Diego Puschini

Fabien Clermidy

Pascal Benoit

Gilles Sassatelli

Lionel Torres

Dynamic and Distributed Frequency Assignment for Energy and Latency Constrained MP-SoC

In this paper we present an adaptive technique to locally adjust the frequency of processing elements on MP-SoC. The proposed method, based on Game Theory, optimizes the system while fulfilling dynamic constraints. A telecom test-case has been used to demonstrate the effectiveness of our technique. For the evaluated scenario, the proposed technique has obtained up to 20% of latency gain and 38% of energy gain.

I. INTRODUCTION

Energy saving is one of the biggest challenges designers have to face for Multiprocessor System-on-Chip (MP-SoC) integrating several processing elements (PE). With future systems supporting a large variety of real-time applications, it is natural to think that power management has to be self adaptive. The objective is to develop a system able to adapt itself to new applicative requirements as well as changes in the environment. As an example, the available energy for a telecom application is strongly reduced under weak battery conditions on mobile terminals while real-time constraints depend on the telecom configuration. In this paper, we propose an adaptive and distributed technique to select the frequency of local processors or subsystems while fulfilling energy consumption and applicative latency constraints.

A. Motivation

Scalability and dynamic reconfiguration for adaptability of distributed systems are widely discussed in the bibliography of MP-SoC design challenges [START_REF] Martin | Overview of the MPSoC design challenge[END_REF]. Fine-grain Dynamic Voltage and Frequency Scaling (DVFS) has been explored in [START_REF] Donald | Techniques for multicore thermal management: Classification and new exploration[END_REF], and [START_REF] Beigné | A fully integrated power supply unit for fine grain DVFS and leakage control validated on low-voltage SRAMs[END_REF] demonstrates their efficiency. The problem is how to optimize the system under given constraints, i.e. defining a method for choosing the frequencies of each processor. For instance, consider telecom mobile terminals. The batterypowered feature limits energy consumption. On the other side, real time is required, leading to latency-bounded applications. Between these two constraints, the system can be optimized for different objectives. We propose to analyze two cases. In the the first one, the system should optimize itself to minimize the energy consumption while ensuring the latency with a given energy budget. Examples of this are mobile systems under very-weak battery condition where the power consumption is the priority. The second scenario corresponds to the application latency minimization for real-time applications with given energy budget. The system should minimize the applicative latency to free PE time to process other tasks: the priority is the performance improvement. We present a technique for distributed dynamic frequency assignment on MP-SoC with fine-grain DVFS to solve these two scenarios. We present a new algorithm and we analyze it using a real context: a telecom latency-constrained application under limited energy conditions. When the constraints are externally modified our algorithm adapts the system to the new requirements.

B. Related Works

Setting parameters on local processors of MP-SoC is studied as an optimization problem. A large number of papers deal with static optimization and some of them also provide a dynamic method to select the best configuration found at design time. In [START_REF] Murali | Temperature control of high-performance multi-core platforms using convex optimization[END_REF], authors build configuration tables at design time by using convex optimization and dynamically choose the appropriate solution among the pre-calculated set. Some authors provide run-time optimization methods for parametric management. In [START_REF] Niyogi | Speed and voltage selection for GALS systems based on voltage/frequency islands[END_REF], a centralized method is used to set frequencies and voltages of GALS systems. Nevertheless, they do not scale with the number of processors, becoming inappropriate for distributed designs [START_REF] Martin | Overview of the MPSoC design challenge[END_REF]. Finally, in [START_REF] Puschini | Temperature-aware distributed run-time optimization on MP-SoC using game theory[END_REF] game theory has been used to dynamically optimize the temperature and the synchronization between tasks on a MP-SoC on a distributed way. Nevertheless, it does not explore constrained scenarios. To the best of our knowledge, no solution has been presented to dynamically adapt the frequencies in a distributed way on MP-SoC under latency and energy constraints.

II. SYSTEM-LEVEL MODEL

The dynamic optimization proposed is inspired by game theory, where a non-cooperative game is a scenario with several players interacting by actions and consequences [START_REF] Osborne | A Course in Game Theory[END_REF]. Basically, players individually choose an action within a defined set, resulting in consequences. Each player tries to maximize its outcome according to its preferences, leading to global optimization. If this sequence is repeated, under certain conditions, the game finds a solution formalized as Nash Equilibrium. These principles provide strong concepts to model the behavior of reactive systems where decisions are taken in a distributed and dynamic way, justifying the choice of the game theory for our approach.

We model the PEs as players and the latency and power consumption as a local objective function u i that depends on the global state of other PEs. Then, a distributed algorithm selects the best solution. The objective functions are built by using different terms: EC i models the energy contribution of each PE to the whole consumption, LC i describes the applicative latency contribution to the total latency and E pen and L pen are penalty functions modeling energy and latency constraints. We consider a MP-SoC composed of n PEs interconnected by an asynchronous Network-on-Chip (NoC). Each PE integrates a DVFS that regulates the local voltage and frequency couple among a finite number of solutions. We denote T i the clock period corresponding to PE-i and T i-= (T 1 , . . . , T i-1 , T i+1 , . . . , T n) the periods of all other PEs in the MP-SoC. We assume that an external mechanism has mapped an application on the MP-SoC, each PE handling a unique task. The task assigned to PE-i takes N i cycles of T i to be processed. We denote as L max the system latency constraint and we consider that each task is launched every T 0 seconds. In the next sections, energy and latency contributions and energy and latency constraints are modeled. Then, two objective functions are built according to the formulated scenarios, i.e. energy or latency minimization under conditions.

A. Energy Model

The energy of the whole PE-i (including processors, memories or other subsystems) during T 0 is given by the static and dynamic consumption. We consider the first term as constant, being E stat = T 0 P stat . The dynamic consumption is a function of PE-i activity and is modeled as follows. The task assigned to PE-i is processed in N i T i seconds. During this period, PE-i has a high activity and consumes E Hdyn,i . During the rest of the time until the task is launched again, the PE is in low-activity state, due to classical low-power techniques such as gated clocks. Thus, during (T 0 -N i T i) seconds, it consumes E Ldyn,i . The total energy consumption for PE-i during T 0 becomes E i = T 0 P stat +E Hdyn,i +E Ldyn,i . The dynamic power is P dyn = αV N 2 /T N , where α includes the circuit activity, V N is the nominal voltage supply and T N is the nominal clock period. Thus, the dynamic energy needed to feed the block during a nominal period is E N = P dyn T N = αV N 2 . Considering that α remains constant, for a different voltage supply

V we obtain α = E N /V N 2 = E/V 2 .

Thus, after applying local DVFS the energy becomes

E = E N (V /V N)
2 . Since the circuit frequency is proportional to the voltage supply, the dynamic energy consumption is E = E N (T N /T) 2 . Using these results in E i , consumption of PE-i becomes:

E i (T i) = T 0 P stat,i + N i E N,i T N,i 2 /T i 2 + + γ i (T 0 /T i -N i) E N,i T N,i 2 /T i 2 (1)
where E N,i is the reference energy consumption of PE-i during a nominal clock period T N,i and (1 -γ i) is the energy reduction in low-activity state. The consumption of each PE allows to deduce the contribution of PE-i to the total energy as:

EC i (T i , T i-) = ρ i E i (T i)/ k E k (T k) (2)
where ρ i = N i / k N k is the weight of PE-i in terms of number of clock cycles required over the total application requirements. Expression (2) has the form of figure 1(a).

B. Latency Model

We define L i the applicative latency added by PE-i. The latency contribution of PE-i is described by:

LC i (T i , T i-) = ρ i L i (T i)/ k L k (T k) (3)
where ρ i is the weight of PE-i in terms of number of clock cycles required over the total application requirements and

k L k (T k)
is the total latency of the application. Equation (3) has the form of figure 1(b).

C. Energy Constraint

When the system is running a given application, each PE consumes E i (equation (1)) to process the assigned task. In order to keep the whole system energy under a given constraint E max , we penalize the solutions that exceed the allowed consumption by introducing the next term in the objective function of each PE:

E pen,i = a(T me -T i) if k E k (T k) > E max 0 otherwise (4)
where k E k is the total energy given T i and T me is the smallest clock period for PE-i that satisfies the constraint. a is a constant defining how much the solutions are penalized. This penalty function discards solutions for T i that do not satisfy the energy constraint by increasing the result of the objective function in an amount equal to a(T me -T i). Equation (4) has the form of figure 1(c).

D. Latency Constraint

Tasks assigned to PEs introduce computational latencies. The whole latency should not exceed L max for real-time purpose. We consider the critical path of the applications, meaning that the total latency is the sum of all local latencies. In order to keep the whole latency under L max , we penalize the solutions that exceed this value by introducing the next term in the objective function:

L pen,i = 0 if k L k (T k) ≤ L max a(T i -T ml) otherwise (5)
where k L k is the total latency given T i , a is the same constant used in equation (4) and T ml is the biggest clock period for PE-i that satisfies the latency constraint. By increasing the objective function in an amount equal to a(T i -T ml), L pen,i discards solutions that do not satisfy the latency constraint. L pen,i has the form of figure 1(d).

E. Objective Function for Energy Minimization

The energy minimizing objective function under constraints is built by using equations (2), (4) and (5) as follows:

u e,i (T i , T i-) = -(E pen,i + EC i + L pen,i) (6)
The minus sign denotes that the optimization problem is defined as a maximization. Typically, -u e,i has the form of figure 1(e). When maximizing this objective function, the solutions are bounded by the energy and latency constraints (T ml and T me) and minimizes the energy consumption. If constraints overlap, i.e. T ml < T me , the solution maintains the energy constraint violating the maximal latency: since E pen +L pen = 0 when T ml < T i < T me the decision is driven by EC, minimizing the energy consumption and respecting the energy budget.

F. Objective Function for Latency Minimization

The latency minimizing objective function under constraints is built by using equations (3), (4) and (5) as follows:

u l,i (T i , T i-) = -(E pen,i + LC i + L pen,i) (7)
Figure 1(f) shows the form of -u l,i . Now, the solutions are bounded by the energy and latency constraints and minimize the latency. If constraints overlap (T ml < T me), the solution maintains the latency constraint violating the maximal energy: since E pen + L pen = 0 when T ml < T i < T me , the decision is driven by LC, minimizing the latency. Depending on the MP-SoC characteristics, applications and system objectives, u e,i or u l,i are chosen as the objective function u i of each PE. u e,i can be used for systems with hard energy requirements and real-time constraints which can be loosen. u l,i can be used for systems with real-time constraints. In these cases, an energy overflow should trigger a higher-level reconfiguration as shown in the test-case below.

III. DYNAMIC OPTIMIZATION

Each u i of the n functions, presented in the previous section, is maximized in a distributed way by Algorithm 1. It is dynamically executed in parallel in each PE to choose the local T i that maximizes u i constrained by decisions made by other PEs, T i-. A decision loop is then performed. The DVFS can set frequencies within a discrete number of clock periods with a granularity ∆T between T max and T min . We assume that the last local choice (or initial condition) T i is known.

Algorithm 1 : Local Decision Maker

Require u i , ∆T , Ensure T i loop get T i- convert u i (T i , T i-) → u * i (T i) maximize u * i (T i) end loop
The decision loop is composed of three operations. The first one obtains from other PEs their last decisions T i-. The second instruction converts u i (T i , T i-) into a scalar function u * i (T i) by fixing T i-as parameters and T i as a variable. Then, the last instruction maximizes the objective function. This is performed by Algorithm 2 that maximizes u * i by affecting the former T i with a ∆T step, obtaining nT i . Algorithm 2 is composed of few simple operations (additions, multiplications and comparisons), maintaining low complexity. Since u i is continuous and concave on the space T min to T max with steps ∆T and this space is a nonempty compact convex subset of an Euclidean space; the existence of a Nash Equilibrium solution is guaranteed [START_REF] Osborne | A Course in Game Theory[END_REF].

Algorithm 2 : u * i Maximization Require T i , ∆T, u * i , Ensure nT i if T i = Tmax then if u * i (T i) < u * i (T i -∆T) then nT i ⇐ T i -∆T else nT i ⇐ T i else if T i = T min then if u * i (T i) < u * i (T i + ∆T) then nT i ⇐ T i + ∆T else nT i ⇐ T i else if u * i (T i) < u * i (T i -∆T) then nT i ⇐ T i -∆T else if u * i (T i) < u * i (T i + ∆T) then nT i ⇐ T i + ∆T else nT i ⇐ T i end if

IV. RESULTS

A. Test-Case

The test-case under consideration is a telecom System-on-Chip integrated in 130nm CMOS and interconnected by an asynchronous NoC [START_REF] Lattard | A telecom baseband circuit based on an asynchronous network-on-chip[END_REF]. In this paper we consider the TX subsystem composed of 5 heterogeneous PEs. We have applied distributed DVFS [START_REF] Beigné | A fully integrated power supply unit for fine grain DVFS and leakage control validated on low-voltage SRAMs[END_REF] able to set the frequency among 32 values between 50 and 300MHz. The application under consideration is an advanced telecommunication protocol, the MC-CDMA Matrice [9]: TX QPSK, 1-user, rate 1/2 and spreading 8, offering a bandwidth of approximately 890Kbits/s. It is composed of five tasks (figure 2): encoder, interleaving, mapping, FHT and OFDM modulator. It is mapped on the MP-SoC by assigning one task per PE. Table I shows the number of calculation cycles needed to process the tasks (N i) and the equivalent latency per PE measured in number of clock periods (L i /T i). The maximum allowed latency is 650µsec for a whole frame. The consumption of PEs is characterized in therms of energy (E N,i) per clock cycle at 200Mhz in a post back-end netlist (table I). It has been observed reductions of 80% in idle states when using gated clock techniques (γ i = 0.2 in equation 1). Behavioral simulations have been made with Matlab using the two objective functions of sections II-E and II-F. The constraints were externally modified during the simulation time. The maximal energy E max is 2.8mJ between instants t 0 and t 1 . Simulating external factors, e.g. low battery in mobile systems, the available energy is decreased between t 1 and t 2 , to reach 2.4mJ at t 2 . Then, it is remained constant until t 4 , when it is augmented to 2.8mJ. On the other side, the latency constraint L max is 650µsec. Nevertheless, since it has been observed that a solution is unattainable at very low consumption (less than 2.65mJ), it has been relaxed to 850µsec between t 3 and t 5 . Finally, after t 6 the constraints are E max = 2.8mJ and L max = 650µsec as in t 0 . The next sections explain the results when optimizing the energy consumption or the application latency under these constraints.

B. Latency Minimization Results

Figure 3 shows temporal results for each configuration. Figure 3(a) shows the latency and energy consumption for the system minimizing the latency. The x-axis represents the time in number of iteration cycles. After a transient time after t 0 , the system finds a solution fulfilling both constraints. After t 1 and once it finds that it can no more guarantee both constraints, it adjusts the frequencies to fulfill at least the maximal latency.

Once the latency constraint is relaxed in t 3 , the system adapts the frequencies to again ensure both constraints. After t 4 , the energy budget has been augmented, leaving the system to reconfigure it self to reduce the latency. Finally, when both constraints were reinitialized, a new solution is found offering similar performances than before t 1 .

C. Energy Minimization Results

Figure 3(b) shows the latency and energy for the optimization of the energy minimization. Note that now, after t 1 when there is no solution fulfilling both constraints, the system only violates the latency, always guarantying the maximal energy consumption. Moreover, between t 3 and t 5 , the system takes advantage of the increased allowed latency to reduce the energy consumption. Finally, after t 5 the system finds a new solution offering similar performances than before t 1 and satisfying both constraints.

D. Optimization Gain

For both scenarios, the optimization gain is measured when the constraints are loosen to allow the improvements, i.e. between t 3 and t 5 . Between t 3 and t 4 it obtains 15.7% of time gain over the constraint when minimizing the latency, or 27.6% of energy reduction over the given budget when minimizing the energy. Between t 4 and t 5 , it frees 20% of PE time or it reduces 38% the total energy budget.

V. CONCLUSION

In this paper we have presented an adaptive technique to locally adjust the frequency of processing elements on MP-SoC. The proposed method, based on Game Theory, optimizes the system while fulfilling dynamic constraints. A telecom testcase has been used to demonstrate the effectiveness of our approach. For the evaluated case, the proposed technique has obtained up to 20% of latency gain and 38% of energy gain.

Fig. 1 .

 1 Fig. 1. Objective functions and their components

Fig. 2 .

 2 Fig. 2. MC-CDMA TX application

Fig. 3 .

 3 Fig. 3. Temporal simulation results

TABLE I

 I

		0.9										
													Instantaneous
		0.85											Value
													Constraint
	Latency [ms]	0.7 0.75 0.8							Gain of 15.7%		Gain of 20%	
		0.65										
		0.6										
		0.55	10 20 30 40		60 70 80 90		110 120 130 140		160 170 180 190		210 220 230 240		260 270 280 290 300
		0.4										
		0.35										
	Energy [mJ]	0.25 0.3										
		0.2										
		0.15 t 0	10 20 30 40	t 1	60 70 80 90	t 2	110 120 130 140	t 3	160 170 180 190	t 4	210 220 230 240	t 5	260 270 280 290 300 Time [iterations]
		(a) Latency and energy consumption when minimizing the latency
		0.9										
													Instantaneous
		0.85											Value
													Constraint
	Latency [ms]	0.7 0.75 0.8										
		0.65										
		0.6										
		0.55	10 20 30 40		60 70 80 90		110 120 130 140		160 170 180 190		210 220 230 240		260 270 280 290 300
		0.4										
		0.35										
	Energy [mJ]	0.25 0.3										
											Gain of 38%	
		0.2							Gain of 27.6%		
		0.15 t 0	10 20 30 40	t 1	60 70 80 90	t 2	110 120 130 140	t 3	160 170 180 190	t 4	210 220 230 240	t 5	260 270 280 290 300 Time [Iterations]
			(b) Latency and energy consumption when minimizing the energy
													Encod	Inter	Map	FHT	OFDM
													Ni [cycles]	576	560	560	24496	115248
													Li/Ti [cycles]	132	128	1	24496	115248
													EN,i[nJ/cycle]*	77.62	183.18	183.18	251.50	1516.50
													* Values measured on a 130nm demonstrator [8].