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In this paper, the main objective is to establish an existence result of a variational model in image segmentation constrained by a given vector field. In the one dimensional case, we give a discrete version converging in a variational way to the continuous model. We finally describe the numerical analysis of this model with application in image segmentation.

I. INTRODUCTION

In this paper, we aim to describe a theoretical and numerical treatment of the following problem stemming from the theory of image segmentation:

E(u) = inf v∈SBV (Ω) E(v), E(v) = Ω |∇v| 2 dx + Sv f dH N -1 + Ω |g -v| 2 dx,
where Ω is a domain in R N and g : Ω → R.

The density f is the extended real-valued function v → 1+I A (v) where A is the set of all the functions v in SBV (Ω) satisfying, for a given a ∈ R, the condition:

[v](x)ν v (x).Φ(x) ≥ a, for H N -1 ⌊S v a.e. x in Ω. We point out that the energy E is the perturbation of the so called Mumford-Shah energy [START_REF] De Giorgi | Existence Theorem for a Minimum Problem with Free Discontinuity Set[END_REF]( f ≡ 1) by the indicator function I A of the set A (i.e I A (v) = 0 if v ∈ A, +∞ otherwise). The vector valued function Φ belonging to C(Ω, R N ), may be considered, when N = 2, as a constraint on the outline of an image g in computer vision: the outlines of the image having a jump of grey level in the direction of Φ more than a are selected by the model. In the one dimensional case it leads to detect some selected discontinuities of the signal g.

In the paper L denotes the Lebesgue measure restricted to Ω, SBV (Ω) the space of all the functions v of bounded variation whose distributional gradient is of the form

Dv = ∇vL + [v]ν v H N -1 ⌊S v . We denote by [v] := u + -u -the jump of v through the jump set S v , ν v is the unit normal to S v and H N -1 ⌊S v is the restriction to S v of the N -1-dimensional
Hausdorff measure. In the one dimensional case, we adopt the following notation for the structure of the distributional derivative of any v in SBV (0, 1):

v ′ = v dt + [v]H 0 ⌊S v . In this specific case, [v](t) is nothing but the classical jump of v at t ∈ S v and H 0 is the counting measure so that [v]H 0 ⌊S v = t∈Sv [v]δ t .
For more about SBV spaces, we refer the reader to [START_REF] Braides | Approximation of Free-Discontinuity Problems[END_REF].

In Section 2 we establish the existence of a solution u of the problem. In Section 3 we define a variational discrete model in the case N = 1. Let E h be some suitable functional expected to describe the discrete energy associated with the above functional E, h denoting the step of discretization. We say that the problem inf E h is a variational discrete model of inf E if min E h converges to min E when h goes to zero and if every minimizer u h of E h tends in L 1 (0, 1) to a minimizer of E. Provided that (u h ) h>0 be compact, an appropriate convergence for the sequence of functionals (E h ) h>0 leading to this objective, is the so called Γ-convergence of the sequence (E h ) h>0 to the functional E. Section 4 is devoted to the description of an algorithm giving a solution u h of the discrete problem min E h . We conclude the paper by giving some numerical experiments with application in image segmentation. Previous work have all ready applied variational models to image segmentation [START_REF] Morel | Density Estimates for the Boundaries of Optimal Segmentations[END_REF], [START_REF] Mumford | Optimal Approximation by Piecewise Smooth Functions and Associated Variational Problems[END_REF], [START_REF] Wang | Existence and Regularity of Solutions to a Variational Problem of Mumford and Shah: A Constructive Approach[END_REF], [START_REF] Ambrosio | Variational Approximation of a Second Order Free Discontinuity Problem Computer Vision[END_REF].

II. EXISTENCE OF A SOLUTION

We equip SBV (Ω) with the norm . SBV (Ω) defined by:

v BV (Ω) = Ω |v| dx + Ω |Dv|,
where Ω |Dv| is the total mass of the total variation |Dv| of the measure Dv.

We say that a sequence (u n ) n∈N weakly converges to u in BV (Ω) iff u n → u strongly in L 1 (Ω) and Du n ⇀ Du weakly in the sense of measures in M(Ω, R N ).

Let (u n ) n∈N be a minimizing sequence of inf E(v).

From Ambrosio's compactness theorem (see [START_REF] Ambrosio | A Compactness Theorem for a Special Class of Functions of Bounded Variation[END_REF], [START_REF] Braides | Approximation of Free-Discontinuity Problems[END_REF]), one can establish the weak lower-semi-continuity of the functional E together with existence of a weak cluster point ū of (u n ) n∈N . Combining these two arguments gives E(ū) = inf E(v). We have established Theorem 1: There exists at least one minimizer of the problem

inf v∈A Ω |∇v| 2 dx + H N -1 (S v ) + Ω |g -v| 2 dx
The following compactnes theorem is due to L. Ambrosio (see [START_REF] Ambrosio | A Compactness Theorem for a Special Class of Functions of Bounded Variation[END_REF], [START_REF] Braides | Approximation of Free-Discontinuity Problems[END_REF]).

Theorem 2: Let (u n ) n be a sequence of elements in

SBV (Ω) satisfying (i) sup n∈N { u n BV (Ω) } < +∞, (ii) the sequence (∇u n ) n∈N is equi-integrable, (iii) the sequence (H N -1 (S un )) n∈N is uniformly bounded.
Then one can extract a subsequence (u n k ) k∈N which converges to some u ∈ SBV (Ω) such that

u n k → u in L 1 loc (Ω), ∇u n k ⇀ ∇u weakly in L 1 (Ω, R N ), Ju n k ⇀ Ju weakly in M(Ω, R N ), H N -1 (S u ) ≤ lim inf k-→+∞ H N -1 (S un k ). (1) 
Let (u n ) n∈N be a minimizing sequence of inf E(v). From classical argument stemming from measure theory, one can establish the weak lower-semicontinuity of the functional E. On the other hand, applying Theorem 2, one can easily see that there exists a weak cluster point ū of (u n ) n∈N .

Combining these two arguments gives E(ū) = inf E(v). We have established

Theorem 3: There exists at least one minimizer of the problem

inf v∈A Ω |∇v| 2 dx + H N -1 (S v ) + Ω |g -v| 2 dx

III. DISCRETE MODEL IN ONE DIMENSIONAL CASE

We assume here that Φ > 0 on [0, 1] and a > 0. For h = 1 N we consider the following density defined for every (t, e) ∈ (0, 1) × R by: Let A h (0, 1) denote the set of all the continuous functions in (0, 1), affine on each interval (ih, (i + 1)h) of (0, 1) and bounded by g ∞ . We define the functional:

W h (t
F h (v) :=    1 0 Wh (t, v ′ (t)) dt if v ∈ A h (0, 1), +∞ if v ∈ L 1 (0, 1) \ A h (0, 1).
Our objective is to establish the Γ-convergence of the func-

tional v → E h (v) := F h (v) + 1 0
|g(ih) -v| 2 dx to the energy functional E when L 1 (0, 1) is equipped with its strong topology. In order to make relevant our variational approximating scheme, we must establish the following compactness result whose proof is a straightforward consequence of the behavior of W h and of the compactness of the embedding W 1,1 (0, 1) ⊂ L 1 (0, 1).

Proposition 1: Let (u h ) h>0 be a sequence of L 1 (0, 1) satisfying

E h (u h ) = inf{E h (v) : v ∈ L 1 (0, 1)}.
Then, there exist a subsequence (not relabeled) and u ∈ L 1 (0, 1) such that u h → u strongly in L 1 (0, 1). Existence of u h above is obtained by arguments similar to those of the proof of Theorem 3. We now establish the Γconvergence of E h to E, a notion of convergence introduced by De Giorgi and Franzoni. For overview, we refer the reader to [START_REF] Attouch | Variational Convergence for Functions and Operators[END_REF] and references therein.

Theorem 4: Let u ∈ L 1 (0, 1). Then the sequence E h ) h>0 Γ-converges to E, i.e., the two following statements hold:

(Γ 1 ) there exists a sequence (u h ) h>0 strongly converging to u in L 1 (0, 1) such that:

lim sup h→0 E h (u h ) ≤ E(u);
(Γ 2 ) for every u ∈ L 1 (0, 1) and every sequence (u h ) h>0 strongly converging to u, we have:

E(u) ≤ lim inf h→0 E h (u h ).
We should point out that this convergence is variational, i.e., every cluster point of the sequence (u h ) h>0 given in Proposition 1 is a minimizer of E, and min{E h (v) : v ∈ L 1 (0, 1)} converges to min{E(v) : v ∈ L 1 (0, 1)}. For a proof of (Γ 1 ) and (Γ 2 ), we refer the reader to [START_REF] Brouzet | Detection and Analysis of Discontinuities of a Constrained Signal[END_REF].

IV. DESCRIPTION OF AN ALGORITHM FOR THE DISCRETE

MODEL

In this section, we would like to describe an algorithm for the computation of a solution of the discrete variational model stated in the previous section :

E h (u) = min v∈A h (0,1) F h (v) + 1 0 |g(ih) -v| 2 dx .
Obviously, one can rewrite the energy E h as a functional defined in R N +1 and the discrete problem becomes:

E h (u) = min v∈R N +1 {i:vi+1-vi≤ a Φ(ih) } |v i+1 -v i | 2 h + H 0 ({i : v i+1 -v i > a Φ(ih) }) ,
where v = (v 0 , . . . , v N ).

The strategy consists now in conditioning the minimization by fixing: a) firstly the cardinal of the set ({i : v i+1v i > a Φ(ih) } that we will call fracture set, b) secondly, for each fixed cardinal, the site of such fracture set. The problem may be written : find u in R N +1 solution of:

min k=0,...,N -1 min F k min v∈R N -k , vi+1-vi≤ α Φ(ih) i ∈F k |v i+1 -v i | 2 h + k + i ∈F k h|g(ih) -v i | 2 .
Note that we have replaced the sum

N i=0 h|g(ih) -v i | 2 by the sum i ∈F k h|g(ih) -v i | 2 in
the definition of the discrete energy. The first minimization problem:

min v∈R N -k , vi+1-vi≤ α Φ(ih) i ∈F k |v i+1 -v i | 2 h +k+ i ∈F k h|g(ih)-v i | 2
consists in solving the classical quadratic optimization problem min

R N -k i ∈F k |v i+1 -v i | 2 h + i ∈F k h|g(ih) -v i | 2 , (2) 
and to take into account the solution u k,F k if and only if its components satisfy the constraint v i+1v i ≤ α Φ(ih) . It is easily seen that ( 2) is equivalent to the linear problem:

A T A + h 2 I v = h 2 gh ,
where I is the (Nk) × (Nk) identity matrix and A is a (Nk) × (Nk) matrix whose entries are -1 or 1 on the diagonal i = j and 1 or 0 on the diagonal j = i + 1.

V. NUMERICAL EXPERIMENTS

The problem is equivalent to the linear problem:

     b 0 a 0 • • • 0 a 0 b 1 • • • 0 . . . . . . . . . . . . 0 • • • b n-1 a n-1           v 0 v 1 . . . v n-1      =      g 0 g 1 . . . g n-1      where    b 0 = b n-1 = 1 + 1 h 2 b i = 1 + 2 h 2 for 1 ≤ i ≤ n -1 a i = -1 h 2
for all i Set :

w 0 = a0 b0 y 0 = g0 b0
and replace b 1 by b 1a 0 w 0 and g 1 by g 1a 0 y 0 . then, for all k > 1 do :

w k = a k b k -a k w k-1 y k = g k -a k y k-1 b k -a k w k-1
and replace b k by b ka k-1 w k-1 and g k by g ka k-1 y k-1 . So, we obtain the solution: To generalize, we introduce coefficients α, β and γ in E(v) and put:

v n = y n v k = y k -w k v k for o ≤ k ≤ n -1
E(v) = α Ω |∇v| 2 dx + β Ω |g -v| 2 dx + γ Sv f dH N -1 .
We now give some reconstructed pictures obtained with various values of coefficients α, β and γ and various values of the number a Φ(ih) that we call filter. For working in one dimension, we scan the picture on line and on column in order to superpose the both. We limit the computation by taking #(F k ) = 1.

Without filter, from the original image of Lena, Fig. 1, we obtain the detection on line, Fig. 2.a, and on column, Fig. For the on column detection, Fig. 6, we have also applied several values for the filter and for α, β and γ. Finally, we illustrate Fig. 7 the superposition of the on line and on column detections. 

VI. CONCLUSION

In this paper we have generalized the well known one dimensional discretization of the Mumford-Shah functional by taking into account a constraint on the outline (i.e. the filter). We have illustrated the method by scanning a picture on line and on column in order to superpose the both. Actually, the used filters in line and column could be considered as the projections of a given two dimensional vector field on the picture. In perspective of this work, we are planning to compare our method with level set methods [START_REF] Djemal | Automatic Active Contours Propagation in a Sequence of Medical Images[END_REF]. 
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 12 Fig. 1. Original image of Lena.

  2.b.By superposition of the results of the Fig.2.a and b we have a full detection illustrated Fig.3. For the on line detection, Fig.4and 5, we have applied several values for the filter and for α, β and γ. In particular, for the Fig.4.c, 4.d and 5, we have separated the pixels in two parts. The values of the parameters α, β and γ have been fixed experimentally.

Fig. 3 .

 3 Fig. 3. By superposition of Fig.2.a and 2.b

Fig. 4 .

 4 Fig. 4. On line, a) filter = 30 and α = β = γ = 1, b) filter = 0.001, α = 200, β = 0.01 and γ = 0.1. c) With two filters: filter1 = 0.001 for pixels between 0 and 128 with α = 200, β = 0.01 and γ = 0.1, filter2 = 30 for pixels between 129 and 255 with α = β = γ = 1, d) With two filters: filter1 = 30 for pixels between 0 and 128 with α = β = γ = 1, filter2 = 0.001 for pixels between 129 and 255 with α = 200, β = 0.01 and γ = 0.1.

Fig. 5 .

 5 Fig. 5. On line with two filters: filter1 = 0.001 for pixels between 154 and 196 with α = 200, β = 0.01 and γ = 0.1, filter2 = 30 for pixels between 0 and 153, and from 197 until 255, with α = β = γ = 1.

Fig. 6 .

 6 Fig. 6. On column, a) filter = 30, α = β = γ = 1, b) filter = 0.001, α = 200, β = 0.01 and γ = 0.1.

Fig. 7 .

 7 Fig. 7. a) Superposition of Fig.5 and Fig.6.a, b) Superposition of Fig.5 and Fig.6.b.