
Dynamic and Distributed Frequency Assignment for

Energy and Latency Constrained MP-SoC

Diego Puschini∗†, Fabien Clermidy∗, Pascal Benoit†, Gilles Sassatelli† and Lionel Torres†

∗CEA, LETI, MINATEC, F38054 Grenoble, France
†LIRMM, CNRS and University of Montpellier 2, Montpellier, France

Abstract—In this paper we present an adaptive technique to
locally adjust the frequency of processing elements on MP-SoC.
The proposed method, based on Game Theory, optimizes the
system while fulfilling dynamic constraints. A telecom test-case
has been used to demonstrate the effectiveness of our technique.
For the evaluated scenario, the proposed technique has obtained
up to 20% of latency gain and 38% of energy gain.

I. INTRODUCTION

Energy saving is one of the biggest challenges designers

have to face for Multiprocessor System-on-Chip (MP-SoC)

integrating several processing elements (PE). With future

systems supporting a large variety of real-time applications,

it is natural to think that power management has to be self

adaptive. The objective is to develop a system able to adapt

itself to new applicative requirements as well as changes in

the environment. As an example, the available energy for a

telecom application is strongly reduced under weak battery

conditions on mobile terminals while real-time constraints

depend on the telecom configuration. In this paper, we propose

an adaptive and distributed technique to select the frequency

of local processors or subsystems while fulfilling energy

consumption and applicative latency constraints.

A. Motivation

Scalability and dynamic reconfiguration for adaptability of

distributed systems are widely discussed in the bibliography of

MP-SoC design challenges [1]. Fine-grain Dynamic Voltage

and Frequency Scaling (DVFS) has been explored in [2],

and [3] demonstrates their efficiency. The problem is how

to optimize the system under given constraints, i.e. defining

a method for choosing the frequencies of each processor.

For instance, consider telecom mobile terminals. The battery-

powered feature limits energy consumption. On the other side,

real time is required, leading to latency-bounded applications.

Between these two constraints, the system can be optimized for

different objectives. We propose to analyze two cases. In the

the first one, the system should optimize itself to minimize the

energy consumption while ensuring the latency with a given

energy budget. Examples of this are mobile systems under

very-weak battery condition where the power consumption is

the priority. The second scenario corresponds to the application

latency minimization for real-time applications with given

energy budget. The system should minimize the applicative

latency to free PE time to process other tasks: the priority

is the performance improvement. We present a technique for

distributed dynamic frequency assignment on MP-SoC with

fine-grain DVFS to solve these two scenarios. We present

a new algorithm and we analyze it using a real context: a

telecom latency-constrained application under limited energy

conditions. When the constraints are externally modified our

algorithm adapts the system to the new requirements.

B. Related Works

Setting parameters on local processors of MP-SoC is studied

as an optimization problem. A large number of papers deal

with static optimization and some of them also provide a

dynamic method to select the best configuration found at

design time. In [4], authors build configuration tables at design

time by using convex optimization and dynamically choose

the appropriate solution among the pre-calculated set. Some

authors provide run-time optimization methods for parametric

management. In [5], a centralized method is used to set

frequencies and voltages of GALS systems. Nevertheless,

they do not scale with the number of processors, becoming

inappropriate for distributed designs [1]. Finally, in [6] game

theory has been used to dynamically optimize the temperature

and the synchronization between tasks on a MP-SoC on a

distributed way. Nevertheless, it does not explore constrained

scenarios. To the best of our knowledge, no solution has been

presented to dynamically adapt the frequencies in a distributed

way on MP-SoC under latency and energy constraints.

II. SYSTEM-LEVEL MODEL

The dynamic optimization proposed is inspired by game

theory, where a non-cooperative game is a scenario with

several players interacting by actions and consequences [7].

Basically, players individually choose an action within a

defined set, resulting in consequences. Each player tries to

maximize its outcome according to its preferences, leading

to global optimization. If this sequence is repeated, under

certain conditions, the game finds a solution formalized as

Nash Equilibrium. These principles provide strong concepts

to model the behavior of reactive systems where decisions are

taken in a distributed and dynamic way, justifying the choice

of the game theory for our approach.

We model the PEs as players and the latency and power

consumption as a local objective function ui that depends on

the global state of other PEs. Then, a distributed algorithm

selects the best solution. The objective functions are built by

using different terms: ECi models the energy contribution

 

 



of each PE to the whole consumption, LCi describes the

applicative latency contribution to the total latency and Epen

and Lpen are penalty functions modeling energy and latency

constraints. We consider a MP-SoC composed of n PEs

interconnected by an asynchronous Network-on-Chip (NoC).

Each PE integrates a DVFS that regulates the local voltage

and frequency couple among a finite number of solutions.

We denote Ti the clock period corresponding to PE-i and

Ti− = (T1, . . . , Ti−1, Ti+1, . . . , Tn) the periods of all other

PEs in the MP-SoC. We assume that an external mechanism

has mapped an application on the MP-SoC, each PE handling a

unique task. The task assigned to PE-i takes Ni cycles of Ti to

be processed. We denote as Lmax the system latency constraint

and we consider that each task is launched every T0 seconds.

In the next sections, energy and latency contributions and en-

ergy and latency constraints are modeled. Then, two objective

functions are built according to the formulated scenarios, i.e.

energy or latency minimization under conditions.

A. Energy Model

The energy of the whole PE-i (including processors, mem-

ories or other subsystems) during T0 is given by the static and

dynamic consumption. We consider the first term as constant,

being Estat = T0 Pstat. The dynamic consumption is a

function of PE-i activity and is modeled as follows. The task

assigned to PE-i is processed in NiTi seconds. During this

period, PE-i has a high activity and consumes EHdyn,i. During

the rest of the time until the task is launched again, the PE is in

low-activity state, due to classical low-power techniques such

as gated clocks. Thus, during (T0−NiTi) seconds, it consumes

ELdyn,i. The total energy consumption for PE-i during T0 be-

comes Ei = T0 Pstat+EHdyn,i+ELdyn,i. The dynamic power

is Pdyn = αVN
2/TN , where α includes the circuit activity, VN

is the nominal voltage supply and TN is the nominal clock

period. Thus, the dynamic energy needed to feed the block

during a nominal period is EN = PdynTN = αVN
2. Consid-

ering that α remains constant, for a different voltage supply

V we obtain α = EN/VN
2 = E/V 2. Thus, after applying

local DVFS the energy becomes E = EN (V/VN )
2
. Since

the circuit frequency is proportional to the voltage supply, the

dynamic energy consumption is E = EN (TN/T )
2
. Using

these results in Ei, consumption of PE-i becomes:

Ei(Ti) = T0Pstat,i + NiEN,iTN,i
2/Ti

2 +

+ γi (T0/Ti − Ni) EN,iTN,i
2/Ti

2 (1)

where EN,i is the reference energy consumption of PE-i
during a nominal clock period TN,i and (1−γi) is the energy

reduction in low-activity state. The consumption of each PE

allows to deduce the contribution of PE-i to the total energy

as:

ECi(Ti, Ti−) = ρiEi(Ti)/
∑

k

Ek(Tk) (2)

where ρi = Ni/
∑

k Nk is the weight of PE-i in terms of

number of clock cycles required over the total application

requirements. Expression (2) has the form of figure 1(a).

B. Latency Model

We define Li the applicative latency added by PE-i. The

latency contribution of PE-i is described by:

LCi(Ti, Ti−) = ρiLi(Ti)/
∑

k

Lk(Tk) (3)

where ρi is the weight of PE-i in terms of number of clock

cycles required over the total application requirements and
∑

k Lk(Tk) is the total latency of the application. Equation

(3) has the form of figure 1(b).

C. Energy Constraint

When the system is running a given application, each PE

consumes Ei (equation (1)) to process the assigned task. In

order to keep the whole system energy under a given constraint

Emax, we penalize the solutions that exceed the allowed

consumption by introducing the next term in the objective

function of each PE:

Epen,i =

{

a(Tme − Ti) if
∑

k Ek(Tk) > Emax

0 otherwise
(4)

where
∑

k Ek is the total energy given Ti and Tme is the

smallest clock period for PE-i that satisfies the constraint. a is

a constant defining how much the solutions are penalized. This

penalty function discards solutions for Ti that do not satisfy

the energy constraint by increasing the result of the objective

function in an amount equal to a(Tme −Ti). Equation (4) has

the form of figure 1(c).

D. Latency Constraint

Tasks assigned to PEs introduce computational latencies.

The whole latency should not exceed Lmax for real-time

purpose. We consider the critical path of the applications,

meaning that the total latency is the sum of all local latencies.

In order to keep the whole latency under Lmax, we penalize

the solutions that exceed this value by introducing the next

term in the objective function:

Lpen,i =

{

0 if
∑

k Lk(Tk) ≤ Lmax

a(Ti − Tml) otherwise
(5)

where
∑

k Lk is the total latency given Ti, a is the same con-

stant used in equation (4) and Tml is the biggest clock period

for PE-i that satisfies the latency constraint. By increasing the

objective function in an amount equal to a(Ti − Tml), Lpen,i

discards solutions that do not satisfy the latency constraint.

Lpen,i has the form of figure 1(d).

Fig. 1. Objective functions and their components



E. Objective Function for Energy Minimization

The energy minimizing objective function under constraints

is built by using equations (2), (4) and (5) as follows:

ue,i(Ti, Ti−) = −(Epen,i + ECi + Lpen,i) (6)

The minus sign denotes that the optimization problem is

defined as a maximization. Typically, −ue,i has the form

of figure 1(e). When maximizing this objective function, the

solutions are bounded by the energy and latency constraints

(Tml and Tme) and minimizes the energy consumption. If

constraints overlap, i.e. Tml < Tme, the solution maintains

the energy constraint violating the maximal latency: since

Epen+Lpen = 0 when Tml < Ti < Tme the decision is driven

by EC, minimizing the energy consumption and respecting the

energy budget.

F. Objective Function for Latency Minimization

The latency minimizing objective function under constraints

is built by using equations (3), (4) and (5) as follows:

ul,i(Ti, Ti−) = −(Epen,i + LCi + Lpen,i) (7)

Figure 1(f) shows the form of −ul,i. Now, the solutions are

bounded by the energy and latency constraints and minimize

the latency. If constraints overlap (Tml < Tme), the solution

maintains the latency constraint violating the maximal energy:

since Epen + Lpen = 0 when Tml < Ti < Tme, the decision

is driven by LC, minimizing the latency.

Depending on the MP-SoC characteristics, applications and

system objectives, ue,i or ul,i are chosen as the objective

function ui of each PE. ue,i can be used for systems with hard

energy requirements and real-time constraints which can be

loosen. ul,i can be used for systems with real-time constraints.

In these cases, an energy overflow should trigger a higher-level

reconfiguration as shown in the test-case below.

III. DYNAMIC OPTIMIZATION

Each ui of the n functions, presented in the previous section,

is maximized in a distributed way by Algorithm 1. It is

dynamically executed in parallel in each PE to choose the

local Ti that maximizes ui constrained by decisions made by

other PEs, Ti−. A decision loop is then performed. The DVFS

can set frequencies within a discrete number of clock periods

with a granularity ∆T between Tmax and Tmin. We assume

that the last local choice (or initial condition) Ti is known.

Algorithm 1 : Local Decision Maker

Require ui, ∆T , Ensure Ti

loop

get Ti−

convert ui(Ti, Ti−) → u∗

i
(Ti)

maximize u∗

i
(Ti)

end loop

The decision loop is composed of three operations. The

first one obtains from other PEs their last decisions Ti−. The

second instruction converts ui(Ti, Ti−) into a scalar function

u∗

i (Ti) by fixing Ti− as parameters and Ti as a variable. Then,

the last instruction maximizes the objective function. This is

performed by Algorithm 2 that maximizes u∗

i by affecting

the former Ti with a ∆T step, obtaining nTi. Algorithm 2 is

composed of few simple operations (additions, multiplications

and comparisons), maintaining low complexity. Since ui is

continuous and concave on the space Tmin to Tmax with steps

∆T and this space is a nonempty compact convex subset of an

Euclidean space; the existence of a Nash Equilibrium solution

is guaranteed [7].

Algorithm 2 : u∗

i Maximization

Require Ti, ∆T, u∗

i
, Ensure nTi

if Ti = Tmax then

if u∗

i
(Ti) < u∗

i
(Ti − ∆T ) then nTi ⇐ Ti − ∆T else nTi ⇐ Ti

else if Ti = Tmin then

if u∗

i
(Ti) < u∗

i
(Ti + ∆T ) then nTi ⇐ Ti + ∆T else nTi ⇐ Ti

else

if u∗

i
(Ti) < u∗

i
(Ti − ∆T ) then nTi ⇐ Ti − ∆T

else if u∗

i
(Ti) < u∗

i
(Ti + ∆T ) then nTi ⇐ Ti + ∆T

else nTi ⇐ Ti

end if

IV. RESULTS

A. Test-Case

The test-case under consideration is a telecom System-on-

Chip integrated in 130nm CMOS and interconnected by an

asynchronous NoC [8]. In this paper we consider the TX

subsystem composed of 5 heterogeneous PEs. We have applied

distributed DVFS [3] able to set the frequency among 32

values between 50 and 300MHz. The application under consid-

eration is an advanced telecommunication protocol, the MC-

CDMA Matrice [9]: TX QPSK, 1-user, rate 1/2 and spread-

ing 8, offering a bandwidth of approximately 890Kbits/s. It

is composed of five tasks (figure 2): encoder, interleaving,

mapping, FHT and OFDM modulator. It is mapped on the MP-

SoC by assigning one task per PE. Table I shows the number

of calculation cycles needed to process the tasks (Ni) and the

equivalent latency per PE measured in number of clock periods

(Li/Ti). The maximum allowed latency is 650µsec for a whole

frame. The consumption of PEs is characterized in therms of

energy (EN,i) per clock cycle at 200Mhz in a post back-end

netlist (table I). It has been observed reductions of 80% in

idle states when using gated clock techniques (γi = 0.2 in

equation 1).

Fig. 2. MC-CDMA TX application

TABLE I

Encod Inter Map FHT OFDM

Ni [cycles] 576 560 560 24496 115248

Li/Ti [cycles] 132 128 1 24496 115248

EN,i[nJ/cycle]* 77.62 183.18 183.18 251.50 1516.50
* Values measured on a 130nm demonstrator [8].



10 20 30 40 60 70 80 90 110 120 130 140 160 170 180 190 210 220 230 240 260 270 280 290 300
0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

L
a
te

n
c
y
 [
m

s
]

 

 

10 20 30 40 60 70 80 90 110 120 130 140 160 170 180 190 210 220 230 240 260 270 280 290 300
0.15

0.2

0.25

0.3

0.35

0.4

E
n
e
rg

y
 [
m

J
]

Time [iterations]

Instantaneous

Value

Constraint

t
0

t
1

t
2

t
3

t
4

t
5

(a) Latency and energy consumption when minimizing the latency

Gain of
15.7% Gain of

20% 

10 20 30 40 60 70 80 90 110 120 130 140 160 170 180 190 210 220 230 240 260 270 280 290 300
0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

L
a
te

n
c
y
 [
m

s
]

 

 

10 20 30 40 60 70 80 90 110 120 130 140 160 170 180 190 210 220 230 240 260 270 280 290 300
0.15

0.2

0.25

0.3

0.35

0.4

E
n
e
rg

y
 [
m

J
]

Time [Iterations]

Instantaneous

Value

Constraint

t
0

t
1

t
2

t
4

t
5

t
3

(b) Latency and energy consumption when minimizing the energy

Gain of 27.6%

Gain of 38%

Fig. 3. Temporal simulation results

Behavioral simulations have been made with Matlab using

the two objective functions of sections II-E and II-F. The

constraints were externally modified during the simulation

time. The maximal energy Emax is 2.8mJ between instants

t0 and t1. Simulating external factors, e.g. low battery in

mobile systems, the available energy is decreased between t1
and t2, to reach 2.4mJ at t2. Then, it is remained constant

until t4, when it is augmented to 2.8mJ. On the other side,

the latency constraint Lmax is 650µsec. Nevertheless, since

it has been observed that a solution is unattainable at very

low consumption (less than 2.65mJ), it has been relaxed to

850µsec between t3 and t5. Finally, after t6 the constraints

are Emax = 2.8mJ and Lmax = 650µsec as in t0. The

next sections explain the results when optimizing the energy

consumption or the application latency under these constraints.

B. Latency Minimization Results

Figure 3 shows temporal results for each configuration.

Figure 3(a) shows the latency and energy consumption for the

system minimizing the latency. The x-axis represents the time

in number of iteration cycles. After a transient time after t0,

the system finds a solution fulfilling both constraints. After t1
and once it finds that it can no more guarantee both constraints,

it adjusts the frequencies to fulfill at least the maximal latency.

Once the latency constraint is relaxed in t3, the system adapts

the frequencies to again ensure both constraints. After t4, the

energy budget has been augmented, leaving the system to

reconfigure it self to reduce the latency. Finally, when both

constraints were reinitialized, a new solution is found offering

similar performances than before t1.

C. Energy Minimization Results

Figure 3(b) shows the latency and energy for the optimiza-

tion of the energy minimization. Note that now, after t1 when

there is no solution fulfilling both constraints, the system

only violates the latency, always guarantying the maximal

energy consumption. Moreover, between t3 and t5, the system

takes advantage of the increased allowed latency to reduce

the energy consumption. Finally, after t5 the system finds a

new solution offering similar performances than before t1 and

satisfying both constraints.

D. Optimization Gain

For both scenarios, the optimization gain is measured when

the constraints are loosen to allow the improvements, i.e.

between t3 and t5. Between t3 and t4 it obtains 15.7% of

time gain over the constraint when minimizing the latency,

or 27.6% of energy reduction over the given budget when

minimizing the energy. Between t4 and t5, it frees 20% of PE

time or it reduces 38% the total energy budget.

V. CONCLUSION

In this paper we have presented an adaptive technique to

locally adjust the frequency of processing elements on MP-

SoC. The proposed method, based on Game Theory, optimizes

the system while fulfilling dynamic constraints. A telecom test-

case has been used to demonstrate the effectiveness of our

approach. For the evaluated case, the proposed technique has

obtained up to 20% of latency gain and 38% of energy gain.

REFERENCES

[1] G. Martin, “Overview of the MPSoC design challenge,” in DAC ’06. San
Francisco, CA, USA: ACM, 2006, pp. 274–279.

[2] J. Donald and M. Martonosi, “Techniques for multicore thermal manage-
ment: Classification and new exploration,” in ISCA ’06, 2006, pp. 78–88.

[3] E. Beigné, F. Clermidy, S. Miermont, A. Valentian, P. Vivet, S. Barasinski,
F. Blisson, N. Kohli, and S. Kumar, “A fully integrated power supply
unit for fine grain DVFS and leakage control validated on low-voltage
SRAMs,” in ESSCIRC’08, Edinburg, UK, Sept. 2008.

[4] S. Murali, A. Mutapcic, D. Atienza, R. Gupta, S. Boyd, L. Benini,
and G. D. Micheli, “Temperature control of high-performance multi-core
platforms using convex optimization,” in DATE’08. Munich, Germany:
IEEE Computer Society, 2008, pp. 110–115.

[5] K. Niyogi and D. Marculescu, “Speed and voltage selection for GALS
systems based on voltage/frequency islands,” in ASP-DAC ’05. Shanghai,
China: ACM, 2005, pp. 292–297.

[6] D. Puschini, F. Clermidy, P. Benoit, G. Sassatelli, and L. Torres,
“Temperature-aware distributed run-time optimization on MP-SoC using
game theory,” in ISVLSI ’08. Montpellier, France: IEEE Computer
Society, 2008, pp. 375–380.

[7] M. J. Osborne and A. Rubinstein, A Course in Game Theory. MIT Press,
1994.

[8] D. Lattard, E. Beigne, C. Bernard, C. Bour, F. Clermidy, Y. Durand,
J. Durupt, D. Varreau, P. Vivet, P. Penard, A. Bouttier, and F. Berens, “A
telecom baseband circuit based on an asynchronous network-on-chip,”
IEEE ISSCC 2007. Digest of Technical Papers., pp. 258–601, Feb. 2007.

[9] Information Society Technology - MATRICE web site. http://www.ist-
matrice.org.


	Main
	DATE09
	Front Matter
	Table of Contents
	Author Index




