstract

The emergence of middleware solutions and new

services even on small devices will need adapted
distributed management solutions which address these
specificities, both in terms of software design and in
terms of performance. We propose a management
system where these high level and low level
management concerns are separated.

The high level management part relies on messages
interception mechanisms which, coupled with Aspects
Oriented Programming concepts, provides facilities for
management applications to dynamically operate,
enhance and manage JAVA based applications. The
management is transparent for the application which
doesn’t need to be modified to support management
operations as we take advantage of both the JAVA
introspection mechanisms and the facilities some
Aspects Frameworks offer.

1. Introduction

Since some years, more and more smart phones or
personal digital assistants are widely available and
used. These small devices still suffer from some
limitations compared with high end fixed terminals
such as lower CPU performance or smaller memory
size, but even now days they already have enough
processing capabilities to host complete high Operating
Systems - either Windows or Linux dedicated versions
- and they appear more and more as autonomous
embedded systems. Meanwhile, industrially accepted
middleware solutions appear [8] [15] for new
distributed applications. These middleware are
currently available for small devices [16] and even
Multi-Agents Systems based solutions have been
introduced in the research area [5].

Such new distributed application whose
components may partially or totally be executed by
small devices implies new evolutive and flexible needs
for their management to be effective.

Another worth to note point is the large acceptance
of the JAVA language, both for J2EE [9] or Corba
applications and even for Corba frameworks design
themselves.

We concentrate to provide solutions widely
applicable which use these particularities and we
conceptually separate the high and the low parts of the
management. The former takes advantage of the large
utilization of JAVA for middleware applications and
uses Aspect Oriented Programming concepts [12] to
manage applications without invading the underlying
middleware. This approach avoids modifications of
already existing applications and would ease the
translation of introduced mechanisms towards new
emerging middleware solutions [14]. The later
introduces monitoring tasks tightly related to the code
of the managed JAVA entities.

In this article we concentrate on the high part of the
management system and the low-level management
part [11] is not developed here.

We present in section 2. the principles and main
ideas which lead our management system for
distributed components. The section 3. discusses how
managed objects are obtained and section 4. develops
the entities used for management. The section 5.
presents how they are layered. We conclude with some
future works and perspectives.

2. Key features of our architecture

Managing disperse heterogonous entities has
already been investigated in the network community
and standards defined [17][18], but their intrinsic
centralized and frozen aspects are very limitative [13].
Newer and more application centric solutions have
appeared [6][7][10], but they may not adequately
address the evolutive aspect of management:
management functions must be easy to place and re-
use, easy to remove or to stop and many management
functions can simultaneously manage an entity.

The approach consists in a core management system

- named kernel of the management system or KMS -
where management applications can be deployed.

The KMS largely relies on the interception of

incoming and outgoing messages exchanged by the
managed application. It can then spy and filter requests
sent or results received by the components of the

managed application accordingly to management
functions requirements.

Management applications are composed of

management activities. Activities are in turn composed
of management functions and filters. Management
functions are not limited to collect data and can be
parts of a complete distributed management application
while filters can dynamically be linked with the
components they have to interact with when deployed
by the KMS.

Figure 1. Architecture overview.

Figure 1. depicts the expected scenario.
A management application can be required by the

KMS or sent by a peer-KMS towards the application to
manage. Management application is a nearly
autonomous entity containing its management
activities. According to the target application and the
activities wishes, the KMS when places the filters of
the different management activities around the
expected components. The KMS can provide local
resources or services to management applications.

The management system permits to several
management applications to simultaneously operate
upon a whole application or only upon its components.
For example, one could manage an application with
some logging management functions for profiling
purposes even if another activity is already managing
some of the application’s components for
synchronization purposes. This simultaneously-multi-
managed feature makes the management activities to
appear as enhancements of the managed application.

Some differences with JMX exists. From the JMX

point of view, the proposed management system can be
viewed as a set of linked and modified MbeanServer,
differently registering parts of activities, while
activities appear as autonomous collections of Mbeans
inheriting the KMS Interfaces where all the necessary
behaviors are implemented.

3. Requirements and strategies for our
management

The introduced architecture deals with entities
following the usual client-server model. As we expect
to not modify the source code of the managed
components, management can be achieved through (i)
the external representation of the different elements
and the interception of sent and received messages;
and (ii) the possibility to directly read and modify
some of the variables of the component we manage.

First, the connection with the components we plan
to manage as this feature is generally not natively
available.

3.1. Connection with the managed entities:
Interceptors

We distinguish applications originally written in
JAVA from the others, in particular from Corba
applications. In the case of JAVA applications, we use
the introspection possibilities the language offers and
the facilities we have to access compiled byte-code.
These facilities can be used to create Interceptors-
wrappers or to modify the application with byte-code
injection [2][4].

Some tools [1][2] currently go one step further,
permitting to operate upon JAVA code (either at
source or byte-code level) with high level concepts and
high level languages. Performance impact tends to
remain acceptable [2].

These features give the possibility to consider
JAVA applications as manageable entities.

For Corba applications, OMG provides some basic
introspection facilities services: Portable Interceptors

X ?

Comp. B Comp. A

Resource X

Comp. S

B ? A ?

S activity

AB activity

Management application

KM

[15]. Interceptors can be used by third parties to spy
requests or modify messages exchanged between the
middleware and the components. They are often used
to enrich Corba with new features, ranging from
synchronization to caching [3], but they induce
performances penalties. They remain a handy solution
as they require only few or not any modification in the
original application code. We use them at request and
message level (i) for interception purposes and (ii) as a
glue with the others parts of the system which are
mainly JAVA centric.

The following sections focus on the representation

of management activities and on the messages filtering
system.

4. Major components of the system

KMS is implemented as a daemon-process to permit
sub-activities exchanges between KMS (currently with
sockets). It inspects and registers the entities it is in
charge of and interacts with AspectWerkz [2]. It is
worth to note that KMS provides JAVA classes and
interfaces that management entities mandatory
implement or inherit from. That’s the way KMS
normally use to interact with or force a management
entity.

4.1. Activities

The original activity concept was first introduced in
the Computer Supported Co-operative Work
framework. We will continue to use this term although
its meaning has deeply been altered.

Main parts of an activity are :
-Roles: We distinguish external roles corresponding

to resources that other third parties may provide to the
activity from internal roles corresponding to sub-
activities of the current activity. Both of them are
described by means of references towards interfaces,

- sub activities: greatest difference with other tools
is their expected autonomous abilities as the activity
may later ask the KMS to send them, as a whole, over
the network, and then deploy them.

- constraints and preferences. They are activate by
the requests the activity can receive. They can decide
to allow, modify, or reject a request. The loading of a
particular characters font as a new application
conforming to an editor interface is such an example,

- internal tools: It's a set of functions embedded in
the activity for it's own needs. These tools, usually
inactive, can be trigger at any time by the arrival of a
new element (via a preference e.g.) or for the activity
needs. Particular tools are the incoming or outgoing
filters acting upon messages received or emitted by the
managed component,

- monitoring expressions. These are expressions
the activity wants at low-level management for direct
code monitoring tasks,

- the main body of the activity composed of
methods the activity responds to and the set of its
private variables. Security policy to apply for each
received message or termination of the activity are
known methods that every activity must implement or
delegate.

- set of attributes from which the activity can be
designated. E.g. an edition activity can specify an octet
string attribute file which is the name of the file it
proceeds with.

An activity is encapsulated in a .jar class file. It is

the activity responsibility to report to the management
system the interface or set of services it can respond to
whereas the KMS will soon verify that the different
parts of the activity conform to the expected JAVA
interfaces.

Interceptors are particular activities as they are
special parts of the KMS with high privileges.

4.2. An example of activity

To depict how an activity is made up, let us
consider an application registered as «Service» and
providing the «sub» and «add» operations. This
application can be managed by a simple
«PositiveAccount» activity (i) to count the number of
operation requests received and (ii) to force the «sub»
operation to return a positive or nil result.

PositiveAccount.jar activity ::= [
class Count {
static int count =0;
public static count() { return count; }
}
class Inc_count implements InFilter {
public Object exec(JoinPoint joinPoint) {
 Count.count ++;
} }
class Positive implements OutFilter {
public Object exec(JoinPoint joinPoint) {
Object ret= joinPoint.proceedMod();
if (ret.intValue() <0)
 ret =new Integer(0);
return ret;
} }
class UneContrainte implements Constraints {
Public Object exec(Activity a) {
 If (a.haveCompatibleInterface(“edit”))
 …
} }
class PositiveAccount implements Activity {

public int expressionReached(int e) { … }

public int init() {
 Inc_count ic =new Inc_count();
 register_inFilter(« Service », « add », ic);
 register_inFilter(« Service », « sub », ic);
 Positive p =new Positive();
 register_outFilter(« Service », « sub »,
p,MOD_PRIV);
 register_Constr(new UneContrainte(),

ANY_IN);
…
 register (this, “Count”);
 return 1;
} }]

First the activity registers its filters which have to

operate around the «Service» managed application.
Inc_Count will count the number of «add» or «sub»
requests the application will receive while a Postive
instance will check and maybe modify the value
returned by «sub» to be positive or nil. Finally the
management activity registers itself as a «Count»
activity. It can in turn be suspend or remove (and even
itself be partially managed), its filters moved or
stopped by the KMS.

4.3. Contexts

When an activity A is deployed by the KMS, the
KMS firstly ensures by introspections that the different
parts of the activity conform to the expected ones:
outFilter class inherits from the KMS_outFilter class,
Activity from KMS_Activity, etc. Lastly, KMS starts the
init() method in a dedicated thread.

The activity then creates its own objects and asks
the KMS to register objects which interact with other
parts of the system. Such objects are (i) filters that the
KMS will connect to managed objects of the managed
application and (ii) constraints & preferences which
may help the activity to customize the environment.

Finally, the activity can use KMS services (such as
communication services to send its sub-activities over
the network towards another KMS) or require extra
services provided by other activities.

Major differences between filters and constraints &
preferences is the kind of tasks they are concerned
with. Constraints and Preferences (C&P) are used by
the activity to express its desires and restrictions. Once
registered by the KMS on behalf of the activity, the
KMS ensures that before providing a service (or an
external activity) to A, it will first check it against the
constraints and then against the preferences registered
by the activity A. It is up to the KMS to make as many
necessary retries before it sends to A the resulting

service. This C&P mechanism gives to the
management system some capability to adapt
environment resources with activities wishes.

The set of tools, constraints, preferences, services

provided to others represent the environment (named
context) created by the deployed activity.

In turn, an activity must be deployed in an already
existing context.

 Two abstract contexts are introduced:
- site-context corresponds to the operating system

abstract activity. It is the main owner of the local
resources (hardware, communication links, etc) and it
have higher privileges. This context can offer services
to its sub-contexts or acts as delegate for them. For
example, a sub-context can delegate its security to the
site-context security policies.

- user-context corresponds to a user environment in
which will be (by default) deployed the activities that
the user will later execute.

Deployment of management activities creates

contexts that are then organized as a tree. Each context
has a father-context and may have child-contexts.
Child-contexts can be either contexts tied to sub-
activities or contexts created by another activity
explicitly deployed in the current context.

Constraints and Preferences (C&P) deal with

contexts messages (or actions) received by the context
such as requests for the creation or the insertion of new
contexts.

In particular, before being deployed in a context C,
an activity will have to conform to the constraints
imposed by any context surrounding C. Starting from
constraints of the site-context to constraints of C.

This mechanism gives to the management system
the capability to adapt activities with the environment
wishes explained by means of C&P.

On the other hand, Filters deal with sent or received

messages (methods calls and return values) by the
managed application. This is obtained transparently
(from the managed object point of view) by using
Aspect oriented programming concepts and tools.

5. The management of the methods & the
filtering

5.1. Aspect oriented programming

This paradigm mainly due to [12] has for objectives
to capture some singularities that aren't actually
properly take in charge by the object oriented model

(OO). Worth to note that Aspect oriented programming
(AOP) doesn't tend to replace OO model but rather
tends to improve and to ease the software development
work.

In practice, AOP complements OO programming by
allowing to dynamically modify and improve the static
OO model with the inclusion of some new needed code
required to fulfill some new expected requirements.

AOP has introduced some concepts for addition or
modification of existent code, mostly:

- Join Points. These are well-defined points in the
flow of a program. Methods call or return, exception
handler entry point and even field set or get operations
are Join points examples.

- Points cut. They are mainly used to identify Join
points from different classes.

- Advices which define both the code of the aspect
and, combined with join points, when it will have to be
executed. Usual advices are before advices as we
expect the new aspect's code to be executed before the
join point, and after advices as we expect the new
aspect's code to be executed after the join point.

AOP frameworks are now available [1][2]. We

prefer AspectWerkz (AW) [2] as it provides a so-called
online-mode to operate upon already compiled pieces
of code (.class) and, most interesting, have a useful
API providing all of the requirements needed to
dynamically manipulate aspects. Finally, AW (from
WebLogic/BEA) intends in a mid-future to fully
interact with Jboss and a bringing together of AW and
AspectJ is on the way.

We note that classes are AOP main concerns,
objects being at glance out of concern. That's to bypass
this limitation and to have the possibility to select and
operate upon classes instances that naming attributes
have been introduced as part of our activities.

5.2. Layout of the filters

When launched under AW using:
aspectwerkz -Dkms.xml -cp kms app.jar
any method m() of app.jar will be executed after

the before aspects known by kms have been executed
and the result of m() will be delivered after the after
aspects known by kms have been executed.

 Filters registered by the KMS on behalf of an
activity are inserted in the in-filters or in the out-filters
chain according to the activity's request and to the
interface they inherited from. From the managed object
point of view, each filter then appears as a before
aspect if placed in the in-filters chain or as an after
aspect if placed in the out-filters chain. Many filters
can simultaneously be present in a chain, these filters
may have been required by one or several different

activities. Filters placed by the KMS have highest
priority, follow activities filters, then sub-activities
filters then sub-sub-activities filters etc.
Connected to AW, KMS is informed of the methods
calls and returns of each object. For a method call,
depending on the caller and on the call parameters,
KMS selects in the in-filters the list of filters to apply.
These filters are then sequentially executed using AW
API (mainly through the method Object
joinPoint.proceedMod(), a modify version of the
original proceed() one). If desired, parameters can be
altered by using the AW API. Registered filters to
select and apply for a method return value follow the
same approach.
 To avoid incoherence in these chains, the possibility
of one or several different activities managing an
object -e.g. a logging activity initiated by a user A and
a synchronization activity required by a second user B
- depends of the application and of the KMS's choices.
Moreover, only filters registered with enhanced
privileges or filters registered by the KMS for its own
needs can modify or stop a message.

Figure 2. Filters and messages paths.

Left part of Fig. 2 depicts a managed object

wrapped in a JVM/AW execution environment. A dash
line represents the execution path taken by an m()
request. First KMS in-filters are applied, then the
activity’s in-filters before m() is effectively called. The
returned result have to pass through activity’s out-
filters and finally the KMS out-filters before being sent
back to the requestor.

6. Future work and conclusion

The purpose of this work is to investigate the
problem of management for distributed applications
and provide means to operate in a distributive and
dynamic manner. We suggest to use Aspects concepts
as a possible solution to allow an evolutive and
decentralized high level management scheme without

m()

JVM

AW

Dispatcher for
incoming messages
(calls)

Dispatcher for
outgoing messages
(results)

modifying neither the underlying middleware nor the
managed objects.

We plan to define virtual MIBs for the KMS which
will allow usual SNMP tools to interact with it and
provide new facilities to manage software or even
hardware component, but some problems remain as
our interfaces directly compete with the SNMP
OBECT-TYPE macro.

7. References

[1] AspectJ, The ASpectJ Project,
http://eclipse.org/aspectj/, 2005.
[2] AspectWerkz, http://aspectwerkz.codehaus.org/,
BEA Systems., 2004.
[3] R. Baldoni, C. Marchetti, and L. Verde, CORBA
request portable interceptors: analysis and applications,
Concurrency and Computation: Practice and Experience,
Vol 15, p 551–579, 2003.
[4] BCEL, The Jakarta Project. The Byte Code
Engineering Library, http://jakarta.apache.org/bcel/, 2004.
[5] C. Carabelea, O. Boissier, Multi-Agent Platforms
on Smart Devices: Dream or Reality ?, 1st Smart Object
Conference, 2003.
[6] DMTF-CIM, Common Information Model,
http://www.dmtf.org/standards/cim/, Distributed
Management Task Force, 2004.
[7] M. Debusmann, K. Geihs, Efficient and
Transparent Instrumentation of Application Components
using an Aspect-oriented Approach, DSOM 2003, 2003.
[8] EJB, Entreprise JavaBeans Specifications version
2.1, http://java.sun.com/products/ejb/docs.html, 2002.
[9] J2EE, J2EE Specification v1.3,
http://java.sun.com/j2ee/, 2001.
[10] JMX, Java Management extensions,
http://java.sun.com/products/JavaManagement/, 2000.
[11] B. Kaddour, J. Quinqueton, Administration
d'applications distribuées par Aspects et expressions
programmables, GRES'05, 2005.
[12] G. Kiczales & al, Aspect oriented Programming,
Proc. of ECOOP'97, p 220-242, 1997.
[13] J.P. Martin-Flatin, S. Znaty, A Simple Typology
of Distributed Network Management Paradigms, DSOM'97,
p 13-24, 1997.
[14] NET, NET Middleware Services: Introduction,
http://technet.microsoft.com/, 2005.
[15] OMG, http://www.omg.org/, O.M.G., 2004.
[16] OpenCCM, http://openccm.objectweb.org/,
ObjectWeb, 2005.
[17] RFC1905, Operations for Version 2 of the Simple
Network Management Protocol (SNMPv2),
http://www.faqs.org/rfcs/rfc1905.html, 1996.
[18] RFC1907, Information Base for Version 2 of the
Simple Network Management Protocol (SNMPv2),
http://www.faqs.org/rfcs/rfc1907.html, 1996.

