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Abstract— In this paper, the main objective is to establish an
existence result of a variational model in image segmentation
constrained by a given vector field. In the one dimensional case,
we give a discrete version converging in a variational way to the
continuous model. We finally describe the numerical analysis of
this model with application in image segmentation.
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I. INTRODUCTION

In this paper, we aim to describe a theoretical and numerical

treatment of the following problem stemming from the theory

of image segmentation:

E(u) = inf
v∈SBV (Ω)

E(v),

E(v) =

∫

Ω

|∇v|2dx +

∫

Sv

f dHN−1 +

∫

Ω

|g − v|2dx,

where Ω is a domain in R
N and g : Ω → R.

The density f is the extended real-valued function v 7→
1+IA(v) where A is the set of all the functions v in SBV (Ω)
satisfying, for a given a ∈ R, the condition:

[v](x)νv(x).Φ(x) ≥ a,

for HN−1⌊Sv a.e. x in Ω. We point out that the energy E is the

perturbation of the so called Mumford-Shah energy [6]( f ≡ 1)

by the indicator function IA of the set A (i.e IA(v) = 0 if v ∈
A, +∞ otherwise). The vector valued function Φ belonging to

C(Ω,RN ), may be considered, when N = 2, as a constraint

on the outline of an image g in computer vision: the outlines

of the image having a jump of grey level in the direction of Φ
more than a are selected by the model. In the one dimensional

case it leads to detect some selected discontinuities of the

signal g.

In the paper L denotes the Lebesgue measure restricted to Ω,

SBV (Ω) the space of all the functions v of bounded variation

whose distributional gradient is of the form Dv = ∇vL +
[v]νvH

N−1⌊Sv . We denote by [v] := u+ − u− the jump of

v through the jump set Sv , νv is the unit normal to Sv and

HN−1⌊Sv is the restriction to Sv of the N − 1-dimensional

Hausdorff measure. In the one dimensional case, we adopt

the following notation for the structure of the distributional

derivative of any v in SBV (0, 1): v′ = v̇ dt + [v]H0⌊Sv. In

this specific case, [v](t) is nothing but the classical jump of v at

t ∈ Sv and H0 is the counting measure so that

∫

[v]H0⌊Sv =
∑

t∈Sv

[v]δt. For more about SBV spaces, we refer the reader to

[4].

In Section 2 we establish the existence of a solution u of the

problem. In Section 3 we define a variational discrete model in

the case N = 1. Let Eh be some suitable functional expected

to describe the discrete energy associated with the above

functional E, h denoting the step of discretization. We say that

the problem inf Eh is a variational discrete model of inf E if

minEh converges to minE when h goes to zero and if every

minimizer uh of Eh tends in L1(0, 1) to a minimizer of E.

Provided that (uh)h>0 be compact, an appropriate convergence

for the sequence of functionals (Eh)h>0 leading to this objec-

tive, is the so called Γ-convergence of the sequence (Eh)h>0 to

the functional E. Section 4 is devoted to the description of an

algorithm giving a solution uh of the discrete problem minEh.

We conclude the paper by giving some numerical experiments

with application in image segmentation. Previous work have

all ready applied variational models to image segmentation

[8], [9], [10], [2].

II. EXISTENCE OF A SOLUTION

We equip SBV (Ω) with the norm ‖.‖SBV (Ω) defined by:

‖v‖BV (Ω) =

∫

Ω

|v| dx +

∫

Ω

|Dv|,

where

∫

Ω

|Dv| is the total mass of the total variation |Dv| of

the measure Dv.

We say that a sequence (un)n∈N weakly converges to u

in BV (Ω) iff un → u strongly in L1(Ω) and Dun ⇀ Du

weakly in the sense of measures in M(Ω,RN ).
Let (un)n∈N be a minimizing sequence of inf E(v).



From Ambrosio’s compactness theorem (see [1], [4]), one

can establish the weak lower-semi-continuity of the functional

E together with existence of a weak cluster point ū of

(un)n∈N. Combining these two arguments gives E(ū) =
inf E(v). We have established

Theorem 1: There exists at least one minimizer of the

problem

inf
v∈A

{

∫

Ω

|∇v|2 dx + HN−1(Sv) +

∫

Ω

|g − v|2 dx
}

The following compactnes theorem is due to L. Ambrosio

(see [1], [4]).

Theorem 2: Let (un)n be a sequence of elements in

SBV (Ω) satisfying

(i) sup
n∈N

{‖un‖BV (Ω)} < +∞,

(ii) the sequence (∇un)n∈N is equi-integrable,

(iii) the sequence (HN−1(Sun
))n∈N is uniformly bounded.

Then one can extract a subsequence (unk
)k∈N which con-

verges to some u ∈ SBV (Ω) such that

unk
→ u in L1

loc(Ω),
∇unk

⇀ ∇u weakly in L1(Ω,RN ),
Junk

⇀ Ju weakly in M(Ω,RN ),

HN−1(Su) ≤ lim inf
k−→+∞

HN−1(Sunk
).

(1)

Let (un)n∈N be a minimizing sequence of inf E(v). From

classical argument stemming from measure theory, one can

establish the weak lower-semicontinuity of the functional E.

On the other hand, applying Theorem 2, one can easily

see that there exists a weak cluster point ū of (un)n∈N.

Combining these two arguments gives E(ū) = inf E(v). We

have established

Theorem 3: There exists at least one minimizer of the

problem

inf
v∈A

{

∫

Ω

|∇v|2 dx + HN−1(Sv) +

∫

Ω

|g − v|2 dx
}

III. DISCRETE MODEL IN ONE DIMENSIONAL CASE

We assume here that Φ > 0 on [0, 1] and a > 0. For h = 1
N

we consider the following density defined for every (t, e) ∈
(0, 1) × R by:

Wh(t, e) :=

{

e2 if e ≤ eh(t)
1
h

if e > eh(t),

where eh(t) = a
hΦ(t) and set W̃h(t, e) = Wh(ih, e) if t ∈

[ih, (i + 1)h[.
Let Ah(0, 1) denote the set of all the continuous functions

in (0, 1), affine on each interval (ih, (i + 1)h) of (0, 1) and

bounded by ‖g‖∞. We define the functional:

Fh(v) :=







∫ 1

0

W̃h(t, v′(t)) dt if v ∈ Ah(0, 1),

+∞ if v ∈ L1(0, 1) \ Ah(0, 1).

Our objective is to establish the Γ-convergence of the func-

tional v 7→ Eh(v) := Fh(v) +

∫ 1

0

|g(ih) − v|2 dx to the

energy functional E when L1(0, 1) is equipped with its strong

topology. In order to make relevant our variational approxi-

mating scheme, we must establish the following compactness

result whose proof is a straightforward consequence of the

behavior of Wh and of the compactness of the embedding

W 1,1(0, 1) ⊂ L1(0, 1).

Proposition 1: Let (uh)h>0 be a sequence of L1(0, 1) sat-

isfying

Eh(uh) = inf{Eh(v) : v ∈ L1(0, 1)}.

Then, there exist a subsequence (not relabeled) and u ∈
L1(0, 1) such that uh → u strongly in L1(0, 1).

Existence of uh above is obtained by arguments similar to

those of the proof of Theorem 3. We now establish the Γ-

convergence of Eh to E, a notion of convergence introduced

by De Giorgi and Franzoni. For overview, we refer the reader

to [3] and references therein.

Theorem 4: Let u ∈ L1(0, 1). Then the sequence Eh)h>0

Γ-converges to E, i.e., the two following statements hold:

(Γ1) there exists a sequence (uh)h>0 strongly converging to

u in L1(0, 1) such that:

lim sup
h→0

Eh(uh) ≤ E(u);

(Γ2) for every u ∈ L1(0, 1) and every sequence (uh)h>0

strongly converging to u, we have:

E(u) ≤ lim inf
h→0

Eh(uh).

We should point out that this convergence is variational,

i.e., every cluster point of the sequence (uh)h>0 given in

Proposition 1 is a minimizer of E, and min{Eh(v) : v ∈
L1(0, 1)} converges to min{E(v) : v ∈ L1(0, 1)}. For a proof

of (Γ1) and (Γ2), we refer the reader to [5].

IV. DESCRIPTION OF AN ALGORITHM FOR THE DISCRETE

MODEL

In this section, we would like to describe an algorithm for

the computation of a solution of the discrete variational model

stated in the previous section :

Eh(u) = min
v∈Ah(0,1)

(

Fh(v) +

∫ 1

0

|g(ih) − v|2 dx

)

.

Obviously, one can rewrite the energy Eh as a functional

defined in R
N+1 and the discrete problem becomes:

Eh(u) = min
v∈RN+1

(

∑

{i:vi+1−vi≤
a

Φ(ih)
}

|vi+1 − vi|
2

h

+ H0({i : vi+1 − vi >
a

Φ(ih)
})

)

,

where v = (v0, . . . , vN ).

The strategy consists now in conditioning the minimization

by fixing:

a) firstly the cardinal of the set ({i : vi+1 − vi > a
Φ(ih)}

that we will call fracture set,



b) secondly, for each fixed cardinal, the site of such fracture

set. The problem may be written : find u in R
N+1 solution

of:

min
k=0,...,N−1

min
Fk

min
v∈RN−k, vi+1−vi≤

α
Φ(ih)

(

∑

i 6∈Fk

|vi+1 − vi|
2

h
+ k +

∑

i 6∈Fk

h|g(ih) − vi|
2
)

.

Note that we have replaced the sum
∑N

i=0 h|g(ih) − vi|
2 by

the sum
∑

i 6∈Fk
h|g(ih)− vi|

2 in the definition of the discrete

energy. The first minimization problem:

min
v∈RN−k, vi+1−vi≤

α
Φ(ih)

(

∑

i 6∈Fk

|vi+1 − vi|
2

h
+k+

∑

i 6∈Fk

h|g(ih)−vi|
2
)

consists in solving the classical quadratic optimization prob-

lem

min
RN−k

(

∑

i 6∈Fk

|vi+1 − vi|
2

h
+

∑

i 6∈Fk

h|g(ih) − vi|
2
)

, (2)

and to take into account the solution u
k,Fk

if and only if its

components satisfy the constraint vi+1 − vi ≤
α

Φ(ih) .

It is easily seen that (2) is equivalent to the linear problem:
(

ATA + h2I
)

v = h2g̃h,

where I is the (N − k)× (N − k) identity matrix and A is a

(N − k) × (N − k) matrix whose entries are −1 or 1 on the

diagonal i = j and 1 or 0 on the diagonal j = i + 1.

V. NUMERICAL EXPERIMENTS

The problem is equivalent to the linear problem:










b0 a0 · · · 0
a0 b1 · · · 0
...

. . .
. . .

...

0 · · · bn−1 an−1





















v0

v1

...

vn−1











=











g0

g1

...

gn−1











where






b0 = bn−1 = 1 + 1
h2

bi = 1 + 2
h2 for 1 ≤ i ≤ n − 1

ai = − 1
h2 for all i

Set :
{

w0 = a0

b0

y0 = g0

b0

and replace b1 by b1 − a0w0 and g1 by g1 − a0y0.

then, for all k > 1
do :

{

wk = ak

bk−akwk−1

yk = gk−akyk−1

bk−akwk−1

and replace bk by bk − ak−1wk−1 and gk by gk − ak−1yk−1.

So, we obtain the solution:
{

vn = yn

vk = yk − wkvk for o ≤ k ≤ n − 1

Fig. 1. Original image of Lena.

(a)

(b)

Fig. 2. Without filter, a) On line, b) On column.

To generalize, we introduce coefficients α, β and γ in E(v)
and put:

E(v) = α

∫

Ω

|∇v|2dx + β

∫

Ω

|g − v|2dx + γ

∫

Sv

f dHN−1.

We now give some reconstructed pictures obtained with vari-

ous values of coefficients α, β and γ and various values of

the number a
Φ(ih) that we call filter. For working in one

dimension, we scan the picture on line and on column in order

to superpose the both. We limit the computation by taking

#(Fk) = 1.

Without filter, from the original image of Lena, Fig.1, we

obtain the detection on line, Fig.2.a, and on column, Fig.2.b.



By superposition of the results of the Fig.2.a and b we have a

full detection illustrated Fig.3. For the on line detection, Fig.4

and 5, we have applied several values for the filter and for

α, β and γ. In particular, for the Fig. 4.c, 4.d and 5, we have

separated the pixels in two parts. The values of the parameters

α, β and γ have been fixed experimentally.

Fig. 3. By superposition of Fig.2.a and 2.b

For the on column detection, Fig.6, we have also applied

several values for the filter and for α, β and γ. Finally, we

illustrate Fig. 7 the superposition of the on line and on column

detections.

(a)

(b)

(c)

(d)

Fig. 4. On line, a) filter = 30 and α = β = γ = 1, b) filter = 0.001,
α = 200, β = 0.01 and γ = 0.1. c) With two filters: filter1 = 0.001 for
pixels between 0 and 128 with α = 200, β = 0.01 and γ = 0.1, filter2 = 30
for pixels between 129 and 255 with α = β = γ = 1, d) With two filters:
filter1 = 30 for pixels between 0 and 128 with α = β = γ = 1, filter2 =
0.001 for pixels between 129 and 255 with α = 200, β = 0.01 and γ = 0.1.



Fig. 5. On line with two filters: filter1 = 0.001 for pixels between 154 and
196 with α = 200, β = 0.01 and γ = 0.1, filter2 = 30 for pixels between 0
and 153, and from 197 until 255, with α = β = γ = 1.

(a)

(b)

Fig. 6. On column, a) filter = 30, α = β = γ = 1, b) filter = 0.001,
α = 200, β = 0.01 and γ = 0.1.

VI. CONCLUSION

In this paper we have generalized the well known one

dimensional discretization of the Mumford-Shah functional

by taking into account a constraint on the outline (i.e. the

filter). We have illustrated the method by scanning a picture on

line and on column in order to superpose the both. Actually,

the used filters in line and column could be considered as

the projections of a given two dimensional vector field on

the picture. In perspective of this work, we are planning to

compare our method with level set methods [7].

(a) (b)

Fig. 7. a) Superposition of Fig.5 and Fig.6.a, b) Superposition of Fig.5 and
Fig.6.b.
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