
HAL Id: lirmm-00373385
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00373385

Submitted on 4 Jul 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Comparison Between Results Obtained with Thetis, a
Real-Time Multi-Vehicles Hardware-in-the-Loop

Simulator, and Results Obtained During Sea Trials
Olivier Parodi, Vincent Creuze, Bruno Jouvencel, Xianbo Xiang

To cite this version:
Olivier Parodi, Vincent Creuze, Bruno Jouvencel, Xianbo Xiang. Comparison Between
Results Obtained with Thetis, a Real-Time Multi-Vehicles Hardware-in-the-Loop Simula-
tor, and Results Obtained During Sea Trials. OCEANS, May 2009, Bremen, Germany.
�10.1109/OCEANSE.2009.5278119�. �lirmm-00373385�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00373385
https://hal.archives-ouvertes.fr

Comparison between results obtained with Thetis, a
real-time multi-vehicles hardware-in-the-loop

simulator, and results obtained during sea trials
Olivier Parodi∗, Vincent Creuze∗, Bruno Jouvencel∗, Xianbo Xiang∗

∗LIRMM - University of Montpellier 2 - CNRS
161 rue Ada

34392 Montpellier, France
{parodi,creuze,jouvencel,xiang}@lirmm.fr

Abstract— The purpose of this paper is to present Thetis: a
real-time multi-vehicles hybrid simulator for heterogeneous vehi-
cles. This simulator allows Hardware In Loop (HIL) simulations
including virtual sensors which allow to provide a representation
of a virtual world, and including the support of communication
devices. The architecture of this simulator is conceived so that it
ensures a temporal decoupling between the virtual environment,
the vehicles, sensors and communication simulators and, of
course, the actual embedded controller which warrants us the
quality of the results. This paper presents a classification and a
short state-of-the-art of the different types of existing simulators.
Then we will introduce the architecture and functionalities of
Thetis. Finally we will compare results obtained during sea-trial
with our AUV Taipan300 and with our simulator.

I. INTRODUCTION

The development of an AUV is not an easy task. Indeed,
beyond the challenges of the mechanics and electronics, an
intelligent software architecture is also required to play the
fundamental role of controlling the machine in order to fulfil
its mission. Of course one of the strong constraints is the
ability of this architecture to work in real time and to react
correctly to the different events occurring during the mission.
The computing power and the miniaturization of the computers
allow to imagine sophisticated architectures to assume scenarii
increasingly more complex. In parallel the number and the
complexity of tests necessary to validate this kind of architec-
ture is growing up. Hence, simulation tools play an important
role: they help us to test and validate control laws and
software architecture, and to detect preliminary inconsistencies
within the scenarii. Moreover, these technologies reduce the
required human resources, decrease the number of necessary
real experiments, and the time spent.
There are different types of simulators, each of them having
its own limits and they can be used at the different steps of the
development. So first we’ll present the different architectures
of the existing simulators and their applications. Then we’ll
expose the structure of our simulator specifying the models we
consider. For details on previous development, please refer to
[14] where we focus on the connectability aspects of Thetis
to our real robots, and to [3] in which we demonstrate the
simulation capabilities of communications between 2 AUVs.

Finally we will compare sea-trials results with those obtained
with Thetis.

II. DIFFERENT TYPES OF SIMULATORS

Simulators can be classified into 4 categories: the offline
simulators, the online simulators, the hardware in loop simu-
lators and the hybrid one [1].

A. Classification

1) Offline simulators: This type of simulator allows to
design the control of robots in a first step. Matlab/Simulink
is often used for this kind of simulation because of the
availability of toolboxes (such as the one proposed by Fossen
described in [4]) and because of the easy implementation of
mathematical models. But we have to keep in mind that the
temporal aspect of the simulation is not taken into account, and
it potentially makes the control algorithm inoperative when it
is transferred on a real robot. Thus it is not possible to validate
control architecture or a sensor referenced command with such
a simulator.

2) Online simulators: This type of simulator belongs to
another family which allows to take the temporal consistency
of the simulation into account. Indeed, with this type of
simulation, 1 second of simulated time actually corresponds to
1 second in real time. This is the case in the SubSim simulator
(see [5]). However the algorithms are still not executed on the
robot itself, and the temporal behavior of the computer used
for the simulation can be different from the one onboard the
robot.

3) Hardware in loop simulators: The control algorithm is
executed on the robot itself, but the commands sent to the
actuators are routed towards the simulator instead of the real
robot (see [6]). The simulator then considers the actuation
commands in order to compute the dynamic evolution of
the system. However, in this sort of simulation the external
world is not taken into account, except for the dynamic
effects of the environment. Only the proprioceptive sensors
are simulated and the overall algorithms suite cannot be fully
tested (obstacles avoidance, sensor based control...).

4) Hybrid simulators: These simulators are HIL simula-
tors where real and virtual systems interact together in an
virtual environment. It is therefore necessary to simulate an
environment (static or dynamic) in which the robot software
architecture will be fully functionally operative. Therefore, it
is possible to test all the algorithms of the machine, from
low level control of sensors or actuators recruitment to the
high level algorithmic architecture. This approach has been
used by several authors such as in [1], in which, the Neptune
simulator is presented., This is a real time graphic multi-
vehicles simulator, allowing to perform online, HIL and hybrid
simulation.

B. State-of-the-art

In order to elaborate a command and a strategy to make
our AUVs cooperate together, we are particularly interested in
HIL or hybrid simulators which are able to simulate several
heterogeneous vehicles. Several studies have been made on
this topic, in the scope of underwater robotics.
The first works were done by the DARPA Naval Technology
Office in 1988 ([7]). This simulator allows the cooperation
between many underwater platforms which are driven by a
real time intelligent sense-decide-act system. The simulation
of sensors and environment are taken into account. In [8],
a distributed simulator for underwater vehicles called Core
Simulation Engine (CSE) has been developed. This system is
equipped with operator training capabilities, mission feasibility
assessment and mission replay. A subscription method and a
run time infrastructure allowed the distributed programming.
The Cooperative AUV Development Concept (CADCON)
simulator ([9]) uses a client-server model in which it is
possible to handle interactions between vehicles controlled by
the simulation clients through an environment simulator. This
simulator system focuses on the high level communication
and does not deal with the dynamics and control of the
heterogeneous vehicles. In [10], a simulator called DEVRE,
composed of a set of processes running on a local area
network, has been developed. The simulation runs onto 3
computers which are the onboard AUV computer, a human
machine interface computer and a third computer used to
calculate system dynamics and to represent a virtual world. In
this simulator multi-vehicles simulation and communications
between the AUVs are not allowed.
Many other simulators have been developed like in [11],[12],
[13], or in [5] and all these simulators present several very
helpful specificities, through several models (environment,
vehicles) which are able to cope with reality accurately. Some
of them are specialized in HIL simulation, while others are
mostly designed for multi-AUVs applications, and others are
focusing on accurate environment simulation. But, among
all these references no one has addressed to the problem
of temporal decoupling between the command computed by
the onboard computer and the simulator(s). Yet this critical
problem is addressed to in the next sections. Most of these
simulators are not based on a distributed architecture, meaning
that it is not possible to add another computer when the load

Fig. 1. Simplified architecture of Thetis: there is a logical sequence
between 3 simulators even if there are independent processes on different
computers. The cycle duration of this sequence must be largely lower than
the period of the controller. The temporal decoupling is only effective (and
that’s enough) between the simulator and the controllers. The link between
the communications simulator and the environment simulator is event-driven
(when a communication between vehicles occurs).

of the existing ones becomes too heavy. This leads some teams
to simplify the used models at the expense of the quality
of the results. Moreover the considered systems are always
AUVs (sometimes heterogeneous) but there is no mention
about cooperation capabilities between a surface vehicle and
an underwater one (for example). Yet, we find more and more
scenarii in which an UAV (Unmanned Aerial Vehicle), an ASV
(Autonomous Surface Craft) or a land vehicle are required to
cooperate.
For all these reasons we have developed Thetis, a hybrid simu-
lator which provides the necessary environment to experiment
HIL simulation with support of communications between the
vehicles, and allows the use of exteroceptive sensors. Such a
simulator which concurrently provides all these functionalities
is a necessary tool to envisage such complex scenarii. This is
a challenging multi-disciplinary task because of the number
of specialists who must collaborate (acoustician, computer
specialist, control engineer etc). For this reason the aim of
this simulator architecture is not to provide a set of ”perfect”
models: in this paper we describe a simulator architecture
allowing us to deal with the problem of heterogeneous coor-
dinated vehicles, under communication constraints. Moreover,
the open source Thetis project is built to allow many different
specialists to develop their own models. On the other hand this
simulator architecture is distributed, in order to allow the im-
plementation of complex models, without being restricted by
computational burden, thus guaranteeing the real-time aspect.
Finally this simulator allows to interchange the used models,
in function of the desired accuracy. As this paper focuses on
the architectural aspects of the simulator, the different models,
already implemented, are deliberately basic, except for the
vehicles, where full hydrodynamic models are considered, as
exposed in [4].

III. THETIS: HYBRID SIMULATOR

Thetis is a new real-time hybrid simulator allowing the con-
sideration of heterogeneous multi-vehicles scenarii, including
communication restrictions. A quick overview on the overall
architecture of the simulator is presented on figure 1.

A. Critical Concepts

This simulator is composed of a set of mechanisms which
respects several properties. One of the most important is the
capability of the simulator to ensure a temporal decoupling
between the control loop and the simulation loop. This war-
rants the coherence between simulation results and expected
real behavior. For example, if for any reason, the onboard
computer is unable to provide the actuator with commands
at an appropriate time (unexpected delay), then the simulator
has to exhibit the natural consequence of this delay on the
vehicle behavior (open loop). Indeed, in Thetis, there is no
logical synchronization between the simulation loop and the
controller computation onboard the robots. Another important
concept is the upgradeability of the simulator. We are able
to add some new components (sensors, vehicles...) in a very
easy way. Indeed, the modularity of this simulator favors the
interventions of different specialists. Thus, a sonar specialist
will be able to modify the sonar model, without considering
the global simulator. Finally, a very interesting aspect of this
architecture is its portability. Indeed it is able to work with
different robots and thus be connected with different control
software architectures. We only need to adapt the interface
between the 2 systems (simulator and controller), in order to
make them work together. Moreover, the distributed aspect of
Thetis affords the faculty of the simulator to be divided and
executed on different computers, linked on a dedicated local
area network via UDP/IP protocol. This avoids overloading
computers and affecting the real time capability of the systems.

B. Implementation and Technical Considerations

All the concepts exposed in the previous section are sup-
ported by using 3 mechanisms and the architecture is based
on 4 simulators. First an XML-based specifications exchange
(XML for eXtensible Markup Language) allows to structure
the parameters of the different models (modem, radio, fins,
motor), and configuration files, while promoting the modu-
larity and the portability. Indeed modularity is obtained using
the XML format, which allows to specify the components
parameters (response-time, accuracy, rate), and to modify
them in a very easy way. Now, the replacement of a sensor
by another is done by calling a XML file in place of the
other. All the system components description follows the same
idea (actuators, sensors, body dynamics...). Moreover, many
components could use the same formalism to describe their
intrinsic parameters without using all of them depending of
the model used. The validation and extensible properties of
the XML language make it an ideal base to enrich the model
parameters files. Thus the robots components used in this
simulator are described in XML formalism.
Then portability and temporal decoupling are favored by using
sockets and local shared memories widely. Thus it is possible
to run several processes on different computers, each of them
interacting with others using these mechanisms.
In order to ensure real-time performances as well as effective
temporal decoupling, the overall simulation system is in fact
an application divided into 4 simulators. The first one is a

vehicle simulator which allows the simulation of the robots
dynamics. The second one is a sensors simulator allowing
the simulation of the various sensors of the robots. The third
one is a communications simulator in charge of mimicking
the behavior of communications device (signal processing for
an acoustic modem, for example). Lastly the fourth one is a
stationary environment simulator. It allows the simulation of
exteroceptive sensors, it is in charge of computing the possible
collisions and of computing the different acoustic signals
propagation, the latency and distortions of the communication
signals. All these simulators are interconnected on a dedicated
UDP/IP network. This avoids overloading the network in order
to guarantee real-time performances and to avoid packets
losses (potentially possible with UDP/IP network). The con-
nections between these blocks are detailed and explained on
figure 1. Only the sensors, the communications and vehicles
simulators are connected to the real robot, the environment
simulator being connected only to the 3 others. All these
simulators work under Linux RTAI. Information about network
configuration is described in a shared XML file. All the XML
files describing the components of the system are loaded at the
initialization and thus allow to instantiate the different objects
of the simulator.
Finally we have created a set of libraries containing a set
of classes enabling us to build the various objects of the
simulation system. All these classes are documented with
Doxygen tool [15].

C. Components of the simulator

Each of the 4 simulators composing the Thetis system,
is itself composed of several independent processes (12 in
total). The structures of these 4 simulators are quite similar.
Indeed, each of them is composed of one or more independent
process(es) (called Dispatcher) in charge of IPC (Inter Process
Communication), decoding and writing the data exchanged
by the simulators, to a local shared memory initially created
by the Dispatcher processes. For each simulator, there is one
main process which is in charge of the models evolution. This
structure, preferentially executed on a dual (or quad) core
processor, prevents the main processor from being disturbed
during the inter-simulators communications. We will not detail
the operation for each of these components since it has been
described in [3].

1) Vehicles Simulator: The vehicles simulator is in charge
of computing the robots dynamic evolution. We present this
simulator structure on figure 2. The robots send actuators com-
mands calculated by the onboard computer to the simulator
through UDP socket. The Dynamic Models represented on
Figure 2 compute all the forces and torques applied to the
robots in order to determine the vehicles accelerations and,
after integration steps, vehicles attitudes and velocities are
computed. The computed data are sent to the environment
simulator in order to verify the absence of collisions and if
necessary to correct positions. Afterwards, the computed data
are sent to the sensors simulator.

Fig. 2. Detailed view of Thetis. Dashed lines stand for the UDP/IP inter-simulators communications.

2) Sensors Simulator: The sensors simulator is in charge
of providing the the real robot (onboard computer) with
virtual data from the simulation. Presently the models of
proprioceptive and simple exteroceptive (Temperature, Con-
ductivity) sensors are implemented. Complex exteroceptive
sensors (sonar and camera) will be the next steps of our work.
The structure of this simulator is presented on Figure 2. The
DispatcherFromENV is in charge of listening to messages
from the environment simulator (parts of maps determined
according to the position and the range of the robot’s sensors).
The outputs of the Sensors Models are computed according
to each sensor model (including noise), to the data from the
vehicles simulator (systems state), and at last to the data from
the environment simulation. Once these outputs are computed,
they are specifically sent to the concerned robots with the same
refresh rate as the real sensor.

3) Environment Simulator: The environment simulator (fig-
ure 2) is in charge of providing the stored geophysical
maps around a given 3D geographical point (Temperature,
Salinity, Local current, Plankton density), computing signal
propagation (when communications between vehicles occur),
signal distortion and latency, and detecting collisions. At each
cycle of the vehicles simulator, the environment simulator is
called and sends back the value of the local current and the
occurrence of a collision. It has to be noted that the computed
communication signals are only sent to the communications
simulator when (considering latency and bandwidth) and if
necessary (if the vehicles are not within range of communi-
cations no messages will be delivered). Moreover the rate of
communication may vary according to the quality of the acous-
tical channel. When a communication occurs in this area, other
communications using the same frequency potentially damage
the communication channel, and the messages distribution is
disturbed.

4) Communications Simulator: The mechanism of the com-
munication simulator (figure 2) takes into account the delay,
the rate and the losses caused by the type of communication
device in use, and the propagation medium. It has to be

noted that coordinated control of AUVs flotilla is intrinsically
dependent on the communications performances, which can-
not be guaranteed. Thus a simulator able to perform multi
vehicles simulation has to consider these aspects explicitly.
The communications simulator is in charge of simulating the
signal processing done by the communication devices. When
a vehicle has to emit a message (radio or acoustic waves), it
sends a request to its concerned communication chosen device
(radio, wifi, acsoutic modem). In the simulation case, these
data are not sent to the physical communication device, but
routed to the communications simulator (see [14] for more
information about the connectivity of the simulator with our
AUVs).

IV. MODELS AND ASSUMPTIONS

In this chapter we briefly present the modeling methods
(more details can be found in [14]) chosen to develop the
simulator. Although it is not exclusively meant to simulate
AUVs, it is the first model that we have implemented because
our team works on this type of robot [16]. Other models will
be implemented later if needed. Hence, the simulated sensors
suite is dedicated to submarine applications and the modeled
environment is exclusively underwater. Obviously, all this can
be easily modified in order to deal with heterogeneous robots
and environment like coordination between AUVs and UAVs.

A. AUV modeling

The robot model computes the robot accelerations according
to the command vector. The modeling of the AUV, is made
up of the hydrodynamic, hydrostatic and dynamic phenomena
of the robot on the one hand, and of the actuators model on
the other hand. Here is a brief description of these models:

• Hydrodynamic forces: the simulator uses the 6 DOF non
linear equations of AUV expressed in the body fixed
frame [4]. External disturbances(waves, oceanic currents,
wind...) are not implemented yet. Moreover the potential
damping, the skin friction and the wave drift damping are
not considered. Only the damping due to vortex shedding
is computed.

• Thruster Model: A quasi-steady modeling of thrust and
torque is used. This approach has been used in [17]. The
thrust T and the torque Q can be written as:

T = ρD4KT (J0)n|n|
Q = ρD5KQ(J0)n|n|

where ρ is the water density, D the propeller diameter,
KT and KQ are 2 coefficients, J0 the advance ratio and
finally n the shaft speed.

• Fins Model: the robots Taipan have a cylindrical shape
and are equipped with rudder at the stern and with 2
pairs of diving planes located at the bow and at the stern.
The diving planes allow to control the pitch and heave
dynamics while the rudder allows to control the heading
[16]. We consider that the axis of rotation of the planes
is located at a distance da from the origin of the local
frame of the robot. The forces of the lift and drag and
the induced moment are therefore given by: Fx

Fz

Mq

 =

 − 1
2ρSsV

2
0 (Czs sin δ + Cxs cos δ)

− 1
2ρSsV

2
0 (Czs cos δ − Cxs sin δ)

Fz(lcs cos δ − das) + Fx(lcs sin δ)

where l is the distance between the leading edge of the
planes and the system metacenter, bs is the wingspan, cs
is the chord, Ss is the surface wing defined by Ss = bscs,
l=0.2 for the taipan class of vehicles, Cxs and Czs are
respectively the lift coefficient and the drag coefficient
corresponding to the axes of the surface.

B. Sensors modeling

The proprioceptive sensors are used to acquire an estimation
of the state variables of the robot, and its derivative. These
sensors are modeled here by using directly the variables
produced by the vehicles simulator. Afterwards, the sensor
simulator provides the samples at the same frequency as
the real sensor, taking care to limit its range and adjust its
resolution. It is also possible to add noise so as to obtain a
more realistic simulation. Presently a GPS (Trimble Lassen
SKII), a loch doppler (RDI Workhorse Navigator Doppler
Velocity Log), as well as an attitude and heading reference
system (XSens MTi) are modeled. As for the exteroceptive
sensors, they are used to perceive the world surrounding the
robot. For instance, a sonar, a camera or a CTD sensor can be
used. As the physical phenomena driving the exteroceptive
measurements are complex, the modeling process of these
sensors can be heavy. We are presently working on a simple
sonar model using classic ray tracing method.

C. Environment modeling

The environment is modeled by using different elements:
the topography, the temperature and salinity distribution and
the environmental disturbances (currents). Presently, only the
topography, the temperature, salinity and currents distribution
are implemented. This model considers these phenomena as
stationary.

Fig. 3. Taipan 300 by the Salagou Lake in France

D. Communication modeling

We have started with a model developed for the propagation
of sound waves in the aquatic environment, since the main
subject of our team is underwater robotics. We have created a
propagation model which takes into account several physical
phenomena which represent the constraints that we actually
meet in our experimentations. We mainly model the transmis-
sion losses (absorption and dispersion) and the sea relative
noise level (see [3] for all the details of this model). Then
using the following inequality, it is possible to determine the
radius of the sphere that is bounded by the reception threshold
of the receiver AUV.

SL− TL−NB > Threshold

where SL stands for Source Level of transmitter AUV, TL are
the Transmission Losses, NB the Noise level reported on the
Bandwidth and Threshold is the reception Threshold of the
receiver AUV. Thus it is possible to determine for each AUV
(other than the emitter AUV) if it is in the signal propagation
sphere. If not, the message will not be delivered. Else, we
determine the reception level more precisely by taking into
account the attitudes of the 2 vehicles and the directivity
diagram of the antenna (using a lookup table). If the computed
signal reception level is higher than the reception threshold of
the modem, the message is delivered after a delay t which is
computed by taking the distance between the 2 antennas into
account, depending on the size of the message and finally the
modems communication rate (20bit/s in our case).

V. RESULTS

In this section we present some results obtained with Thetis
on the one hand, and during sea-trials on the other hand. We
have 2 AUVs which are currently being upgraded. The first
one is Taipan 300; this is a small AUV which is designed for
very shallow water operations. It is 193cm long for a diameter
of 15cm and a weight of 32 Kg (figure 3). As displayed on
Figure 3 the vehicle is fitted with a CTD (located at the front
of the vehicle just behind the white nose), but we are currently
replacing this device by an acoustic modem (as we can see
on figure 5). This vehicle is moving at a speed of about 2m/s
and its autonomy is about 3h. This AUV can reach a depth of
100m. We have developed a very useful software architecture
for this AUV and the connectivity of this architecture with our

Fig. 4. Connection between the architecture modules

simulator is presented in [14]. This kind of simulator is fully
useful only if the connection with the robot and its control
architecture does not require any modification on the robot.
Indeed, the transition from simulation to real experiments
has to be as transparent as possible, otherwise the expected
behavior will not be guaranteed. Thus the best way is, of
course, to physically connect the AUV sensor devices to the
output of the sensors simulator.
In order to do this, the sensors simulator must be able to re-
produce the electrical signals of each sensor. But this solution
is very difficult to implement. Indeed, often, constructors do
not provide complete information about the sensors internal
specifications. Hence, another solution has to be implemented,
for which the code modification has to be as light as possible,
in order to avoid inducing specific behavior of the control
architecture. Thus, from the robot’s controller side, it is neces-
sary to implement a modular architecture, in order to modify
only the data-supply-mechanism of the control architecture,
shunting the real sensors. For its part, the sensors simulator
has to provide the sensors data, with the same updating rate,
range, errors, noise etc... as the real ones. In this context, we
stay close enough to reality, in order to validate our control
architecture. In order to obtain a realistic behavior during
simulation, we have to design the interactions between the
modules of the software architecture. So in order to program
a simple setpoint mission (keeping a desired heading for a
given duration), we have to interconnect the modules as shown
on fig. 4. The linkage of modules consists in establishing
dynamic or static links which support the data and control flow
upon the architecture. A module carries 6 categories of ports
(data input port, data output port, events input port, events
output port, parametrization port, request input port). The
activity of these modules are controlled by a particular module
called scheduler. On Figure 4, light gray blocks represent
the modules used during the real mission. The dark gray
ones represent those which are used during the simulation.
Finally the white modules are shared modules used during
real missions and simulations. As we can see, we only have
to replace the light gray module by the dark grey ones to
switch between real mission and simulation.
On Figure 5 we can see the Thetis system linked to our AUV
T300. On the photo we can see 4 computers (P4HT@2.7GHz
+ 1024Mo DDR) (linked to a dedicated LAN via a switch),

Fig. 5. The Thetis system and the AUV Taipan300

Fig. 6. Sea-Trials in the Salagou Lake in France

each of them running a simulator. These 4 computers boot on
a USB key enabling us to deploy our simulators anywhere.
Moreover on the photo we can see a fifth computer (laptop)
which enables us to upload the configuration files and the
executables update on the network, to monitor the simulators
and finally to manage the launch sequence of the system. All
the log files (also written in XML) are uploaded from these
simulators to the supervision laptop and then analyzed using
a matlab XMLToolbox.
Now we present some results illustrating one of our sea-trials.

These results have been obtained at the Salagou Lake in the
South of France. The objective of these missions was to tune
the control gains and to validate our software architecture.
The programmed mission was a simple 2-pitch-setpoint with
a heading of 150 deg. and a desired depth of 0.4m. As we can
see on Figure 6, the vehicle converges to the desired depth in
approximatively 25s with an overshoot of about 0.4m.

We use the same control (and of course the same AUV)
to obtain the results presented on Figure 7. These results
have to be qualitatively interpreted, and confirm the quality
of the AUV model we have used in the vehicle simulator.
Note that the considered noise in the simulator is not realistic
since the external disturbances have not been modeled yet.
Even if this mission is very simple, this allows to validate our

Fig. 7. Simulation of the Salagou Lake mission

work partially. Of course some more complex missions have
been tested in simulation (see [3]) but as our AUVs are being
upgraded, it is difficult to perform so complex real missions.

VI. CONCLUSION

This HIL simulator plays an important role in the devel-
opment of the controllers of our robots. Thetis is a real-
time multi-vehicles simulator which needs to be completed
(including complex exteroceptive sensors). We have compared
results from the simulation with basic real experimentation and
we have seen that the behavior of our AUV was quite the same.
The next step of our work will be to refine our hydrodynamic
gains. Our contribution concerns the proposed simulator archi-
tecture. This architecture gathers all the important features that
a simulator must include in order to allow simulation of flotilla.
The models used are certainly less accurate than the ones
within traditional simulators, but the structure of our simulator
allows an easy evolution. The communications model we have
presented is not very complex and accurate, but it could be
useful for control design purpose. So we have designed and
implemented a simulator architecture which guarantees the
relevance of the results, the upgradability, the modularity and
the portability. We have only evoked the use of this simulator
in an underwater frame but it is generic enough to be used
with other robots and thus it can allow us to imagine more
complex scenarii like the coordination of AUVs and air drones
in order to make coastal monitoring.

REFERENCES

[1] P. Ridao, E. Batlle, D. Ribas, M. Carreras Neptune: a hil simulator for
multiple UUVs OCEANS ’04. MTS/IEEE TECHNO-OCEAN ’04, pages
524- 531, 2004

[2] O. Parodi, A. El Jalaoui, D. Andreu Connectivity of Thetis, A
Distributed Hybrid Simulator, with a mixed Control Architecture The
Fourth International Conference on Autonomic and Autonomous Systems
ICAS, 2008

[3] O. Parodi, V. Creuze, B. Jouvencel Communications within Thetis,
a Real Time Multi-vehicles Hybrid Simulator The 18th International
Offshore (Ocean) and Polar Engineering Conference, 2008

[4] TI. Fossen Marine Control Systems: Guidance Navigation and Control
of Ships, Rigs and Underwater Vehicles Marine Cybernetics AS, 2002

[5] T. Bielohlawek SubSim - An Autonomous Underwater Vehicle Sim-
ulation System Ag Robotersysteme Fachbereich Iinformatik An Der
Unuversitt Kaiserslautern, 2006

[6] Suriano, Moriconi A Distributed Simulator for the Development of
the Unmanned Underwater Vehicles Control Software Robotics and
Applications and Telematics, 2007

[7] Albus System Description and Design Architecture for Multiple Au-
tonomous Underwater Vehicles National Institute of standards and
Technology, Gaithersburg, MD, Technical Note 1251n 1988

[8] D.M Lane et al. Mixing simulation and real subsystems for subsea
robot development Proc; IEEE OCEAN’98, Nice, France, pp. 1382-
1386, 1998

[9] Chappell, Steven G.; Komerska, Rick J. An Environment for High-Level
Multiple AUV Simulation and Communication Proceedings of UI,2001

[10] Ridao P., Battle, J., Amat, J., Carreras, M. A distributed environment
for virtual and/or real experiments for underwater robots Proceedings
2001 ICRA. vol.4, no., pp. 3250-3255 vol.4, 2001

[11] W. Hornfeld DeepC, the German AUV Develoment Project status report
of the STN ATLAS Elektronik GmbH, 2001

[12] Kobayashi et al. Development of an autonomous underwater vehicle
maneuvering simulator OCEANS vol.1, no., pp.361-368 vol.1, 2001

[13] Carlson, E.A., Beaujean, P.-P., An, E. Simulating communication during
multiple AUV operations Autonomous Underwater Vehicles, vol., no.,
pp. 76-82, 2004

[14] O. Parodi, A. El Jalaoui, D. Andreu (2008) Connectivity of Thetis, A
Distributed Hybrid Simulator, with a mixed Control Architecture The
Fourth International Conference on Autonomic and Autonomous Systems
ICAS08, 2008

[15] http://sourceforge.net/projects/doxygen/ accessed on 02/08
[16] J.M. Spiewak, B. Jouvencel, P. Fraisse A New Design of AUV for

Shallow Water Applications: H160 ISOPE’06: International Offshore
and Polar Engineering, 2006

[17] LL. Whitcomb, DR. Yoerger Development, Comparison and preliminary
experimental validation of nonlinear dynamic thruster models IEEE
journal of oceanic engineering, pasges 481-494, 1999

