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Abstract— The purpose of this paper is to present Thetis:
a real-time multi-vehicles hybrid simulator for heterogeneous
vehicles. This simulator allows Hardware In Loop (HIL) sim-
ulations including virtual sensors which allow to provide a
representation of a virtual world, and including the support
of communication devices. The architecture of this simulator is
conceived so that it ensures a temporal decoupling between the
virtual environment, the vehicles, sensors and communication
simulators and, of course, the actual embedded controller which
warrants us the temporal consistency of the results.

Our contribution concerns the proposed simulator architecture.
This architecture gathers all the important features required
to simulate a flotilla (including communications skills).

This paper presents the architecture and functionalities of
Thetis and present some simulation results with the support
of communications.

I. INTRODUCTION

The development of an AUV is not an easy task. Indeed,
beyond the challenges of the mechanics and electronics,
an intelligent software architecture is also required to play
the fundamental role of controlling the machine in order to
fulfil its mission. Of course one of the strong constraints is
the ability of this architecture to work in real time and to
react correctly to the different events occurring during the
mission. The computing power and the miniaturization of
the computers allow to imagine sophisticated architectures
to assume scenarii increasingly more complex. In parallel
the number and the complexity of tests necessary to validate
this kind of architecture is growing up. Hence, simulation
tools play an important role: they help us to test and validate
control laws and software architecture, and to detect pre-
liminary inconsistencies within the scenarii. Moreover, these
technologies reduce the required human resources, decrease
the number of necessary real experiments, and the time spent.
There are different types of simulators, each of them having
its own limits and they can be used at the different steps
of the development. So first we’ll present the different
architectures of the existing simulators and their applications.
Then we’ll expose the structure of our simulator specifying
the models we consider. For details on previous development,
please refer to [1] where we focus on the connectability
aspects of Thetis to our real robots, and to [2] in which we
demonstrate the simulation capabilities of communications
between 2 AUVs. Finally we will compare sea-trials results
with those obtained with Thetis.
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Fig. 1. Simplified architecture of Thetis: there is a logical sequence between
3 simulators even if there are independent processes on different computers.
The cycle duration of this sequence must be largely lower than the period
of the controller. The temporal decoupling is only effective (and that’s
enough) between the simulator and the controllers. The link between the
communications simulator and the environment simulator is event-driven
(when a communication between vehicles occurs).

II. THETIS: HYBRID SIMULATOR

Thetis is a new real-time hybrid simulator allowing the
consideration of heterogeneous multi-vehicles scenarii, in-
cluding communication restrictions. A quick overview on the
overall architecture of the simulator is presented on figure 1.

A. Critical Concepts

This simulator is composed of a set of mechanisms which
respects several properties. One of the most important is the
capability of the simulator to ensure a temporal decoupling
between the control loop and the simulation loop. This war-
rants the coherence between simulation results and expected
real behavior. For example, if for any reason, the onboard
computer is unable to provide the actuator with commands
at an appropriate time (unexpected delay), then the simulator
has to exhibit the natural consequence of this delay on
the vehicle behavior (open loop). Indeed, in Thetis, there
is no logical synchronization between the simulation loop
and the controller computation onboard the robots. Another
important concept is the upgradeability of the simulator. We
are able to add some new components (sensors, vehicles...)
in a very easy way. Indeed, the modularity of this simulator
favors the interventions of different specialists. Thus, a sonar
specialist will be able to modify the sonar model, without
considering the global simulator. Finally, a very interesting
aspect of this architecture is its portability. Indeed it is able
to work with different robots and thus be connected with



different control software architectures. We only need to
adapt the interface between the 2 systems (simulator and
controller), in order to make them work together. Moreover,
the distributed aspect of Thetis affords the faculty of the
simulator to be divided and executed on different comput-
ers, linked on a dedicated local area network via UDP/IP
protocol. This avoids overloading computers and affecting
the real time capability of the systems.

B. Implementation and Technical Considerations

All the concepts exposed in the previous section are
supported by using 3 mechanisms and the architecture is
based on 4 simulators. First an XML-based specifications
exchange (XML for eXtensible Markup Language) allows
to structure the parameters of the different models (modem,
radio, fins, motor ), and configuration files, while promoting
the modularity and the portability. Indeed modularity is
obtained using the XML format, which allows to specify the
components parameters (response-time, accuracy, rate), and
to modify them in a very easy way. Now, the replacement of
a sensor by another is done by calling a XML file in place of
the other. All the system components description follows the
same idea (actuators, sensors, body dynamics...). Moreover,
many components could use the same formalism to describe
their intrinsic parameters without using all of them depending
of the model used. The validation and extensible properties
of the XML language make it an ideal base to enrich the
model parameters files. Thus the robots components used in
this simulator are described in XML formalism.

Then portability and temporal decoupling are favored by
using sockets and local shared memories widely. Thus it is
possible to run several processes on different computers, each
of them interacting with others using these mechanisms.

In order to ensure real-time performances as well as effective
temporal decoupling, the overall simulation system is in
fact an application divided into 4 simulators. The first one
is a vehicle simulator which allows the simulation of the
robots dynamics. The second one is a sensors simulator
allowing the simulation of the various sensors of the robots.
The third one is a communications simulator in charge of
mimicking the behavior of communications device (signal
processing for an acoustic modem, for example). Lastly the
fourth one is a stationary environment simulator. It allows
the simulation of exteroceptive sensors, it is in charge of
computing the possible collisions and of computing the
different acoustic signals propagation, the latency and dis-
tortions of the communication signals. All these simulators
are interconnected on a dedicated UDP/IP network. This
avoids overloading the network in order to guarantee real-
time performances and to avoid packets losses (potentially
possible with UDP/IP network). The connections between
these blocks are detailed and explained on figure 1. Only
the sensors, the communications and vehicles simulators are
connected to the real robot, the environment simulator being
connected only to the 3 others. All these simulators work
under Linux RTAI Information about network configuration
is described in a shared XML file. All the XML files

describing the components of the system are loaded at the
initialization and thus allow to instantiate the different objects
of the simulator.

Finally we have created a set of libraries containing a set
of classes enabling us to build the various objects of the
simulation system. All these classes are documented with
Doxygen tool [3].

C. Components of the simulator

Each of the 4 simulators composing the Thetis system,
is itself composed of several independent processes (12
in total). The structures of these 4 simulators are quite
similar. Indeed, each of them is composed of one or more
independent process(es) (called Dispatcher) in charge of
IPC (Inter Process Communication), decoding and writing
the data exchanged by the simulators, to a local shared
memory initially created by the Dispatcher processes. For
each simulator, there is one main process which is in charge
of the models evolution. This structure, preferentially exe-
cuted on a dual (or quad) core processor, prevents the main
processor from being disturbed during the inter-simulators
communications. We will not detail the operation for each
of these components since it has been described in [2].

1) Vehicles Simulator: The vehicles simulator is in charge

of computing the robots dynamic evolution. We present this
simulator structure on figure 2. The robots send actuators
commands calculated by the onboard computer to the simu-
lator through UDP socket. The Dynamic Models represented
on Figure 2 compute all the forces and torques applied to the
robots in order to determine the vehicles accelerations and,
after integration steps, vehicles attitudes and velocities are
computed. The computed data are sent to the environment
simulator in order to verify the absence of collisions and
if necessary to correct positions. Afterwards, the computed
data are sent to the sensors simulator.
Since we only own AUVs in our team, we have currently
implemented a full hydrodynamic model for torpedo-shaped
robots. The modeling of the AUV, is made up of the
hydrodynamic, hydrostatic and dynamic phenomena of the
robot on the one hand, and of the actuators model on the
other hand.

2) Sensors Simulator: The sensors simulator is in charge
of providing the the real robot (onboard computer) with
virtual data from the simulation. Presently the models of
proprioceptive and simple exteroceptive (Temperature, Con-
ductivity) sensors are implemented. Complex exteroceptive
sensors (sonar and camera) will be the next steps of our
work. The structure of this simulator is presented on Figure
2. The DispatcherFromENV is in charge of listening to
messages from the environment simulator (parts of maps
determined according to the position and the range of the
robot’s sensors). The outputs of the Sensors Models are
computed according to each sensor model (including noise),
to the data from the vehicles simulator (systems state), and
at last to the data from the environment simulation. Once
these outputs are computed, they are specifically sent to the
concerned robots with the same refresh rate as the real sensor.
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Fig. 2.

The proprioceptive sensors are used to acquire an estimation
of the state variables of the robot, and its derivative. These
sensors are modeled here by using directly the variables
produced by the vehicles simulator. Afterwards the sensor
simulator provides the samples at the same frequency as
the real sensor, taking care to limit its range and adjust its
resolution. It is also possible to add noise so as to obtain a
more realistic simulation.

3) Environment Simulator: The environment simulator

(figure 2) is in charge of providing the stored geophysical
maps around a given 3D geographical point (Temperature,
Salinity, Local current, Plankton density), computing signal
propagation (when communications between vehicles occur),
signal distortion and latency, and detecting collisions. At
each cycle of the vehicles simulator, the environment simu-
lator is called and sends back the value of the local current
and the occurrence of a collision. It has to be noted that
the computed communication signals are only sent to the
communications simulator when (considering latency and
bandwidth) and if necessary (if the vehicles are not within
range of communications no messages will be delivered).
Moreover the rate of communication may vary according to
the quality of the acoustical channel. When a communication
occurs in this area, other communications using the same
frequency potentially damage the communication channel,
and the messages distribution is disturbed.
The environment is modeled by using different elements:
the topography, the temperature and salinity distribution and
the environmental disturbances (currents). Presently, only the
topography, the temperature, salinity and currents distribution
are implemented. This model considers these phenomena as
stationary.

4) Communications Simulator: The mechanism of the
communication simulator (figure 2) takes into account the
delay, the rate and the losses caused by the type of commu-
nication device in use, and the propagation medium. It has to
be noted that coordinated control of AUVs flotilla is intrinsi-
cally dependent on the communications performances, which
cannot be guaranteed. Thus a simulator able to perform multi

Detailed view of Thetis. Dashed lines stand for the UDP/IP inter-simulators communications.

Fig. 3.

Taipan 300 by the Salagou Lake in France

vehicles simulation has to consider these aspects explicitly.
The communications simulator is in charge of simulating the
signal processing done by the communication devices. When
a vehicle has to emit a message (radio or acoustic waves),
it sends a request to its concerned communication chosen
device (radio, wifi, acsoutic modem). In the simulation case,
these data are not sent to the physical communication device,
but routed to the communications simulator (see [1] for more
information about the connectivity of the simulator with our
AUVs).

We have started with a model developed for the propagation
of sound waves in the aquatic environment, since the main
subject of our team is underwater robotics. We have cre-
ated a propagation model which takes into account several
physical phenomena which represent the constraints that we
actually meet in our experimentations. We mainly model the
transmission losses (absorption and dispersion) and the sea
relative noise level (see [2] for all the details of this model).

III. CONNECTIVITY

We have 2 AUVs which are currently being upgraded.
The first one is Taipan 300; this is a small AUV which
is designed for very shallow water operations. It is 193cm
long for a diameter of 15cm and a weight of 32 Kg (figure
3). As displayed on Figure 3 the vehicle is fitted with a
CTD (located at the front of the vehicle just behind the
white nose), but we are currently replacing this device by
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Fig. 4. Connection between the architecture modules

an acoustic modem (as we can see on figure 5). This vehicle
is moving at a speed of about 2m/s and its autonomy is about
3h. This AUV can reach a depth of 100m. We have developed
a very useful software architecture for this AUV, presented
in [4], and the connectivity of this architecture with our
simulator is presented in [1]. This kind of simulator is fully
useful only if the connection with the robot and its control
architecture does not require any modification on the robot.
Indeed, the transition from simulation to real experiments
has to be as transparent as possible, otherwise the expected
behavior will not be guaranteed. Thus the best way is, of
course, to physically connect the AUV sensor devices to the
output of the sensors simulator.

In order to do this, the sensors simulator must be able
to reproduce the electrical signals of each sensor. But this
solution is very difficult to implement. Indeed, often, con-
structors do not provide complete information about the
sensors internal specifications. Hence, another solution has to
be implemented, for which the code modification has to be as
light as possible, in order to avoid inducing specific behavior
of the control architecture. Thus, from the robot’s controller
side, it is necessary to implement a modular architecture,
in order to modify only the data-supply-mechanism of the
control architecture, shunting the real sensors. For its part,
the sensors simulator has to provide the sensors data, with the
same updating rate, range, errors, noise etc... as the real ones.
In this context, we stay close enough to reality, in order to
validate our control architecture. In order to obtain a realistic
behavior during simulation, we have to design the interac-
tions between the modules of the software architecture. So in
order to program a simple setpoint mission (keeping a desired
heading for a given duration), we have to interconnect the
modules as shown on fig. 4. The linkage of modules consists
in establishing dynamic or static links which support the data
and control flow upon the architecture. A module carries 6
categories of ports (data input port, data output port, events
input port, events output port, parametrization port, request
input port). The activity of these modules are controlled by
a particular module called scheduler. On Figure 4, light gray
blocks represent the modules used during the real mission.
The dark gray ones represent those which are used during
the simulation. Finally the white modules are shared modules
used during real missions and simulations. As we can see,
we only have to replace the light gray module by the dark
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Fig. 5. The Thetis system and the AUV Taipan300

grey ones to switch between real mission and simulation.
On Figure 5 we can see the Thetis system linked to our AUV
T300. On the photo we can see 4 computers (P4AHT @2.7GHz
+ 1024Mo DDR) (linked to a dedicated LAN via a switch),
each of them running a simulator. These 4 computers boot on
a USB key enabling us to deploy our simulators anywhere.
Moreover on the photo we can see a fifth computer (laptop)
which enables us to upload the configuration files and the
executables update on the network, to monitor the simulators
and finally to manage the launch sequence of the system. All
the log files (also written in XML) are uploaded from these
simulators to the supervision laptop and then analyzed using
a matlab XMLToolbox.

IV. PRELIMINARY RESULTS

These 2 AUVs carry a Tapac modem. These modems
have a transmission power of 177 dB and a bandwidth of
6Khz. Their reception trigger level is equal to 15dB beyond
environmental noise. Their radiation chart is omnidirectional.
Its transmission frequency is 33 Khz (chirp modulation). In
this simulation we assume that the wind velocity is equal
to 5 knots. Using the Wenz model we determine that the
modems maximal communication range is equal to 1900
m, which corresponds to constructor values. In order to
simplify the interpretation of the results, only one of the
2 vehicles is moving during the simulation. The first vehicle
(Taipan 300) is moving along a straight line, restricted to
the horizontal plane. Moreover, the pitch and roll angle
are set to zero, which guarantees the vehicle to follow a
straight line, forced to a constant depth. The second AUV
is fixed (actuators are set to 0) with a constant depth (the
depth value is forced in the vehicle simulator). In this
simulation, Taipan 2 is in a fixed point and emits messages
(constituted by the string "HELLO WOLRD TAIPAN 2 IS
BROADCASTING A MESSAGE”). The trajectory followed
by Taipan 300 is shown (fig 6). Each 350s a dot is drawn
on the trajectory. The blue circle on the figure represents the
transmission area of Taipan 2. Taipan 2 emits its message at
t=60s, t=1500s et t=2300s. These instants are represented
on the Taipan 300 trajectory by 3 squares. We can see
that at t=0, Taipan 300 is out of the communication range
of Taipan 2. At t=650s communication becomes possible.
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Finally at t=2382s T300 is out of the T2 communication
range (fig 7). Figure ?? represents a timeline with the date
of emission/reception of messages from the vehicles. We
assume that each transmission has a fixed delay and a null
duration. Figure ?? presents data logged by the 2 vehicles
and the environment simulator. We distinguish these data
on the graph by the height of their peak 1: Taipan 2, 2:
Environment simulator, 3: Taipan300. On the ”"zoom 2” we
can see that the first message sent by Taipan 2 is received
by the environment simulator (a few milliseconds later) but
never by Taipan 300 (no Taipan 2 peak after). The second
and the third message are sent by Taipan 2 and received by
Taipan 300 after 20s (“zoom 1”). This duration corresponds
to the latency and the necessary duration to send the message.
This simple simulation allows us to illustrate all mechanisms
mentioned in the previous sections. AUV trajectories are
enough to validate the environment and communications
simulators.
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V. CONCLUSION

This HIL simulator plays an important role in the devel-
opment of the controllers of our robots. Thetis is a real-time
multi-vehicles simulator which needs to be completed (in-
cluding complex exteroceptive sensors). We need to compare
the results from the simulation with real experimentations.
This is especially true for the underwater communications.
Taipan 2 should be available in a few months and we will
be able to experiment the effective rate of communication
between the AUV and a second acoustic modem located
on a surface vessel. The next step of our work will be to
refine our hydrodynamic gains. Our contribution concerns
the proposed simulator architecture. This architecture gathers
all the important features that a simulator must include
in order to allow simulation of flotilla. The models used
are certainly less accurate than the ones within traditional
simulators, but the structure of our simulator allows an easy
evolution. So we have designed and implemented a simulator
architecture which guarantees the relevance of the results,
the upgradability, the modularity and the portability. We have
only evoked the use of this simulator in an underwater frame
but it is generic enough to be used with other robots and thus
it can allow us to imagine more complex scenarii like the
coordination of AUVs and air drones in order to make coastal
monitoring.
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