N

N

A Flexible Modeling and Simulation Framework for
Design Space Exploration
Camille Jalier, Gilles Sassatelli, Didier Lattard

» To cite this version:

Camille Jalier, Gilles Sassatelli, Didier Lattard. A Flexible Modeling and Simulation Framework
for Design Space Exploration. SOC 2008 - International Symposium on System-on-Chip, Nov 2008,
Tampere, Finland. pp.001-004, 10.1109/ISSOC.2008.4694863 . lirmm-00371764

HAL Id: lirmm-00371764
https://hal-lirmm.ccsd.cnrs.fr /lirmm-00371764
Submitted on 30 Mar 2009

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00371764
https://hal.archives-ouvertes.fr

A Flexible Modeling and Simulation Framework for
Design Space Exploration

Camille Jalier and Didier Lattard
CEA-LETI, MINATEC
38054 Grenoble, FRANCE
{firstname.lastname } @cea.fr

Abstract— Applications like 4G baseband modem require
single-chip implementation to meet the integration and the power
consumption requirements. These applications involve a high
computation performance with real-time constraints, low power
consumption and low cost. The concept of MPSoC is well suited
to this problem. It makes it possible to adjust the architecture,
by allocating the computational power where it is needed to fit
the application needs. This often implies that the software has to
be developed at the same time the platform is refined. Algorithm
designers need accurate performance estimation to guide their
decisions and system architects need to provide a design with
enough calculation capacity and flexibility.

Based on the methodology used for the design of the 4G
FAUST chipset, this paper presents a modeling and simulation
framework for Design Space Exploration (DSE) which enables a
rapid evaluation of the application-to-platform adequation. The
key element of this work is a simple and flexible way of modeling
application and architecture. Our SystemC-based simulation en-
vironment can support a broad range of architecture components
(ASIC, DSP, NoC, bus, shared or distributed memory, ...) and
application features (control flow, data exchange, interrupts,
data-dependent processing, dynamic reconfiguration). Applica-
tion and architecture models are separated to allow independent
design space exploration. The simulation basically executes the
algorithms on the architecture and monitors dynamic behavior
such as communication transfers, resource conflicts, starvation,
dynamic reconfiguration, etc.

I. INTRODUCTION

The increasing complexity of telecommunication algorithms
in mobile terminals, requires high computational performance
and low power consumption. The algorithms proposed for 4G
applications are adaptive so the System On Chip (SoC) re-
quires enough flexibility/reconfigurability to support multiple
modulation schemes, Multiple Input Mutiple Output (MIMO)
transmissions, etc. The implementation of such algorithms on
the FAUST platform [1] has proved the efficiency of MPSoC
to provide an attractive solution. This development has stressed
the need for exploration tools to help the designer in the
platform implementation choices:

o Processing resources: ASIC, ASIP, DSP, RISC

o Communication media: bus, point-to-point, Network-on-
Chip (NoC)

« Memory topology: shared, distributed, FIFO

o Application: task partitioning, communication protocol,
scheduling, mapping

Gilles Sassatelli
LIRMM
161 rue Ada, Montpellier, FRANCE
sassatelli @lirmm.fr

The implementation of a baseband application onto a recon-
figurable Multiple Processor SoC (MPSoC) adds stages in the
design flow:

o Mapping and scheduling of the algorithm functionality
onto each processing resources to exploit parallelism.

o Optimization of data transfer and scheduling to reduce
time-overhead.

o Optimization of resource allocation to minimize the chip.

o Performance evaluation of the application on the archi-
tecture to guarantee the real-time constraints.

In order to address these issues, we propose a SystemC-
based simulation framework. This framework incorporates
both application and architecture aspects of the MPSoC to
enable a behavioral approach. The performance is extracted
through a simulation of the application behavior onto the
platform. Because the application and the architecture are
abstracted, it is possible to significantly speed up and ease the
exploration process, to perform dynamic performance analysis
and to quickly change parameters without rewriting models.
In this context, this framework is useful to perform an early
Design Space Exploration (DSE) and/or to provide an early
execution platform for the software development. This tool
might allow a faster verification of the second generation
FAUST platform. The rest of this paper is organized as follows.
The importance of the DSE in the design flow and the related
works are discussed in section II. Section III describes the
application and architecture abstraction models. Section IV
describes the DSE environment.

II. SYSTEM LEVEL DESIGN
A. Framework Overview

In baseband modems, the algorithm choices widely influ-
ence the MPSoC design. In the traditional top down approach,
the designer starts with an informal specification and develops
a reference model of the telecom standard using a high-level
language such as Matlab or C++. At this functional level of
abstraction, the algorithm is developed independently from
the architecture. This modeling approach is used by software
designers to study different algorithms under complexity and
precision aspects [2].

As shown in Fig. 1, in the next step of the design flow, this
description is refined into an abstract platform. The platform

is composed of modules, each of them executes a part of
the application. They represent future hardware or software
components (RISC, DSP, ASIC, etc). The transition between
a functional view to a platform view is complex [3]. This
implies deciding Hardware/Software partitioning, defining the
architecture components and finally perform the algorithm
mapping. Each architectural decision affects the global per-
formance and the application behavior considering processing
time, memory latency, data-transfer latency, possible parallel
processing, resource sharing, etc. Flexible frameworks, that
can model easily a broad range of platform and quickly
estimate resulting performance, are required to perform an
efficient DSE and converge to a satisfying solution. The
exploration process at high level allows very efficient system
optimizations. Our modeling and simulation framework sim-
plifies and accelerates this process and is well suited for high
complexity systems such as complex 4G baseband chipsets.

Functional Level

LR

Modeling & Simulation

Algorithms

Constraints

> Exploration

area of interest

Platform Level
bus

Detailed Specifications

HW/SW Partitioning PN
FIFO

Platform
o—Simulation

Hardware Design
Software Programming

Implementation Level

B i

Simplified Design Flow

RTL Unit’s View

Embedded C code

Fig. 1.

Once both algorithm and platform specifications are de-
cided, every component is refined into either Register Transfer
Level (RTL) model or embedded C code. The used approach
is incremental for verification purposes: every low-level cycle-
accurate RTL hardware component is simulated within the
platform model for ensuring proper behavior.

B. Related work

Several methodologies and tools have been introduced to
help the designer to model and simulate an application onto
an architecture. The most relevant are mentioned in this paper.

Syndex [4] is a system level CAD software tool in which
applications and architectures are modeled with independent
graphs. In this approach, the application model is well sepa-
rated from the architecture model to ensure an easy exploration
of each aspect. However the application graph is limited to a
Data-dependence Graph, in this case it is impossible to capture
data-dependent processing or synchronization by interrupts.

ArchAn [5] is an architectural simulation environment in
which applications are modeled in a task modeling language

and the abstract architecture is modeled at the cycle-accurate
level. In this approach, the task modeling language includes
details of the underlying architecture. Algorithms and archi-
tectural details are combined, the exploration becomes more
difficult.

Artemis [6] is a modeling and simulation environment to
explore the design space of heterogeneous embedded-systems
architectures. This tool allows to model the architecture at
multiple level of abstraction using generic building blocks
provided in a library. Regarding application modeling, Artemis
uses the Kahn Process Network (KPN) computational model.
The KPN semantic forbids the use of interrupts, some dy-
namic behavior, such as run-time mapping, cannot be simply
modeled.

III. APPLICATIONS AND ARCHITECTURES ABSTRACTION
MODELS

A. Application abstraction models

In this work, the used approach considers the telecom
algorithm (OFDM demodulation, MIMO decoding, channel
decoding, etc) and also all the additional mechanisms (syn-
chronization between resources, requests for memory space,
etc) as part of the application. All these mechanisms are not
defined in the telecom standard but they are mandatory to
complete the platform model and they significantly influence
the execution behavior, they are time-consuming. One of the
motivations of this work is to keep the architecture and the
application well separated so that exploration is facilitated; i.e.
any functionality can be mapped to either in software (on a
RISC) or in hardware (ASIC) without any expensive rewriting
phase.

An application is modeled with tasks and buffers. The
functionality is divided into a set of tasks. Each task may
or may not contain the C++ code of the algorithm, but some
specific annotations are required in order to indicate:

o communications with external tasks or buffers (data or
control information)

o complexity of the data processing

« control flow (loop, conditions, ...)

These three types of annotation capture the interactions be-
tween the application and the system [7]. Data transfers
between tasks are memorized in buffers. All communications
can be represented as edges. The possibility for tasks to
exchange some control information offers a great flexibility.
The processing algorithm can be conditioned by a control
event. Fig. 2 illustrates the proposed approach on a simple
example that exhibits both data and control interactions among
tasks. Five steps are used for describing task 3 behavior. The
first one (&) synchronizes the execution on a control message
START sent by the task 5. Steps ®), ® and (E) respectively
model the reading, processing and writing operations of the
task. Step (© is the C++ code of the interleaving algorithm
used in 4G transmissions. This piece of code is not time-
consuming for simulation though, it can be omitted. Finally,
the complexity of the algorithm is modeled in the step ©).

— — control

— data int task_3(){

(A) wait(START);

while(1){
//Readilég
int mg7 ata[32];

read(buffer_1, my_data, 32);

//Algorithm

int my_result[32]

for(int i=0; i>32; i++)
my_result[i]=my_data[(i*7)%32)];

edge

buffer_2

(s ¥\\Buffel;l @

N

//Algorithm complexit;
calc%late(64); P Y
//Writing

write(buffer_2, my_result, 32);

T®e ©

Fig. 2. Example of an application model

B. Architecture abstraction models

The platform architecture, which is the physical support for
execution, is modeled with the same high-level abstraction
approach as the application. To meet the well-known power,
performance and cost constraints, architectures are often het-
erogeneous with multiple differentiated processors, complex
memory hierarchy and hardware accelerators [8]. Modeling
that kind of SoC involves flexible and high-level models. In
the literature, two approaches are often used. Either models,
like Random Access Machine [9], are employed to evaluate
computing complexity but they intentionally neglect the under-
lying architecture details. Or low level models, like Instruction
Set Simulator (ISS) or HDL descriptions, are employed but
they do not allow rapid design space exploration as rewriting
code is often required, they are too over-detailed.

Our approach is based on abstract models that can describe
very complex and different MPSoC implementations without
rewriting code. For enabling this, a set of abstract entities
that can cover current platform such as FAUST and future
HW/SW MPSoC are required. In the previous section III-A,
the application is modeled with tasks, buffers and edges. The
abstract models for the architecture are directly inspired from
the application view. Three different types of abstract entities
are used to describe the architecture:

o a processor model that schedules several tasks (calculate
requests)

« amemory model that manages several buffers (read, write
requests)

e a communication media model that manages several
simultaneous communications (edges)

The abstract model for each entity is written in SystemC and
is composed of a resource manager (scheduler [10]) to allow
the concurrent execution of multiple application elements and
a communication manager which resolves exchanges between
entities. The platform architecture is specified in an XML file
that describes the numbers of entities, their types and the in-
terconnections. Each instantiated entity has its own parameters
that can be tuned to predict the high level characteristics of
the future physical module.

As shown in the Fig. 3, the Processor model is an abstract
model used for modeling any type of processing element (DSP,

CPU, ASIC). At this stage, the partitioning between hardware
and software is not defined and the architecture description is
independent of the application model.

Platform View

bus

Equivalent Architecture Model

Fig. 3. A model based on Processor (Proc), Memory (Mem) and Commu-
nication (Com) entities.

C. Mapping

We have separately modeled the functionality and the archi-
tecture with independent or orthogonal models. To complete
the platform description, we consider the spatial and temporal
mapping. Each part of the application such as tasks (resp.
buffers and edges) is placed on a Processor (resp. Memory
and Communication) entity. When several tasks (resp. buffers
and edges) are mapped onto a Processor (resp. Memory and
Communication) module, the arbitration is done by the re-
source manager considering a scheduling policy. The mapping
is described in an XML file to be easily changed. During this
phase, the designer can efficiently distribute the application to
exploit the parallelism or to share resources.

IV. DSE FRAMEWORK

Our framework follows the well-know y-chart principle
[11], where a set of application models is merged with a set of
architecture models in a dedicating mapping step. The platform
is modeled in an orthogonal way. This mechanism is the key
to enhance the flexibility during design space exploration. In
our approach, we can independently explore:

 application: task partitioning, communication protocol
(message passing, shared memory, etc.), synchronization
model (data, interrupt, etc.), etc.

« architecture: performance for computing resources, com-
munication topology, memory topology, number of re-
sources, etc.

o mapping: resource allocation (to optimize performance,
chip area, etc.), scheduling policy, etc.

The exploration process starts by modeling the application
with tasks, buffers and edges. Then a first platform architec-
ture is modeled with Processor models, Memory models and
Communication Media models. Based on the application graph
and the architecture view, the mapping consists of allocating
resources for each part of the application. Using our models,
the framework automatically generates a SystemC platform
including the application, the architecture and the mapping.

Based on the SystemC simulation engine (Fig. 4), the applica-
tion is executed on the architecture and the execution behavior
is captured. All the relevant characteristics for performance
estimation can then be easily extracted: application through-
put, maximum latency, utilization rate of resources, transient
effects, etc.

According to the estimated performance, the designer can
change the architecture and/or the algorithm architect can
modify the application. This exploration process, to converge
to a suitable solution, is incremental but do not need to rewrite
code, only to modify XML files and/or change parameters.
The designer is responsible for setting these parameters with
relevant values according to his background and the technol-
ogy. The predicted performance results are tightly linked to
the parameters of the architectures entities.

(Functional Level

M
task O algorithms Memory
buffer [T] back d =] Processor
ackgroun, z o
Templates ’C‘:’ﬁa” l XML Communication

[MHPHC]

o Architecture Modeling

Application Modeling &gb

7 [+
. F I

N
Exploration Exploration
Task Partitioning Mapping Topology
Manual Com. Protocol Cot XML XML Parameters

I . |

| (Platform Generation) |

\ l SystemC /

\ N (SystemC Simulation) P /
N { Log/Trace 7

. N
Automatic

C Platform Level)

Fig. 4. A Detailed View of our Exploration Process

As all models are unified in the same framework, the
algorithm architect and the designer can interact easily and
work independently. In our approach, the modeling phase and
the exploration is done manually by the designer relying on
his skills and experience. This framework nevertheless offers
an accelerated exploration process based on:

o Three parameterizable models (XML & SystemC) for
architecture modeling (no code rewriting)

o XML-based description files to quickly parameterize and
interconnect modules

o Automatic generation of a platform SystemC View

« Extraction of execution parameters on log files

At the end of the exploration, the designer has refined: -
the application into an embedded platform software regarding
communication protocols, synchronizations, etc. - the archi-
tecture together with the topology/communication architecture
and the associated parameters. - the mapping.

The hardware/software partitioning is performed accord-
ing to the calculation capacity and flexibility of each unit.
The designer can then easily provide detailed specifications
for deriving a hardware or a software implementation. The
programmer can work on an embedded and optimized code

according to the target CPU and the designer can describe
each hardware unit at Register Transfer Level.

As we have chosen SystemC, we can use Co-Simulation
tools to plug each hardware unit, described in HDL languages,
in place of our high-level model to perform a platform
simulation.

V. CONCLUSION

We propose a system level simulation framework for early
investigation of MPSoC platform architectures considering
a specific application. The major contributions of this pa-
per are firstly a set of flexible high level models based
on XML/SystemC descriptions and secondly an orthogonal
way of modeling the application, the architecture and the
mapping based on a separation between the functionality
and the execution support. In this context, the algorithm is
modeled in an embedded manner with explicit communication
protocol, processing complexity, interrupts, etc. Here the use of
high-level parameterizable models enables a rapid exploration
process without rewriting code. With our modeling framework,
dynamic or data-dependent behavior can be easily captured.

The major advantage of our modeling approach is the
combination of a quick exploration flow and an extended
modeling capacity.

Based on our experience on the FAUST chip , our future
work will focus on the verification of the second generation
platform. This design implements more flexible components
to guarantee an efficient reconfiguration. On the longer term,
this framework will serve as a basis to explore homogeneous
architectures in the perspective of a completely reconfigurable
telecom system.

REFERENCES

[1] Y. Durand. FAUST: on-chip distributed SoC architecture for 4G base-
band modem chipset. In Proc. of the IP/SOC’05 conference, 2005

[2] T. Kempf, M. Doerper. A modular Simulation Framework for Spatial
and Temporal Task Mapping onto Multi-Processor SoC Platforms. In
Proc. of the Design, Automation and Test in Europe Conference and
Exhibition (DATE’05), 2005

[3] P. Magarshack, P.Paulin. System-on-chip Beyond the Nanometer Wall.
In Proc. of the Design Automation Conference (DAC), 2003

[4] T. Grandpierre, Y. Sorel. From algorithm and architecture specification
to automatic generation of distributed real-time executives: a seamless
flow of graphs transformations. In Proc. of the First ACM and IEEE
International Conference on Formal Methods and Models for Codesign
(MEMOCODE’03), June 2003

[5]1 A. Chatelain, Y. Mathys. Verification Strategy for Integration 3G Base-
band SoC. In Proc. of the Design Automation Conference (DAC), 2003

[6] A.D.Pimentel, L.O. Hertzbetger. Exploring embedded-systems architec-
tures with Artemis. In Computer, vol. 34, pages 57 - 63, 2001

[71 M. Waseem, L. Apvrille. Abstract Application Modeling for System
Design Space Exploration. In Proc. of the 9th EUROMICRO Conference
on Digital System Design (DSD’06), 2006

[8] D. Lattard, E. Beigne. A Reconfigurable Baseband Platform Based on
an Asynchronous Network-on-Chip. In Journal of Solid-State Circuits
(JSSC), vol. 43, pages 223 - 235, Jan. 2008

[9]1 A. Tiskin. The bulk synchronous parallel random access machine. In
Proc. of EURO-PAR’96, vol. 2, pages 327-338, August 1996

[10] J.M. Paul, A. Bobrek. Schedulers as Model-Based Design Elements in
Programmable Heterogeneous Multiprocessors. In Proc. of the Design
Automation Conference (DAC), 2003
[11] P. Lieverse, P. van der Wolf. A Methodology for Architecture Explo-

ration of Heterogeneous Signal Processing Systems. In Proc. of the IEEE
Int. Workshop on Signal Processing Systems (SIPS), 1997

