
HAL Id: lirmm-00370608
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00370608

Submitted on 24 Mar 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Using Aspects and Compilation Techniques to
Dynamically Manage Applications

Bernard Kaddour, Joël Quinqueton

To cite this version:
Bernard Kaddour, Joël Quinqueton. Using Aspects and Compilation Techniques to Dynamically
Manage Applications. SAM: Security and Management, Jun 2006, Las Vegas, NV, United States.
pp.321-327. �lirmm-00370608�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00370608
https://hal.archives-ouvertes.fr


Using Aspects and Compilation Techniques to
Dynamically Manage Applications

Bernard Kaddour
LIRIS

University of Lyon I
Villeurbanne, France

Joël Quinqueton
LIRMM

Montpellier, France

Abstract - The emergence of middleware solutions and
new services even on small devices will need adapted
distributed management solutions which address these
specificities, both in terms of software design and in terms
of performance. We propose a management system where
these high level and low level management concerns are
separated. The high level management part relies on
messages interception mechanisms which, coupled with
Aspects Oriented Programming concepts, provides
facilities for management applications to dynamically
operate, enhance and manage JAVA based applications
transparently. The low level management part uses an
agent tightly tied to the JVM/JVMTI and able to receive
and to manipulate programmable monitoring expressions.
To avoid conflicts with applications already using JVMTI
instrumentation techniques, we dynamically compile these
expressions into machine code to reduce overload and
minimize performance lost.

Keywords: software management, JAVA, Aspects, JIT
compilation.

1 Introduction
Since some years, smart phones or personal digital

assistants are widely available and used. These small
devices still suffer from some limitations compared with
high end fixed terminals, but even now days they already
have enough processing capabilities to host complete high
Operating Systems – either Windows or Linux dedicated
versions – and they appear more and more as autonomous
embedded systems. Meanwhile, industrially accepted
middleware solutions appear [8][18] for new distributed
applications. These middleware are currently also
available for small devices and even Multi-Agents Systems
based solutions have been introduced in the research area
[4]. Such new distributed application whose components
may partially or totally be executed by small devices
implies new flexible and optimized needs for their
management to be effective. Network management
standards exist [19][20], but their intrinsic centralized and
frozen aspects are very limitative [16]. Newer and more
application centric solutions have appeared [6][7][10], but

they don’t always adequately address the evolutive aspect
of management. We concentrate to provide solutions
widely applicable which use these particularities and we
conceptually separate the high and the low parts of the
management. The former takes advantage of the large
utilization of JAVA for middleware applications and uses
Aspect Oriented Programming concepts [13] to manage
applications without invading the underlying middleware.
This approach avoids modifications of already existing
applications and would ease the translation of introduced
mechanisms towards new emerging middleware solutions.
The later introduces programmable monitoring tasks
tightly related to the code of the managed JAVA entities
and is concerned by performance optimization aspect.
Importance of performance for management has already
been depicted [17]. The massive incoming of network
services for small devices imposes to take this point into
account and we chose to compile our monitoring tasks to
minimize management impact from a performance point
of view. In this article we briefly present in section 2. the
principles and main ideas which lead our management
system for distributed components. The section 3.
discusses how managed objects are obtained and section 4.
develops the entities used for management and how filters
are layered. Section 5. presents the low level management
part and the monitoring tasks. We conclude with some
future works and perspectives.

2 Key features of our architecture
The approach consists in a core management system

– named kernel of the management system or KMS –
where management applications can be deployed. KMS
largely relies on the interception of incoming and outgoing
messages exchanged by the managed application. KMS
can then spy and filter requests sent or results received by
the components of the managed application accordingly to
management functions requirements.

Management applications supported by the KMS are build
up of management activities. Activities are in turn
composed of management functions and filters.
Management functions are not limited to collect data and



can be parts of a complete distributed management
application.

A management application received by a KMS can be
deployed: an environment is created for the management
functions while filters are dynamically linked to the
components for which they have to intercept messages.

3 Connection with the managed entities:
Interceptors
We distinguish applications originally written in

JAVA from the others, in particular from Corba
applications. In the case of JAVA applications, we use the
introspection possibilities the language offers and the
facilities we have to access compiled byte-code. These
facilities can be used to create Interceptors-wrappers or to
modify the application by byte-code injection [2]. Some
tools [1][2] currently go one step further, permitting to
operate upon JAVA code (either at source or byte-code
level) with high level concepts and high level languages.
These features give the possibility to consider JAVA
applications as manageable entities.

For Corba applications, OMG provides some basic
introspection services: Portable Interceptors [18].
Interceptors can be used by third parties to spy requests or
modify messages exchanged between the middleware and
the components. They are often used to enrich Corba with
new features, ranging from synchronization to caching [3],
but they induce performances penalties. They remain a
handy solution as they require only few or not any
modification in the original application code. We use them
at request and message level (i) for interception purposes
and (ii) as a glue with the others parts of the management
system which are mainly JAVA centric.

Then, from now, we will consider only JAVA applications
and we will consider them as fully manageable entities.
The following section focuses on the representation of
management activities and on the messages filtering
system.

4 Major components of the system
The management system KMS is implemented as a
daemon-process to permit sub-activities exchanges
between KMS (currently through sockets). KMS
inspects and registers the entities it is in charge of
and interacts with AspectWerkz [2] for filtering
purposes. It provides JAVA classes and interfaces
that management entities mandatory implement or
inherit from. That’s the way KMS normally use to
interact with or force a management entity.

4.1 Activities

Main parts of an activity are:

-internal tools: It's a set of functions embedded in the
activity for it's own needs. These tools, usually
inactive, can be trigger at any time by the arrival
of a new element (via a preference e.g.) or for the
activity needs. Particular tools are the incoming
or outgoing filters acting upon messages received
or emitted by the managed component,

-Sub activities: greatest difference with other tools is
their expected autonomous abilities. The activity
can ask the KMS to send them, as a whole, over
the network towards another KMS which will
then deploy them remotely. A sub-activity is an
activity,

-constraints and preferences. They can decide to
allow, modify, or reject the requests received by
the activity itself. The loading of a particular
characters font for an application which conforms
to an editor interface is such an example,

-monitoring expressions. These are expressions the
activity wants at low-level management for direct
code monitoring tasks (Cf. §5.).

An activity is encapsulated in a .jar class file. It is the
activity responsibility to report to the KMS the interface or
set of services it can respond to.

4.2 An example of activity

To depict how an activity is made up, let us consider
an application registered as «Service» and providing the
«sub» and «add» operations. This application can be
managed by a simple «PositiveAccount» activity (i) to
count the number of requests received and (ii) to force the
«sub» operation to return a positive or nil result.

PositiveAccount.jar activity ::= [
class Count {
static int count =0;
public static count() { return count; }
}
class Inc_count implements InFilter {
public Object exec(JoinPoint joinPoint) {
Count.count ++;

} }
class Positive implements OutFilter {
public Object exec(JoinPoint joinPoint) {
Object ret= joinPoint.proceedMod();
if (ret.intValue() <0)

ret =new Integer(0);
return ret;
} }
class UneContrainte implements Constraints {



Public Object exec(Activity a) {
If (a.haveCompatibleInterface(“edit”))

…
} }
class PositiveAccount implements Activity {
public int expressionReached(int e) { … }

public int init() {
Inc_count ic =new Inc_count();
register_inFilter(“Service”, “add”, ic, 0);
register_inFilter(“Service”, “sub”, ic, 0);
Positive p =new Positive();
register_outFilter(“Service”, “sub”, p, MOD_PRIV);
register_Constr(new UneContrainte(), ANY_IN);
…
register (this, “Count”);

Printing s =getServiceInterface(
“A_PrintingService”, FROM_ANY);

… = s.doSomething();
…
} } ]

First, the activity registers its filters which have to operate
around the «Service» managed application. Inc_Count will
count the number of «add» or «sub» requests the
application will receive while a Postive instance will check
and maybe modify the value returned by «sub» to be
positive or nil. Finally the management activity registers
itself as a «Count» activity. It can in turn be suspend or
remove (and even partially be managed), its filters moved
or stopped by the KMS.

4.3 Deployment of an activity

When an activity A is deployed by the KMS, the
KMS firstly ensures by introspection that the different
parts of the activity conform to the expected ones:
outFilter class inherits from the KMS_outFilter class,
Activity from KMS_Activity, etc. Lastly, KMS starts the
init() method in a dedicated thread.

The activity then creates its own objects and asks the KMS
to register objects which interact with other parts of the
system. Such objects are (i) filters that the KMS will
connect to managed objects of the managed application
and (ii) constraints & preferences which may help the
activity to customize the environment. Finally, the activity
can use KMS services (such as communication services to
send its sub-activities towards another KMS) or requires
extra services provided by other activities.

Major differences between filters and constraints &
preferences is the kind of tasks they are concerned with.
Constraints and Preferences (C&P) are used by the activity
to express its desires and restrictions. Once registered by

the KMS on behalf of the activity, the KMS ensures that
before providing a service (or an external activity) to A, it
will first check it against the constraints and then against
the preferences registered by the activity A. It is up to the
KMS to make the necessary retries before sending back to
A the resulting service. This C&P mechanism gives to the
management system some capability to adapt environment
resources with activities wishes.

On the other hand, Filters deal with sent or received
messages (methods calls and return values) by the
managed application. This is obtained transparently (from
the managed object point of view) by using Aspect
oriented programming concepts and tools.

4.4 Aspect oriented programming

This paradigm mainly due to [13] has for objectives
to capture some singularities that aren't properly take in
charge by the object oriented model (OO). In practice,
Aspect oriented programming (AOP) complements OO
programming by allowing to dynamically modify and
improve the static OO model with the inclusion of some
new needed code required to fulfill some new expected
requirements. AOP has then introduced some concepts for
the addition or the modification of existent code, mostly:

-Join Points. These are well-defined points in the flow
of a program. Methods call or return, exception
handler entry point and even field set or get
operations are Join points examples.

-Points cut. They are mainly used to identify Join
points from different classes.

-Advices define both the code of the aspect and,
combined with join points, when they will have to
be executed. Usual advices are before advices if
we expect the new aspect's code to be executed
before the join point, and after advices if we
expect the new aspect's code to be executed after
the join point.

AOP frameworks are now available [1][2]. AspectWerkz
(AW) [2] is preferred as it provides a so-called online-
mode to operate upon already compiled pieces of code
(.class) and, most interesting, has a useful API providing
all of the requirements needed to dynamically manipulate
aspects.

4.5 Layout of the filters

Filters registered by the KMS on behalf of an activity
are inserted in the in-filters or in the out-filters chain,
according to the activity's request. From the managed
object point of view, each filter then appears as a before
aspect if placed in the in-filters chain or as an after aspect
if placed in the out-filters chain. Many filters can



simultaneously be present in a chain and these filters may
have been required by one or several different activities.
Filters placed by the KMS have highest priority, follow
activities filters, then sub-activities filters then sub-sub-
activities filters etc.

Connected to AW, KMS is informed of the methods calls
and returns for each object. For a method call, depending
on the caller and on the call parameters, KMS selects in
the in-filters the list of filters to apply. These filters are
then sequentially executed using the AW API (mainly
through the method Object joinPoint.proceedMod(), a
modify version of the original proceed() one). If desired,
parameters can be altered by using the AW API.
Registered filters to select and apply for a method return
follows the same approach.

To avoid incoherence in these chains, the possibility of one
or several different activities managing an object – e.g. a
logging activity initiated by a user A and a synchronization
activity required by a second user B – depends of the
application and of the KMS's choices. Moreover, only
filters registered with enhanced privileges or filters
registered by the KMS for its own needs can modify or
stop a message.

Figure 1. Filters and messages paths.

Left part of Fig. 1 depicts a managed object wrapped in a
JVM/AW execution environment. A dash line represents
the execution path taken by an m() request. First KMS in-
filters are applied, then the activity’s in-filters before m() is
effectively called. The returned result has to pass through
activity’s out-filters and finally the KMS out-filters before
being sent back to the requestor.

5 Monitoring expressions
Managing software components composed of classes

and/or instances typed variables, some low-level
management means are necessary to directly deal with
them for collecting or monitoring purposes. These tasks
are devoted to the low-level part of the management
system build up of monitoring expressions (eMons) and

their associated agent which is the core of our monitoring
system.

A monitoring expression is mainly composed of (i)
expressions based on fields and variables present in the
different classes and instances found in the managed
application code and (ii) an event to emit when the main
expression becomes true.

eMons can be considered near to the DISMAN [14] – and
its associated MIBs – spirit and as a generalization which
doesn’t only limits to SMNP variables but also supports
JAVA software applications and their JAVA byte-code.
Let’s consider the class:

class C {
static public int value =0;
int field;
public void m() {
int local_m0;
int local_m;
:
}}

Some management task T could ask to be informed with
an ev_value event when the expression C.field +C.value –
C.m().local_m becomes negative. This could be achieved
by introducing the monitoring expression:

Watch for: C.field+C.value–C.m().local_m<0
Event: ev_value

To cover more general needs, we have introduced a small
language to describe eMons, their scopes, relationships
and definitions. Here’s the core of an eMon entry:

eMon_name {
…

dec ::= {
m is #”C;”m().local_m;
m0 is #”C;”m().#0; //==local_m0
C isClass #”C;”;
float temp_1;
int temp_2;

}
exp ::= {

temp_1 =(float)(m0 –m +2);
{

#C.field +#C.value -m <0
}
temp_2 =@@last();

}
…

event callback 12; // ev_value
…

} }

m()

JVM

AW

Dispatcher for
incoming messages
(calls)

Dispatcher for
outgoing messages
(results)



describing an eMon named "eMon_name". Scope, thread
or specific tasks to execute when an eMon is removed are
omitted here. We will concentrate on expressions
embedded within the eMon as they constitute the most
important part of an eMon.

We start with some declarations. They can be simple
shortcuts for ease, typed or not, in relation with the
monitored code, e.g. (m, m0, C), or some local temporary
variables used for the eMon own needs. Local temporary
variables, such as temp_1, must be typed but they have not
relation with the monitored code.

The expressions body, composed of the main monitoring
expression enclosed in brackets. It can be preceded by
expressions to evaluate and store before the main
expression is evaluated whereas following the main
monitoring expression are expressions to proceed after the
main expression evaluation. To gain in flexibility, some
add-ons are allowed:

-built-in functions provided by the system. This set of
functions includes usual system-call functions
(kms date(), kms_arch(), kms_strstr(), ...).

-Special MIB access functions. As the system is
designed to interact with the SNMP protocol [19],
a group of functions allowing MIB [20] accesses
is included [12].

-built-in functions in relation with the underlying
monitoring system. They give to the eMon
information directly provided by the JVM. A
thread, object or class ID can be obtained this
way. For example, @@last() is the last evaluated
value of the main expression.

When the expression is removed by the system from its
table of expressions to monitor, a notification is sent to the
activity owner of the expression (by mean of an int
expressionReached(int expId) call, a method implemented
by the Activity class). SNMP events are also supported
[12].

As activities can automatically insert large sets of eMons,
their processing and evaluation are to be optimized. Both a
compiled approach and the introduction of an algorithm
avoiding unnecessary re-evaluations of eMon’s expressions
are used for better performances. This problem of the re-
evaluation of number of expressions has similarities with
the challenge of filtering high throughput network [9][21],
and some of their ideas [21] are used in the evaluation
algorithm. On the other hand, compilation will target real
CPU native code. We chose the IA32(x86) as it is the most
representative and common CPU currently used.

Some differences with usual compilation exist. First, we
have over the used variables a much more lighter control

than a compiler usually has. Variables are “lend” by the
JVM and can at the best be read or modified through
getters and setters functions. An optimization is to avoid
these time consumers Java Native Interface /JVM Tool
Interface (JVMTI) [11] functions as far as we can and
rather use a cache mechanism for the objects, fields and
local variables the expressions need. Second, eMons’
expressions are loosely coupled with the application code
they monitor and are asynchronously evaluated with the
Java code executed by the JVM. Hence, we can’t statically
discover from the monitored code some registers
optimizations for the eMon’s generated code.

5.1 The overall architecture

The used architecture takes advantage of features
provided by the JVMTI introduced by Sun. At first
available through the JVM Debugger Interface /JVM
Profiler Interface couple, this API offers the possibility to
attach an agent to the original java byte-code. This agent
can then register customized hooks at run-time to the java
byte-code, e.g. to be informed when a field is modified or a
class loaded into the JVM.

Figure 2. Agent architecture.

A possibility is, for an agent, to modify or inject new java
byte-code in the original one. This is known as
instrumentation [15]. Despite attractive as the new injected
byte-code is next automatically compiled by the underlying
JIT, we have not chosen a pure instrumentation approach
for at least two reasons.

First, instrumentation freezes our monitoring process.
When inserted, an eMon is considered as always active
and can’t afterwards easily be removed, nor we can

Set of DAGs

Cached
variables

eMons compiled
codes

x
y
u
v

mov eax, @x
add eax, …

ClassFileLoaded

JVM/JVMTI

Calls sets

call
call

Field modified
Breakpoint

call
call



dynamically add or activate new incoming eMons. Second,
only one agent can modify the byte-code this way, this is
the choice AspectWerkz [2] already made to provide
aspects used by the high level management part of the
system.

We then chose the more drastic approach to take in charge
the eMons compilation process. Our agent is the core of
the monitoring system. First, the agent places its hook
functions to be executed when a class is loaded, when a
thread enters in or exits from a method, when a field is
modified, etc. or when a breakpoint event is generated by
the JVMTI. The agent creates its own memory zones,
mainly the pool of cached variables and storage areas for
eMons compiled code.

When an eMon is inserted in the agent, it is parsed and its
DAG representation constructed, but the code can’t be
immediately generated as neither the variables/fields types
nor their storage zones are known. The set of these
awaited information is build and is collected by the
different hooks when they are activated.

Our previously registered loadClass hook is called when a
new class is loaded. We can then obtain types information
for fields or method local variables while cached memory
zones are allocated for the agent needs. These cached
zones will be later used by the eMons compiled code. A
point is that the current JVMTI provides the necessary API
to synchronize cached fields by means of a dedicated
events/hooks mechanism, but nothing is available for local
variables. Then, the agent, without any instrumentation
modification intents, walks through the byte-code methods
and looks for java op-code offsets where local variables are
modified. Breakpoints (JVMTI’s breakpoints are simple
events sent to a Breakpoint() event manager) are placed
for each one of the encountered offset while we register the
index of the modified variable. Finally, two tables are
created for the breakpoint event manager.

The first one is an association offset-calls sets where a
calls set is a sequence of call cells, each cell containing a
call execution code towards the compiled code to execute
for the re-evaluation of one expression involving the
modified local variable. A call cell can be empty and is
modified as the eMon activations/un-activations. Calls sets
are modified accordingly to eMons removal or new eMons
arrival. This two stage call process – rather than one or
two list(s) containing addresses of compiled code to re-
evaluate – was preferred as eMons arrival/removal once
the java code is in execution remains rare. This scheme
avoids unnecessary C(agent)/Asm(eMons) switches and
CPU cycles losts.

The second is a simple table (offset, local variable index)
used by the breakpoint event hook to later synchronize the

cached variables when updating the value of the modified
local variable (GetLocal<Type>()).

Finally, eMon’s DAGs for which the new incoming class
was the last expected one to complete information
variables are then compiled. The operations types are
evaluated and the associated code generated using
addresses in the pool of cached variables. The generated
code tries to minimize the expressions re-evaluation
process.

5.2 Underlying compilation idea

To describe how the most often used parts of
expressions are compiled to reduce the overall re-
evaluation process, we’ll treat the case of the expression E:
(x +y) +(u *v), without object reference for the sake of
simplicity. We name bloc a part of the DAG with only one
operator. For each bloc, we reserve a storage cell where the
last evaluated result can be store. The expression E is
formed by the blocs (x +y) and (u *v). The generated code
of each bloc is immediately obtained from code templates
that we instantiate according to the types, the operation
and an available free register at compile time, tracking of
free registers is done with a usual free registers stack.

The generated code for the bloc (x +y) obtained from the
(int, int, add) code template is:

mem_xy dw 0
ev_xy mov reg, @x; // free reg ==reg

add reg, @y; // op ==add
mov mem_xy, reg
ret

as storage zone of x and y in the cache are known. The
same goes for the bloc (u *v), with the next free register.

The whole machine code associated to the expression E is
obtained in linear time from the generated codes of (x +y)
and (u *v). It is composed of an evaluation code if x or y is
modified, an evaluation code if u or v is modified and a
complete evaluation for the most general case. Here is the
evaluation code of E when x or y is modified:

mem dw 0
_Entree_xy call ev_xy

add reg, mem_el_uv
mov mem, reg
ret

A table (modified variable, entry point) is maintained and
later used to select the appropriate evaluation code to
execute (via a call cell) when a variable is modified. This
way minimizes the re-evaluation of common sub-
expressions. For example in the case of 0 <(x +y) +(u *v)



<5,(x+y >0 && x +y <3); the bloc x +y is effectively
evaluated only once if x (or y) is modified and never for a
modification of u.

A major drawback of the approach is the extra memory
needed. This is an often seen counterpart when using
cloning techniques [5] as expression cloning appears, not
depending of variables types, but depending of the
modified variables. Another disadvantage of this approach
is to consider for small expressions with e.g. 3 variables,
where a usual compilation consummates less memory and
gives a better execution time. But when the number of
variables is over 3 or when a common sub-expression is
shared by many expressions, using a partial re-evaluation
mechanism seems better. It has finally been chosen to use
partial re-evaluation only for DAGs used more than 3
times by eMons (the extra-memory used by the generated
code is then acceptable) and if no more than one object
instance is needed.

6 Future work and conclusion
The purpose of this work is to investigate the

problem of management for distributed applications and
provide means to operate in a dynamic manner. We
suggest to use Aspects frameworks facilities as a possible
solution to allow an evolutive and decentralized high level
management scheme without modifying neither the
underlying middleware nor the managed objects.

A complementary low-level management part able to deal
with managed software components at run-time is
proposed. It uses facilities provided by the JVM/JVMTI
and compiles monitoring expressions on-the-fly to improve
performance of the management system.

Currently both high and low level management parts
remain too tightly coupled. In particular in the case of
distributed management, complex monitoring expressions
involving instances executed on different systems (for
example variables in the client classes code and variables
in the server classes code) need to communicate through
their associated activities. We plan to definitively separate
the monitoring part of the management system and
enhance agents with communication abilities for variables
values exchanges, leading to an autonomous distributed
monitoring system.

A second investigating field could be the creation of MIBs
from which standardized management tools could interact
with the proposed system.

7 References
[1] AspectJ, The AspectJ Project,
http://eclipse.org/aspectj/, 2005.

[2] AspectWerkz, http://aspectwerkz.codehaus.org/, BEA
Systems., 2004.
[3] R. Baldoni, C. Marchetti, and L. Verde, CORBA
request portable interceptors: analysis and applications,
Concurrency and Computation: Practice and Experience,
Vol 15, pp. 551–579, 2003.
[4] C. Carabelea, O. Boissier, Multi-Agent Platforms on
Smart Devices: Dream or Reality ?, 1st Smart Object
Conference, 2003.
[5] J. Dean, G. Chambers, Towards better inlining
decisions using inlining trials, LISP and Functional
Programming. pp. 273-282, 1994
[6] DMTF-CIM, Common Information Model,
http://www.dmtf.org/standards/cim/, Distributed
Management Task Force, 2004.
[7] M. Debusmann, K. Geihs, Efficient and Transparent
Instrumentation of Application Components using an
Aspect-oriented Approach, DSOM 2003, 2003.
[8] EJB, Entreprise JavaBeans Specifications version 2.1,
http://java.sun.com/products/ejb/docs.html, 2002.
[9] P. Gupta, N. McKeown, Packet Classification on
Multiple Fields, Proc. ACM SIGCOMM., 1999.
[10] JMX, Java Management extensions,
http://java.sun.com/products/JavaManagement/, 2000.
[11] JVMTI, JVM Tool Interface, v1.0,
http://java.sun.com/j2se/1.5.0/docs/guide/jvmti/, 2005.
[12] B. Kaddour, J. Quinqueton, Administration
d'applications distribuées par Aspects et expressions
programmables, GRES'05, 2005.
[13] G. Kiczales & al, Aspect oriented Programming,
Proc. of ECOOP'97, pp. 220-242, 1997.
[14] R.P. Lopes, J.L. Oliviera, Delegation of expressions
for distributed SNMP information processing. pp. 395-
408, Proc. IM 2003. 2003.
[15] J. Maebe, K. De Bosschere, Instrumenting self-
modifying code, AADEBUG2003, 2003.
[16] J.P. Martin-Flatin, S. Znaty, A Simple Typology of
Distributed Network Management Paradigms, DSOM'97,
pp. 13-24, 1997.
[17] J.P. Martin-Flatin, Web-based management of IP
networks and systems, PhD Thesis, 2000.
[18] OMG, http://www.omg.org/, O.M.G., 2004.
[19] RFC1905, Operations for Version 2 of the Simple
Network Management Protocol (SNMPv2),
http://www.faqs.org/rfcs/rfc1905.html, 1996.
[20] RFC1907, Information Base for Version 2 of the
Simple Network Management Protocol (SNMPv2),
http://www.faqs.org/rfcs/rfc1907.html, 1996.
[21] V. Srinivasan & al., Packet Classification Using
Tuple Space Search, Proc. ACM SIGCOMM., 1999.


