
HAL Id: lirmm-00373949
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00373949

Submitted on 25 May 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

An Adaptive Message-Passing MPSoC Framework
Gabriel Marchesan Almeida, Gilles Sassatelli, Pascal Benoit, Nicolas

Saint-Jean, Sameer Varyani, Lionel Torres, Michel Robert

To cite this version:
Gabriel Marchesan Almeida, Gilles Sassatelli, Pascal Benoit, Nicolas Saint-Jean, Sameer Varyani,
et al.. An Adaptive Message-Passing MPSoC Framework. International Journal of Reconfigurable
Computing, 2009, 2009, pp.#242981. �10.1155/2009/242981�. �lirmm-00373949�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00373949
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Hindawi Publishing Corporation
International Journal of Reconfigurable Computing
Volume 2009, Article ID 242981, 20 pages
doi:10.1155/2009/242981

Research Article

An Adaptive Message Passing MPSoC Framework

Gabriel Marchesan Almeida, Gilles Sassatelli, Pascal Benoit, Nicolas Saint-Jean,
Sameer Varyani, Lionel Torres, and Michel Robert

Laboratoire d’Informatique, de Robotique et de Microélectronique de Montpellier (LIRMM),
Centre National de la Recherche Scientifique (CNRS), University of Montpellier 2, 161 rue Ada,
34392 Montpellier, France

Correspondence should be addressed to Gabriel Marchesan Almeida, gabriel.marchesan@lirmm.fr

Received 19 December 2008; Accepted 14 April 2009

Recommended by J. Manuel Moreno

Multiprocessor Systems-on-Chips (MPSoCs) offer superior performance while maintaining flexibility and reusability thanks to
software oriented personalization. While most MPSoCs are today heterogeneous for better meeting the targeted application
requirements, homogeneous MPSoCs may become in a near future a viable alternative bringing other benefits such as run-time
load balancing and task migration. The work presented in this paper relies on a homogeneous NoC-based MPSoC framework
we developed for exploring scalable and adaptive on-line continuous mapping techniques. Each processor of this system is
compact and runs a tiny preemptive operating system that monitors various metrics and is entitled to take remapping decisions
through code migration techniques. This approach that endows the architecture with decisional capabilities permits refining
application implementation at run-time according to various criteria. Experiments based on simple policies are presented on
various applications that demonstrate the benefits of such an approach.

Copyright © 2009 Gabriel Marchesan Almeida et al. This is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

1. Introduction

The exponentially increasing number of transistors that
can be placed on an integrated circuit is permitted by the
dropping of technology feature sizes. This trend plays an
important role at the economic level, although the price
per transistor is rapidly dropping the NRE (Nonrecurring
Engineering) costs, and fixed manufacturing costs increase
significantly. This pushes the profitability threshold to higher
production volumes opening a new market for flexible
circuits which can be reused for several product lines or
generations and scalable systems which can be designed
more rapidly in order to decrease the Time-to-Market.
Moreover, at a technological point of view, current variability
issues could be compensated by more flexible and scalable
designs. In this context, Multiprocessor Systems-on-Chips
(MPSoCs) are becoming an increasingly popular solution
that combines flexibility of software along with potentially
significant speedups.

These complex systems usually integrate a few mid-range
microprocessors for which an application is usually statically
mapped at design-time. Those applications however tend

to increase in complexity and often exhibit time-changing
workload which makes mapping decisions suboptimal in a
number of scenarios. Additionally, such systems are designed
in very deep-submicron technologies that bring a number
of hardly predictable physical effects that, associated also to
the increasing process variability, demonstrate the intrinsic
and unavoidable unreliability of future nanoscale integrated
systems.

These facts challenge the design techniques and methods
that have been used for decades and push the community to
research new approaches for achieving system adaptability
and reliability (out of unreliable technology components).

This paper presents a hardware/software framework (HS-
Scale platform) that is based on a set of adaptive principles
which endows the architecture with some decisional capab-
ilities. This approach helps continuously refining application
mapping for optimizing various criteria such as performance
or power consumption and should eventually enable fault
tolerance.

This hardware/software framework is intended to permit
the exploration of scalable solutions for future MPSoCs

2 International Journal of Reconfigurable Computing

in the context of massive on-chip parallelism with several
hundreds of processing elements (PEs). Therefore, the
proposed architecture relies on principles that do not imply
resource sharing among processors in the broad sense of
the term. The system is made of a regular arrangement of
PEs that runs applications in a distributed way, exchanging
messages that relate to both platform management and
application data. The used programming model is derived
from a popular message passing interface (MPI) system that
has been augmented for supporting adaptive mechanisms.

This paper is organized as follows.
Section 2 presents the related works in the field of

multiprocessor systems, programming models, and task
migration techniques. Section 3 introduces the HS-Scale
framework which covers the hardware, software, and the
programming model used in this approach. Section 4 shows
the validations in terms of both developed hardware and
area utilization figures in the context of an SoC realization.
Section 5 presents the results of various applications mapped
on the framework emphasizing on the cost induced by the
used migration techniques and the corresponding observed
benefits. Section 6 draws some conclusions on the presented
work and puts this in perspective with other upcoming
challenges of the area.

2. Related Works

This section shortly introduces the different existing families
of multiprocessor systems and puts focus on the relevant
approaches that are found in the fields of scalable message
passing architectures and task migration techniques.

2.1. Preliminary Considerations. Multiprocessor systems are
increasely considered as an attractive solution for acceler-
ating computation. Parallel architectures have been studied
intensively during the past 40 years; there is consequently
a huge amount of books [1, 2] related to this topic, and
we will therefore only focus on general concepts. The
most common type of multiprocessor systems falls into the
Multiple Instruction Multiple Data (MIMD) family as that
defined by the Flynns taxonomy [3]. There are two types of
MIMD machine classified in accordance with their memory
architecture:

(i) shared memory architectures in which all processors
share the same memory resources; therefore all
changes done by a processor to a given memory
location become visible to all other processors of the
system;

(ii) distributed memory architectures in which every
processor has its own private memory; therefore one
processor cannot read directly in the memory of
another processor. Data transfers are implemented
using message passing protocols.

From an architecture design point of view shared mem-
ory machines are poorly scalable because of the limited
bandwidth of the memory. Existing realizations marginally
use more than tenth of processors because of this reason.

Memory

PE PE PE PE

Interconnection network

(a) Shared memory

PE PE PE PE

M M M M

Interconnection network

(b) Distributed memory

Figure 1: Shared x distributed memory.

Distributed memory machines are more scalable since
only the communication medium may be shared among
processors. There exist two families of programming models,
each of which exhibits a better adequacy to one of the
previously presented architecture families.

(i) Shared memory systems require synchronization
mechanisms such as semaphores, barriers, and locks
since no explicit communication mechanism exists.
POSIX threads [4] and OpenMP [5] are two popular
implementations of the thread model on shared
memory architectures.

(ii) Distributed memory systems require mechanisms for
supporting explicit communications between pro-
cesses (that may be hosted on the same or different
processors). Usually a library of primitives that allow
writing in communication channels is used. The
Message Passing Interface (MPI) [6] is the most
popular standard that is used in High-Performance
Computing (HPC) computer clusters for instance.

In a shared memory architecture (Figure 1(a)), pro-
cesses (executed by different processors) can easily exchange
information through shared variables; however it requires
handling carefully synchronization and memory protec-
tion. In a distributed memory architecture (Figure 1(b)),
a communication infrastructure is required in order to
connect processing elements and their memories and allow
exchanging information.

Since this work targets massively parallel on-chip Mul-
tiprocessor systems, scalability is a major concern in the
approach. For this reason, we put focus on distributed
memory machines and therefore choose a message passing
programming model for it provides a natural mapping to
such machines.

2.2. Message Passing for Embedded Systems. The Message
passing model is based on explicit communication between
tasks. This model is often used for architectures that do not
provide global address space; here communications among
tasks take place through messages and are implemented with
functions allowing reading and writing to communication
channels. CORBA, DCOM, SOAP, and MPI are examples of
message passing models.

Message Passing Interface (MPI) is the most popular
implementation of the message passing model, and only
for this model some embedded implementations exist. The

International Journal of Reconfigurable Computing 3

Message Passing Interface is a specification for an API that
allows many PEs to communicate through a communication
network.

MPI provides a comprehensive number of primitives
that relate to general-purpose distributed computing; a
number of work have devised lightweight implementations
supporting only a subset of the mechanisms of MPI for
embedded processors and systems. This makes sense since
the nature of applications for these systems is well defined,
often limited to data flow applications for which Kahn
Process Networks formalism offer a sufficient support that
requires only blocking read operations [7]. Some MPI
implementations are layered, and advanced communication
synchronization primitives (such as collective, etc.) found
in the upper layers make use of the simple point-to-point
primitives such as MPI Send() and MPI Receive(). This
enables using these collective mechanisms in an application-
specific basis in case they prove necessary.

The specific requirements of embedded systems have led
programmers to develop lightweight MPI implementations,
basically built upon a subset of the original MPI mechanisms.
In [8] the authors present TMD-MPI which is a lightweight
MPI implementation for multiple processors across multiple
FPGAs. It relies on a layered implementation which provides
only 11 primitives. As no operating system is used, task
mapping is static and done at design-time. Similarly, authors
in [9] have also selected 11 primitives among which only
2 relate to point-to-point communications. Finally, in [10]
authors present eMPI which also uses the simplest low-level
point-to-point communication primitives in a layered style.

2.3. Task Migration Support. Task migration techniques have
been mainly studied in contexts that fall in one of the
following areas.

(i) General purpose computing, involving usually a sin-
gle computer made of several processors or processor
cores. Such systems are usually built around shared
memory architectures.

(ii) High-Performance Computing (HPC) computer clu-
sters. Such systems are usually of distributed memory
type and therefore generally use message passing
programming style.

(iii) Multiprocessor embedded systems, which may make
use of either shared or distributed memory architec-
ture.

For shared memory systems such as today’s multicore
computers, task migration is facilitated by the fact that no
data or code has to be moved across physical memories:
since all processors are entitled to access any location in the
shared memory, migrating a task comes down to electing a
different processor for execution. There exist several efficient
implementations on general purposes OS such as Windows
or Linux [11].

In the case of multiprocessor-distributed memory/
message passing architectures, both process code and state
have to be migrated from a processor private memory to
another, and synchronizations must be performed using

exchanged messages such as in [12] which targets Linux com-
puter clusters. Some other approaches aimed at augmenting
MPI for providing a support for process migration, such as
[13, 14]. In [15] users present similar features based on a
JAVA MPI framework that provides hardware independence;
they show that despite migrating tasks imply overheads,
which are in the order of seconds, significant speedups can be
achieved. All these approaches target computer clusters with
the typical resources of general-purpose computers and are
therefore hardly applicable to MPSoCs.

Task migration has also been explored for MPSoCs,
notably based on locality considerations [12] for decreasing
communication overhead or power consumption [16]. In
[17], authors present a migration case study for MPSoCs that
relies on the Clinux operating system and a check pointing
mechanism. The system uses the MPARM framework [18],
and although several memories are used, the whole system
supports data coherency through a shared memory view of
the system.

In [19] authors present an architecture aiming at
supporting task migration for a distributed memory
multiprocessor-embedded system. The developed system is
based on a number of 32-bit RISC processors without
memory management unit (MMU). The used solution relies
on the so-called “task replicas” technique; tasks that may
undergo a migration are present on every processor of the
system. Whenever a migration is triggered, the correspond-
ing task is respectively inhibited from the initial processor
and activated in the target processor. This solution induces
a significant memory overhead for every additional task
and therefore falls beyond the scope of this paper. Finally,
to the best of our knowledge, no other work combines
the use of a message passing programming model, on-
chip multiprocessor system, and transparent decentralized
automated task migration.

3. HS-Scale

The key motivations of our approach are scalability and
self-adaptability; the system presented in the rest of this
paper is built around a distributed memory/message passing
system that provides efficient support for task migration. The
decision-making policy that controls migration processes
is also fully distributed for scalability reasons. This system
therefore aims at achieving continuous, transparent, and
decentralized run-time task placement on an array of
processors for optimizing application mapping according to
various potentially time-changing criteria.

3.1. System Overview. The system is based on an array
of compact general-purpose PEs interconnected through a
packet switching Network-on-Chip. The HS-scale system is
a purely distributed memory system which is programmed
using a simple message passing protocol. Contrary to MPI,
processes must not be mapped to a given processor but shall
freely move in the system according to user-definable policies
that may aim at optimizing a given property in the system,
such as performance or power consumption. Both hardware
and software resources are intended to be minimalist for

4 International Journal of Reconfigurable Computing

...· · ·
T1

T2

T3 RAMCPU

UART Timer NI

Task 2
Task 3

Microkernel

Network layer

Processing layer

Figure 2: NPU structural description.

T2 T3

NI

NI

HW FIFO

SW FIFO

SW output buffer

SW

Figure 3: NPU functional description.

favoring compactness of processors and therefore encourag-
ing massive parallelism. Also, for scalability reasons, there
exists no master in the system unless a given application
requires it.

3.2. Hardware Structure

3.2.1. Network Processing Unit. The architecture is made of
a homogeneous array of Processing Elements (PEs) com-
municating through a packet-switching network. For this
reason, the PE is called NPU, for Network Processing Unit.
Each NPU, as detailed later, has multitasking capabilities
which enable time-sliced execution of multiple tasks. This
is implemented thanks to a tiny preemptive multitasking
Operating System which runs on each NPU. The structural
and functional views of the NPU are depicted in Figures 2
and 3, respectively.

The NPU is built around two main layers, the net-
work layer and the processing layer. The Network layer is
essentially a compact routing engine (XY routing). Packets
are read from incoming physical ports, then forwarded to
either outgoing ports or the processing layer. Whenever a
packet header specifies the current NPU address, the packet
is forwarded to the network interface (NI in Figure 3). The

Clock domain
B

Clock domain
A

Toggle A-B

Toggle A-B

Toggle B-A

Toggle B-A

Data A-B

Data A-B

Data B-A

Block A Block B

Clock A Clock B

Valid data Valid data

Transfer 1 Transfer 2

Figure 4: The asynchronous toggle protocol.

network interface buffers incoming data in a small hardware
FIFO and simultaneously triggers an interrupt to the process-
ing layer. The interrupt then activates data demultiplexing
from the single hardware FIFO to the appropriate software
FIFO as illustrated in Figure 4.

The processing layer is based on a simple and compact
RISC microprocessor, its static memory, and a few periph-
erals (one timer, one interrupt controller, one UART) as
shown in Figure 2. A multitasking microkernel implements
the support for time-multiplexed execution of multiple tasks.

The processor used has a compact instruction set compa-
rable to an MIPS-1 [20]. It has 3 pipelines stages, no cache,
no Memory Management Unit (MMU), and no memory
protection support in order to keep it as small as possible.

3.2.2. Communication Infrastructure. For technology-related
concerns, a regular arrangement of processing elements
(PEs) with only neighboring connections is favored. This
helps in (a) preventing using any long lines and their asso-
ciated undesirable physical effects in deep submicron CMOS

International Journal of Reconfigurable Computing 5

 Flits in the payload

Payload (n flits)

Target address

fn−1 · · · f4 f3 f2 f1 f0 n Ad.

Figure 5: Packet format.

technologies and (b) synthesizing the clock distribution
network since an asynchronous communication protocol
between the PEs might be used. Also, from a communication
point of view, the total aggregated bandwidth of the archi-
tecture should increase proportionally with the numbers
of PEs it possesses, which is granted by the principle of
abstracting the communications through routing data in
space. The Network-on-Chip (NoC) paradigm enables that
easily thanks to packet switching and adaptive routing.

The communication framework of HS-scale is derived
from the Hermes Network-on-chip; refer to [21] for more
details. The routing is of wormhole type, which means that
a packet is made of an arbitrary number of flits which
all follow the route taken by the first one which specifies
the destination address. Figure 5 depicts the simple packet
format used by the network framework constituted by the
array of processing elements. Incoming flits are buffered in
input buffers (one per port). Arbitration follows a round-
robin policy giving alternatively priority to input ports. Once
access to an output port is granted, the input buffer sends the
buffered flits until the entire packet is transmitted (wormhole
routing).

Inter-NPU communications are fully asynchronous and
are based on the toggle-protocol. As depicted in Figure 4 this
protocol uses two toggle signals for the synchronization, a
given data being considered valid when a toggle is detected.
When the data is latched, another toggle is sent back to the
sender to notify the acceptance. This solution allows using
completely unrelated clocks on each PE in the architecture.

3.3. Operating System. The lightweight operating system
we use was designed for our specific needs. Despite being
small (28 KB), this kernel does preemptive switching between
tasks and also provides them with a set of communication
primitives that are presented later. Figure 6 gives an overview
of the operating system infrastructure and the services it
provides.

Figure 7 presents the process state diagram each task
follows depending on the events that may occur. This scheme
answers to the general principles of operating systems in
general although transition events have been specialized for
this specific case.

The interrupts manager may receive interrupts from 3
hardware sources: UART, Timer, and network interface (NI).
Whenever an interrupt occurs, other interrupts are disabled,
and the processor context is saved in the system stack.
Following the type of interrupt, it reads from the UART,

schedules another task (timer), receives data from other
NPUs, or use a communication primitive (interrupt from the
network interface FIFO in). Afterwards processor context is
restored, and interrupts are re-enabled. The scheduler is the
core of the microkernel. Each time a timer interrupt occurs,
it checks if there is a new task to run. In the positive case,
it executes this new task. Otherwise, it has two possibilities:
either there is no task to schedule then it just runs an idle task
or there is at least one task to schedule. Tasks are scheduled
periodically following a round robin policy (there is no
priority management between tasks) as depicted in Figure 8.

Figure 9 presents the memory layout of an NPU running
this operating system along with two tasks. Each task is
located in a memory region that embeds code, data, and stack
segments.

3.4. Dynamic Task Loading and Migration (PIC). One of the
objectives of this work is to enable dynamic load balancing
which implies the capability to migrate running tasks from
processor to processor. Migrating tasks usually implies the
following.

(i) To dynamically load in memory and schedule a new
process.

(ii) To restore the context of the task that has been
migrated.

3.4.1. Dynamic Process Loading. Both points are challenging
for such microprocessor targets since, for density reasons, no
Memory Management Unit (MMU) is available. An MMU,
among other tasks, usually performs the translation between
virtual and physical addresses and therefore permits to load
and run a code in an arbitrary region of the physical memory.
The code then performs read, write, and jump operations
to virtual memory locations that are being translated into
physical locations matching the memory layout decided by
the operating system upon loading.

A possible alternative to overcome this problem relies in
resolving all references of a given code at load-time; such a
feature is partly supported in the ELF format [22] which lists
the dynamic symbols of the code and enables the operating
system loader to link the code for the newly decided memory
location. Such mechanisms are memory consuming and
imply a significant memory overhead which clearly puts this
solution out of the scope of the approach.

Another solution for enabling the loading of processes
without such mechanisms relies on a feature that is partly
supported by the GCC compiler that enables to emit
relocatable code (PIC: Position Independent Code). This
feature generally used for shared libraries generates only
relative jumps and accesses data locations and functions
using a Global Offset Table (GOT) that is embedded into
the generated ELF file. A specific postprocessing tool which
operates on this format was used for reconstructing a
completely relocatable executable. Experiments show that
both memory and performance overheads remain under 5%
for this solution which is clearly acceptable.

Figure 10(a) shows an example of relative jump with
PIC compilation with code compiled for an execution at the

6 International Journal of Reconfigurable Computing

Task

Library

Exception manager

Interrupt manager

Scheduler

I/O

FIFO outUART

API

Kernel

OS

Task
management

Memory
management

Routing table
management

Self-adaptive
management

FIFO inTimer

H-scale

RAM

Figure 6: Operating system overview.

New task

New

No data in soft FIFO

Data received in soft FIFO

New process to run

End of process
Dead

ReadyBlocked

Running Expired time slot

Figure 7: Task state diagram.

address 0x0000; the address for the jump is referenced by
the sum of current address and GOT entry reference. So
if the code needs to be executed to another location, for
example, 0 × 0100 (Figure 10(b)), the code is copied to the
new location, and the only modification to perform is to add
the same offset of the code (0 × 0100) to the GOT section
entries.

3.4.2. Task Context Migration. Migrating a process implies
not only instantiating a new executable into the memory
but also restoring its context. Again, the lack of MMU
makes this task difficult since the context of the process
includes the stack which not only embeds data (such as
return values of functions) but also returns addresses that
are memory-location dependent. The solution we developed
is based on defining migration points that are at specific
locations in the code, namely, whenever a communication
primitive is called. This method is restrictive since it assumes
that the computation relies on a strict consumer/producer

model where no internal state is kept from iteration to
iteration. This translates in the fact that there cannot be any
dependencies between two adjacent computed data chunks.

When a task migration order is issued by the operating
system, the following sequence of action is initiated between
NPU1 which is current host for the task and NPU2 which is
the future.

(1) Task code is sent from NPU1 to NPU2. NPU2 then
loads the task into memory, creates the necessary
software FIFOs, and runs the task which is frozen
when it reaches the first communication primitive
call (MPI Send() or MPI Receive()).

(2) NPU1 modifies routing tables (that embeds task and
FIFO placements) and broadcasts this information to
the other NPUs. Future messages for the task will be
buffered in the newly created FIFO on NPU2.

(3) Task execution on NPU1 continues until the next
communication primitive call is reached which
freezes application execution. Following this, the
remaining task FIFO content on NPU1 is sent and
reordered on NPU2.

(4) Task execution is resumed on NPU2, and concur-
rently the task is removed from memory on NPU1.

Table 1 presents an example of migration time of one
task (20 KB), between two NPUs with a distance of one.
These results show that time migration is mainly due to
the time to send executable through the network (with a
frequency f = 25 MHz). TShutdown refers to the time taken
by the operating system for unregistering the task. TSend
represents the time taken for the operating system to perform
the necessary actions for formatting and sending the task to

International Journal of Reconfigurable Computing 7

Task 1

Sc
h

ed
u

lin
g

Sc
h

ed
u

lin
g

Sc
h

ed
u

lin
g

Sc
h

ed
u

lin
g

Sc
h

ed
u

lin
g

Sc
h

ed
u

lin
g

Sc
h

ed
u

lin
g

N
et

w
or

k
co

m
m

u
n

ic
at

io
n

N
et

w
or

ki
n

g
in

te
rr

u
pt

N
et

w
or

ki
n

g
in

te
rr

u
pt

T
im

er
 in

te
rr

u
pt

T
im

er
 in

te
rr

u
pt

T
im

er
 in

te
rr

u
pt

T
im

er
 in

te
rr

u
pt

T
im

er
 in

te
rr

u
pt

N
et

w
or

k
co

m
m

u
n

ic
at

io
n

Task 2 Task 3 Task 1 Task 2 Task 3 Task 1

Time

Figure 8: Scheduling diagram.

Table 1: Timeline of the migration mechanism.

TShutdown TSend TReceive TRelight TReboot TMigration

Time (ms) 3.067 13.970 13.968 3.110 0.107 34.222

Task 2 SP

Task 1 SP

.got task 2

.data task 2

Task 2

.got task 1

.got OS

.data task 1

.data OS

Lib I/O

Lib API

Kernel

Task 1

OS SP

0× FFFF

0× 0000

Figure 9: Memory layout.

the remote NPU, the time actually spent in sending the task
through the network TSend being negligible. Similarly, the
operating system of the remote NPU requires a significant
amount of time TReceive for receiving and instantiating the
task in memory. Finally, the last action taken before running
the task is updating both local and remote routing tables;
this is realized in a time TRelight. The task is then rapidly
scheduled and executed (TReboot).

3.5. Programming Model. Programming takes place using a
message passing interface. Hence, tasks are hosted on NPUs
which provide through their operating system communi-
cation primitives that enable data exchanges between com-
municating tasks. The proposed model used only two com-
munication primitives, MPI Send() and MPI Receive(). This
communication primitive is based on the synchronous MPI
communication primitive (MPI Send and MPI Receive).
Figure 11 depicts the layered view of the communication
protocol we use. MPI Receive() blocks the task until the
data is available while MPI Send() is blocking until the
buffer is available on the sender side. In our implementation
each call exhibits this behavior and is translated into a
sequence of low-level Send Data()/Receive Data() methods
that set up a communication channel through a simple
request/acknowledge protocol as depicted in Figure 12. This
protocol ensures that the remote processor buffer has
sufficient space before sending the message which helps
lowering the contentions in the communication network and
also prevents deadlocks.

Figure 12 depicts the communication stack that is used
in our system. Although a hardware implementation could
certainly help improving performance, for compactness
reasons it is fully implemented in software down to packet
assembling.

No explicit group synchronization primitives are pro-
vided; however this can be simply achieved in an ad hoc
fashion through using MPI Send() and MPI Receive() for
passing tokens. Broadcast, gather, and similar mechanisms
can also be implemented in the same manner. Furthermore,
although it could be easily implemented, no nonblocking
receive method is provided since the targeted applications
usually do not require it.

The prototypes of those functions are as in Algorithm 1.
The prototypes of these functions are self explanatory, a

reference to the graph edge identifier, a constant void pointer,
and data size expressed in bytes.

8 International Journal of Reconfigurable Computing

.got

.data

Current address

GOT reference

· · ·

· · ·

· · ·

0× 3500
0× 1000

0× 2000

0× 1000

0× 0500
Relative jump $(500 + 3000)

0× 0000

(a)

.got

.data

Current address

GOT reference

· · ·

· · ·

· · ·

0× 3600
0× 1000 + offset (100)

0× 2100

0× 1100

0× 0600
Relative jump $(600 + 3000)

0× 0100

(b)

Figure 10: Relative jumps with GOT.

Physical

XY routing

Router

RouterRouter

Router

Data link

Network

Transport

Application

MPI_Receive ()MPI_Send ()

Receive_Data ()Send_Data ()

Receive_Packet ()Send_Packet ()

Decapsulate ()Encapsulate ()

Physical

Data link

Network

Transport

Application

Figure 11: HS-Scale protocol stack.

Figure 13 shows an example of task graph where it can be
seen that communication channels feature a (software) FIFO
queue at the receiver side. Queues sizes can be parameterized,
and their size can be tuned on-line as the operating system
provides memory allocation and deallocation services.

MPI Send(int edge, const void ∗data, int size)
MPI Receive(int edge, void ∗data, int size)

Algorithm 1

3.6. Self-Adaptive Mechanisms. The platform is entitled to
take decisions that relate to application implementation
through task placement. These decisions are taken in a fully
decentralized fashion as each NPU is endowed with equiv-
alent decisional capabilities. Each NPU monitors a number
of metrics that drive an application-specific mapping policy;
based on these information an NPU may decide to push or
attract tasks which results in, respectively, parallelizing or
serializing the corresponding tasks execution, as several tasks
running onto the same NPU are executed in a time-sliced
manner.

Figure 14 shows an abstract example where it can be
observed that upon application loading the entire task graph
runs onto a single NPU; subsequent remapping decisions
then tend to parallelize application implementation as the
final step exhibits one task per NPU. Similarly, whenever a
set of tasks become subcritical, the remapping could revert
to situation 3 where T1, T2, and T3 are hosted on a single

International Journal of Reconfigurable Computing 9

NPU while the other supposedly more demanding do not
share NPU processing resources with other tasks. These
mechanisms help achieving continuous load-balancing in
the architecture but can depending on the chosen mapping
policy help refining placement for lowering contentions,
latency, or power consumption.

Mapping decisions are specified on an application-
specific basis in a dedicated operating system service.
Although the policy may be focused on a single metric,
composite policies are possible. Three metrics are available
to the remapping policy for taking mapping decisions.

(i) NPU load. The NPU operating system has the capa-
bility of evaluating the processing workload resulting
from task execution.

(ii) FIFO queues filling level. As depicted in Figure 13,
every task has software input FIFO queues. Similarly
to NPU load, the operating system can monitor the
filling of each FIFO.

(iii) Task distance. The distance that separates tasks is also
a factor that impacts performance, contentions in
the network, and power consumption. Each NPU
microkernel knows the placement of other tasks
of the platform and can calculate the Manhattan
distance with the other tasks it communicates with.

Algorithm 2 shows an implementation of the microker-
nel service responsible of triggering task migrations. The
presented policy simply triggers task migration in case one
of the FIFO queues of a task is used over 80%.

The request task migration() call then sequentially emits
requests to NPUs in proximity order; the migration function
will migrate the task to the first NPU which has accepted
the request; the migration process is started according to the
protocol described previously in Section 3.4.2. This function
can naturally be tuned on an application/task specific basis
and select the target NPU taking into account not only the
distance but also other parameters such as available memory
and current load.

We have implemented also a migration policy based on
the CPU load. The idea is very similar to the first one, and it
consists of triggering a migration of a given task when the
CPU load is lower or greater than a given threshold. This
approach may be subdivided in two subsets.

(1) Whenever the tasks time is greater than or equal
MAX THRESHOLD, it means that tasks are consum-
ing more than or equal to the maximum acceptable
usage of the CPU time.

(2) Whenever the tasks time is less than MIN THR-
ESHOLD, it means that the tasks are consuming less
than the minimum acceptable usage of the CPU time.

For both subsets, the number of tasks inside one NPU
must be verified. For the first subset, it is necessary to have,
at least, two tasks running in the same NPU. For the second
subset, whenever there are one or more tasks in the same
NPU, the migration process may occur.

In the same way the migration process occurs whenever
the CPU load is less than MIN THRESHOLD (20%). When

T3

Proc1 Proc2

MPI_Send (&msg, 5)

request_msg

Hermes NoC

Local FIFO queues

T2

T1

MicrokernelMicrokernel

T6

T5

T4

· · ·

(a)

T3

Proc1 Proc2

MPI_Send (&msg, 5) MPI_Rcv (&msg, 2)

msg

Hermes NoC

Local FIFO queues

T2

T1

MicrokernelMicrokernel

T6

T5

T4

· · ·

(b)

Figure 12: Proactive communication principle.

T3

T2T1

T6

T5T4

Figure 13: Example of task graph.

10 International Journal of Reconfigurable Computing

T3

T2T1

T6

T5T4

Output

Input

T3

T2T1

T6

T5T4

Output

Input

T3

T2T1

T6

T5T4

Output

Tasks handled by a single NPU

Input

T3

T2T1

T6

T5T4

Output

Input

Figure 14: Task graph.

void improvement service routine(){
int i, j;
//Cycles through all NPU tasks
for (i = 0; i < MAX TASK; i++){

//Deactivates policy for dead/newly instantiated tasks
if (tcb[i].status != NEW && tcb[i].status != DEAD){

//Cycles through all FIFOs
for (j = 0; j < tcb[i].nb socket; j++){

//Verifies if FIFO usage > MAX THRESHOLD
if (tcb[i].fifo in[j].average > MAX THRESHOLD){

//Triggers migration procedure if task
//is not already alone on the NPU
if (num task > 1)

request task migration(tcb[i].task ID);
}

}
}

}
}

Algorithm 2

International Journal of Reconfigurable Computing 11

Table 2: Area scalability results.

Number of NPU 1 2 4 (2× 2) 9 (3× 3) 16 (4× 4)

Area (mm2) 1.14 2.29 4.60 10.33 18.40

this occurs, the migration function must look for a NPU that
is using at given threshold of CPU usage, in this case, 60% of
usage. To avoid the task with less than MIN THRESHOLD
keep migrating every time, we have inserted a delay to reduce
the number of migrations.

4. Validations

4.1. Estimations of the Silicon Hardware Prototype. A com-
plete synthesizable RTL level description (about 6000 lines
of VHDL) of the H-Scale system has been designed. It has
allowed us to validate our approach, to estimate areas (post
place and route, with ST Microelectronics 90 nm design
kit), and to improve the design. Any instance of the H-
Scale MP-SOC system may be easily generated with generic
parameters and then evaluated with any standard CAD tool
flow (Encounter Cadence was used).

Table 2 summarizes these evaluations. The clock of the
NPU has been constrained to 3 nanoseconds allowing a
300 MHz frequency. Table 2 clearly shows the area scalability
of H-Scale hardware system (the very low overhead is due to
the wires needed to interconnect the NPUs). These results let
us easily extrapolate that we could design an HS-Scale system
with 32 processors and 2 MB of embedded memory with less
than 50 mm2 of silicon area.

4.2. Multi-FPGA Prototype. The first validations of the
systems were performed thanks to VHDL simulation. Obvi-
ously, this was far too slow for realistic application scenarios
(about 4 minutes for a 10 milliseconds simulation with
a 1.6 GHz processor). Although a SystemC prototype is
also available, we chose to develop a scalable multi-FPGA
prototype.

4.2.1. Platform Description. It is essentially based on a
Spartan3 S1000 FPGA which 1920 configurable logic blocks
(CLB). The board features several general purpose I/Os (8
slide switches, 4 pushbuttons, 8 LEDs, and 4-digit seven-
segment display), 1 MB of fast asynchronous SRAM, several
ports for debugging/monitoring purposes (one serial port, a
VGA port, and PS2 mouse/keyboard port), and three 40-pin
expansion connectors for the interconnections of boards.

As mentioned, one NPU is synthesized on a single FPGA
board. The maximum frequency of the synthesized design
on Spartan3 S1000 FPGA is 25 MHz. Figure 15 depicts the
board with two of the 40-pin expansion connectors used for
North, South, East, and West connections. Communications
are taking place in an asynchronous fashion as described
previously (toggle protocol).

Table 3 gives the device utilization figures for a single
NPU hosted on a single board. The complete prototype
is then composed of several instances of the prototyping
boards connected through the 40-pin expansion connectors.

North
E

ast

W
est

South

Figure 15: The prototyping board.

One board, that is, one UART of a single NPU, is directly
connected to a PC as depicted in Figure 16. This PC is used
as a human-machine interface for sending program data (i.e.,
task codes and microkernel code), the data to compute and
to display debugging messages in the monitoring terminal.

Each NPU has originally a bootloader which performs
upon power up the following operations in sequence.

(1) It checks whether a PC is connected to the UART
port. If so, the NPU initializes its XY coordinates
to address (0 : 0). It then acts as a Dynamic
Host Configuration Protocol (DHCP) server and
proactively sends packets to the East and South ports
informing that it has taken address (0 : 0).

(2) If no UART connection is detected, an incoming
network request is expected. Once the corresponding
packet is received (that the interface NPU has ini-
tiated as described above), an address is calculated:
East neighbor will take address (1 : 0) and South
neighbor address (0 : 1).

(3) This process is reiterated until the boundaries of
the network are found. The X-axis and Y-axis
boundaries are then broadcasted in the network in
order to inform each NPU of the current network
topology.

(4) After the topology information update, the interface
NPU bootloader downloads the microkernel code
from the PC through the UART interface and broad-
casts it to the other NPUs in the network. Each NPU
starts up the operating system as soon as received.
The microkernel is common for each NPU. Depend-
ing on the address of the router, the microkernel
knows its location. For application code, again NPU0
receives the code since it is the only one connected
to the UART. This code is forwarded only to the pro-
cessor, where it is supposed to execute. Only a single
copy of application code exists inside the system.

This method allows to easily scale up the prototype to any
size and shape (form factor may be different than 1). It has

12 International Journal of Reconfigurable Computing

Table 3: FPGA synthesis result.

Device #Slices #FPGA resources used

NPU 2496 32,50%

Router 683 8,89%

MIPS R3000 1462 19,04%

Other 351 4,57%

Total used 4992 65%

00

UART link
(debug/download)

01

02

10

11

12

20

21

22

30

31

32

03 13 23 33

Figure 16: Array of 4× 4 NPU multiboard.

Table 4: Operating system time and memory costs (KB) size.

Microkernel 10

Com. primitive 5,12

I/O primitive 3,12

DATA section 8,48

STACK section 0,56

OS Size 27,28

been designed for later exploring reliability issues for recon-
figuring the system if an NPU becomes unreachable (defec-
tive hardware) for instance. In such a case, the faulty NPU
can be removed from the table of available processing units.

4.2.2. Kernel Characteristics. Table 4 provides an overview of
the memory footprint of our Operating System. In terms
of time penalty, each time the OS is invoked (each time a
timer interrupt happens), it requires 218 cycles to perform
its job. In terms of memory overhead, it requires 27.28 KB.
The communication primitives represent almost one fifth of
the total memory required by our OS.

4.3. Description of the Experiments. The FPGA platform is
the basis of our experiments. Those have been carried out on
the HS-Scale system in order to study and characterize the
strengths and the weaknesses of our approach.

4.3.1. Set of Applications. We have chosen 3 different appli-
cations: a 2-TAP Finite Impulse Response (FIR) filter, a
Data Encryption Standard (DES) encoder, and an MJPEG
decoder. The main motivation for using such applications
was to cover a wide range of possible dataflow applications
in terms of granularities and regularities of the tasks. The
FIR filter is based on fine grain tasks with a task graph
requiring multiple dependencies. Compared to FIR filter,
the granularity of DES tasks and MJPEG tasks is coarser.
DES tasks are regular and not data dependent, while MJPEG
tasks are irregular and depend on the image characteristics.
Some dummy applications have been created for better
highlighting the capabilities of different policies.

4.3.2. Experimental Protocol. We have developed a set of self-
adaptive features for the HS-Scale system: the purpose of this
study is to evaluate and to measure the impact of the self-
adaptability on application performance. The main metric
presented in the next section is the Throughput (TP). It is
computed as follows:

TP
(
KB× s−1)=Number of Computed Data (KB)

Number of Cycles
× f (Hz).

(1)

Our experiments were performed with each NPU running
at f = 50 MHz. We have implemented different application
scenarios as follows.

(i) Monoprocessor Implementations. Each application of our
test set is programmed as a monolithic task (with or without
the operating system) in order to calculate a reference
throughput.

(ii) Multiprocessor Implementations with Static Mappings.
Each application is described as a task graph application.
Performing figures for various static mappings have been
collected.

There is a certain degree of randomness in the execution
of a scenario due to different reasons. Firstly, the commu-
nications between routers are asynchronous. Secondly, the
execution of a task on a given NPU depends on several
varying parameters such as the presence of data in its
FIFO (may depend on other tasks placed on different NPUs
communicating through the asynchronous network) and the
timer interrupts regarding application start that can induce
a different scheduling and a different timing in the decision
making process. This is the reason why, for (1) and (2), the
experiments were repeated 10 times in order to expose the
average throughput and its standard deviation.

(i) Multiprocessor Implementations with Dynamic Mappings
(Migrations). This case represents our main contribution
with self-adaptability features. The studied scenario relies

International Journal of Reconfigurable Computing 13

Table 5: FIR, DES, and MJPEG monolithic implementations and
OS cost.

−OS(a) +OS(b)

FIR
Average TP (KB/s) 315.92 313.08

Standard deviation of TP (Kb/s) 0 0.09

DES
Average TP (KB/s) 6.56 6.54

Standard deviation of TP (Kb/s) 0 0.06

MJPEG
Average TP (KB/s) 35.39 34.98

Standard deviation of TP (Kb/s) 0 0.14
(a)Without the operating system.

(b)Without the operating system.

on an application that is sequentially injected on a single
NPU which triggers remapping decisions. These remapping
decisions are all based on nearest-free neighbor policy where
every time the FIFO utilization reached the 80% threshold,
a migration was triggered. We have monitored dynamically
the throughput and the FIFO utilization ratio in order to plot
these metrics as temporal functions.

5. Applications and Results

This section is devoted to the analysis of the self-adaptive
results obtained on the FPGA prototype. Three classes of
results are exposed: (i) monoprocessor implementations
used as reference, (ii) multiprocessor static mappings, and
(iii) self-adaptive implementation where tasks freely migrate
from NPU to NPU.

5.1. Monoprocessor Study. Each application (FIR, DES, and
MJPEG) was programmed as a monolithic task with or
without the Operating System. The aim of this study is to
evaluate the impact of the use of our OS on performance
and also to provide a reference performance for further
implementations.

Table 5 summarizes the results. The important infor-
mation from these results are (1) that the impact of
the Operating System on the throughput performance is
relatively low (less than 0.95% for each application of our test
set) and (2) that it introduces a certain level of randomness
(shown by the standard deviation). As a conclusion, the
OS provides low-cost multitasking capabilities and implies a
very little reduced quality-of-service as the throughput is not
deterministic anymore.

5.2. Static Placement Study. Each application of our test
set was partitioned into several tasks. Our objective was
to distribute the computations of a given application onto
several processors in order to evaluate the impact on
the throughput. This distribution was hand-made (static
placement), and no migration was allowed for discarding
the influence of transient phenomena. All references to
task placements made throughout this section rely on the
addressing mode presented in Figure 16.

5.2.1. Data Encryption Standard. The Data Encryption Stan-
dard (DES) algorithm is composed of several computational

Round 0

Round 15

xor

xor

f

f

xor f

··
·

··
·

··
·

Input (64 bits)

Initial permutation

R0 (32 bits)L0 (32 bits)

K1 (48 bits)

R1 = L0 xor f (R0,K)L1 = R0

K2 (48 bits)

R2 = L1 xor f (R1,K)L2 = R1

R15 = L14 xor f (R14,K)L15 = R14

K16 (48 bits)

L16 = R15R16 = L15 xor f (R15,K)

Inverse initial permutation

Output (64 bits)

Figure 17: The DES algorithm.

steps as depicted in Figure 17. All 16 rounds are functionally
equivalent but operate with different keys (K1 · · ·K16).

We have chosen to implement it in a pipeline fashion,
by decomposing the rounds (16 rounds). Figure 18 shows
the DES performance results for different partitioning of the
DES algorithm. We devised 4 different pipelines, with 2, 4, 6,
and 8 tasks which therefore correspond to tasks embedding
8 to 2 rounds. Due the communication overhead introduced
by the task partitioning, we observed that the performance
is decreased when running all tasks on the same NPU. Then,
when expanding the task graph to other NPUs, we observe
that the throughput increases rapidly until it reaches its
maximum value when n tasks are mapped to n NPUs. The
OS overhead is generally hidden when the n tasks can be
mapped to n/2 NPU. Finally, the performance improvement
of n task partitioning corresponds to n stage pipeline, that is,
the reference throughput is at the maximum approximately
multiplied by n.

5.2.2. MJPEG Decoder. Figure 19 shows the processing
pipeline of a JPEG encoder operating on grey-coded images.

14 International Journal of Reconfigurable Computing

0 1 2 3 4 5 6 7 8 9

NPU

0

5

10

15

20

25

30

35

40

T
h

ro
u

gh
tp

u
t

(K
B

/s
)

DES
DES2
DES4

DES6
DES8

Figure 18: DES performances results with 1, 2, 4, 6, and 8 tasks.

Compressed data

IVLC

IQ

IDCT

Output data

Figure 19: MJPEG data flow.

The first step of this application is the inverse variable length
coding (IVLC) which relies on a Huffman decoder. This
processing time for that task is data dependent. The two last
tasks of the processing pipeline are, respectively, the inverse
quantization (IQ) and the inverse discrete cosine transform
(IDCT). The atomic data transmitted from task to task is an
8 × 8 pixel block which has a size of 256 bit. We naturally
chose to use a traditional task partitioning as depicted in
Figure 19 with both a task-level dataflow description.

Similarly to the FIR and DES applications, the operating
system communication primitives induce a performance
overhead when the decoder is splitted into 3 tasks (Table 6,
column 1) compared to the performance shown in Table 6,
column 2 (39.11 KB/second). Distributing the processing of

Table 6: Throughput evolution with task graph expansion.

#NPU 1 2 3

Task placement 3L(a) 2L, 1R 3R

Average TP (KB/s) 29.21 39.11 39.05

Standard deviation of TP
(Kb/s)

0.21 0.52 0.40

(a)The notations L and R refer to “Local” and “Remote” executions.

IVLC on a remote NPU (Table 6, column 3) immediately
pays with a significant increase in the throughput. The fully
distributed implementation exhibits a very small perfor-
mance improvement when comparing to a local implemen-
tation, which is due, as we will show in the next section,
to the fact that a critical task in the processing pipeline
already fully employs the processing resources of a given
NPU. The standard deviation, as previously observed for
DES and FIR applications, increases with task partitioning
and distribution.

5.3. Dynamic Placement Study (with Migrations). The aim
of this section is to analyze the dynamic behavior of HS-
Scale. We will study on the different remapping policies
of the transient phenomenon in time, and the impact on
performance will be measured.

5.3.1. Diagnostic and Decision Based on Communication Load.
The first migration policy corresponds to a percentage of the
FIFO utilization threshold (80% in our experiments). In this
case, when the software monitor detects that the FIFO is filled
over 80% for a given task, this task is automatically moved to
another NPU according to a first neighbor policy.

Two scenarios DES4 and MJPEG applications are
exposed in this section to prove the validity of this policy,
starting from the neighbor on the east.

5.3.2. DES4. In this scenario, we used the DES application
partitioned into 4 tasks: task 1 (T1) corresponds to the
rounds 1 to 4, task 2 (T2) corresponds to the rounds 5 to
8, task 3 (T3) corresponds to the rounds 9 to 12, and task
4 (T4) to rounds 13 to 16. Figure 20 depicts the measured
throughput of the application with the normal policy.

During the first seconds, the tasks (T1, T2, T3, T4) are
manually sent from the external PC and placed on the
NPU(1, 1). At t1 = 25.43 seconds, the DES starts the
computation: the four tasks are running sequentially on the
same NPU. Three migrations are performed by the policy in
less than 200 milliseconds; the FIFO levels of T1, T3, and T4
are above the threshold at times t = 26.21 seconds, t = 27.02
seconds, and t = 27.78 seconds, respectively. After the last
migration, we can see an increase of the throughput that
also causes a decrease T3 FIFO filling. The throughput then
stabilizes around 17 KB/s.

Comparing the performance of the last placement with
the static mapping presented previously, we observe identical
figures; this policy has rapidly found (1.59 seconds) one of
the best placement. In order to better observe the evolution
of performance in the different steps, results presented in

International Journal of Reconfigurable Computing 15

13–16 9–12 5–8

1–4

13–16
9–12

5–8

1–4

13–16

9–125–8

1–4

13–16

9–125–8

1–4

13–16

Cipher text

Plain text

9–12

5–8

1–4

20 22 24 26 28 30 32 34 36 38

Time (s)

0

5

10

15

20

25

30

T
h

ro
u

gh
tp

u
t

(K
B

/s
)

0

10

20

30

40

50

60

70

80

90

100

FI
FO

m
on

it
or

in
g

(%
)

Throughput
FIFO of round 1 to 4
FIFO of round 5 to 8

FIFO of round 9 to 12
FIFO of round 13 to 16

Figure 20: DES4 execution in time without delay.

13–16 9–12 5–8

1–4

13–16
9–12

5–8

1–4

13–16

9–125–8

1–4

13–16

9–125–8

1–4

13–16

Cipher text

Plain text

9–12

5–8

1–4

20 25 30 35 40 45 50 55 60 65

Time (s)

0

5

10

15

20

25

T
h

ro
u

gh
tp

u
t

(K
B

/s
)

0

10

20

30

40

50

60

70

80

90

100

FI
FO

m
on

it
or

in
g

(%
)

Throughput
FIFO of round 1 to 4
FIFO of round 5 to 8

FIFO of round 9 to 12
FIFO of round 13 to 16

Figure 21: DES4 execution in time with delay.

16 International Journal of Reconfigurable Computing

Compressed data

IVLC

IQ

IDCT

IDCT

Output data

IVLC

IQ
IDCT

IVLC

IQ

15 20 25 30 35 40 45

Time (s)

0

5

10

15

20

25

30

35

40

45

50

T
h

ro
u

gh
tp

u
t

(K
B

/s
)

0

10

20

30

40

50

60

70

80

90

100

FI
FO

m
on

it
or

in
g

(%
)

Throughput
IVLC

IQ
IDCT

Figure 22: MJPEG execution in time.

Figure 21 were implemented using a policy that allows one
migration every 10 seconds at most.

At the beginning after the start of the DES application at
t1 = 28.71 seconds, all tasks are running in the same NPU,
and the throughput of the application is around 4 KB/s. At
t2 = 29.02 seconds, the FIFO monitor of T1 indicates a
FIFO usage greater than 80%: it then begins automatically
to move the task (i.e., (1) waiting a migration point, (2)
looking for a free NPU, (3) migrating the task, and (4)
restoring the context). Due to the migration policy, the task
is placed on the NPU(1, 2). Then, the throughput stabilizes
around 6.5 KB/s. After this migration, FIFO fillings of T2 and
T3 increase quickly above 80% because T1 shows a higher
throughput due to the fact it benefits from an entire NPU. As
soon as the policy re-enables migrations (t3 = 39.03 seconds),
T3 migrates on NPU(2, 1). FIFO usage of T4 then increases
because of the time-multiplexing execution which results ten
seconds later into another migration (t4 = 49.04 seconds).

The same final state is observed as previously with an
average throughput of 17 KB/s. This clearly demonstrates for
the DES application that such a simple policy is capable of
rapidly converging to a best placement.

5.3.3. MJPEG. In this scenario, we use the MJPEG decoder
application partitioned into three tasks: IVLC, IQ, and IDCT.
Figure 22 depicts the application throughput and the FIFO
usage of each task in the pipeline.

During the very first seconds, all tasks are instantiated
manually on the NPU(1, 1). From t1 = 21.35 seconds to t2
= 22.26 seconds, these tasks are executed sequentially on the
same NPU which provides an average throughput of 30 KB/s.

At t2, the IVLC FIFO reaches a value greater than 80%: this
leads to a migration process that involves the following steps.

(i) Freezing task execution and search for a free NPU
(3.11 milliseconds).

(ii) Migrating the task (14.05 milliseconds).

(iii) Restoring the context (3.32 milliseconds).

Due to the migration policy, the task is moved from
NPU(1, 1) to NPU(1, 2): it takes 20.48 milliseconds for
the whole task migration process. During this time, the
OS consumes CPU time for the migration process which
decreases the application throughput. After the migration
completion, the average throughput reaches 40 KB/s: it takes
153.6 milliseconds until a performance benefit is observed.

We then observe the following behavior of the system: on
one hand, the IQ FIFO utilization remains stable meaning
that it has just enough CPU time to process its data, and on
the other hand the IDCT FIFO decreases meaning that it has
enough CPU time to process all the data in its FIFO. In this
situation, the mapping is stable from the migration policy
point of view.

This clearly suggests that the policy is adequate with
respect to the optimization of performance: as seen previ-
ously in Table 6 since IVLC proves the most time consuming
task, therefore any further migration would not help improv-
ing performance.

5.3.4. Diagnostic and Decision Based on CPU Workload. The
example on Figure 23 shows the results for this migration
policy based on the CPU workload. The experimental

International Journal of Reconfigurable Computing 17

IDCT
IDCT

IVLC

IVLC

IQ

IQ
IDCT

IVLC

IQ

0 10 20 30 40 50 60 70 80 90 100

Time (s)

0

5

10

15

20

25

30

35

40

T
h

ro
u

gh
tp

u
t

(K
B

/s
)

0

10

20

30

40

50

60

70

80

90

100

C
P

U
ti

m
e

(%
)

MJPEG throughput
CPU time for NPU 0101
CPU time for NPU 0102

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12

Figure 23: MJPEG decoder throughput based on CPU workload.

protocol used for these results relies on varying the input data
rate for observing how the system adapts.

At the beginning all tasks (IVLC, IQ, and IDCT) are
running on the same NPU(1, 1), but the input throughput
on the MJPEG application is lower so the CPU time consume
is around 47%. At each step t1, t2, and t3 the input
throughput is increased, so we can see an increase of the
CPU time consumed step by step. When the CPU time
used exceed the threshold (i.e., 80%), the operating system
detects that the NPU(1, 1) is overloaded (at 45 seconds)
so it decided to migrate the task which uses the most of
CPU time on a neighboring NPU. In this example IVLC
task migrates on NPU(1, 2) which decreases the CPU time
used by NPU(1, 1) around 35% and an increase of CPU
used by NPU(1, 2) around 80%. At t4 the input throughput
increases more which leads to an MJPEG throughput
increase around 35 KB/s and overloaded the NPU(1, 2) at
100% but migration is not triggered because just one task
is compute.

From t5 to t12 the input throughput of the MJPEG
application is decreased step by step, and when the CPU
time of NPU(1, 2) is less than 20% (at 72 seconds), the
operating system decides to closer task on the same NPU
(the NPU(1, 1)). We can see after this migration a decrease
of CPU time used by the NPU(1, 2) and an increase of CPU
time used by NPU(1, 1) but without saturate it.

We can observe that MJPEG application performances
are lower than in the static mode; this is because the

operating system uses more CPU time (around 10%) to
monitor CPU time and average sample.

5.3.5. Diagnostic and Decision Based on Locality. The third
migration policy corresponds to optimizing placement for
decreasing Manhattan distance [23] (number of hops)
between communication tasks: whenever the software mon-
itor detects a closer placement of a given task, this task is
automatically migrated to this NPU.

To prove the validity of this policy, we will expose results
on one scenario with a dummy application that is made of
numerous communicating tasks.

In this scenario, we use a dummy application which
generates intensive traffic between communicating tasks.
Each task consumes a different value of CPU time to compute
this data. The graph task of this dummy application is
presented on Figure 24.

Table 7 presents the results obtained with the policy
based on the closest placement. For four initial placements,
we have executed five simulations and observed the final
placements obtained. This table summarizes these experi-
ments and gives the initial placement, the final placements
as well as the cumulated distance for these.

The best obtained placements exhibit 13 hops which is a
satisfying result with respect to the best placement presented
previously. These placements were furthermore obtained
with a limited number of migrations (around 10) which
suggests that deriving policies which would take into account

18 International Journal of Reconfigurable Computing

Table 7: Dummy application with closest placement policy.

T3T1

T2 T6

T5T7 T8

T4

T3

T1

T2

T6

T5T7

T8

T4

T3T1

T2

T6

T5

T7

T8T4

T3

T1

T2

T6T5

T7 T8

T4

T3T1

T2

T6

T5

T7

1310

6 18

137

147

131031

T8

T4

T3

T1

Graph

Number of migrationsInitial placement

Number of
hops between

tasks

T2

T6

T5 T7

T8

T4

Number of
hops between

tasks

Graph

Final placement

more parameters or even take sub-optimal decisions for
avoiding local minima could help further improving these
results.

6. Conclusions

Microelectronics currently undergo profound changes due
to several factors such as the approaching limits of silicon
CMOS technology as well as the inadequacy of the machine
models that have been used until now. These challenges
imply to devise new approaches to the design and program-
ming of future integrated circuits. Hence, parallelism appears

as the only solution for coping with the ever increasing
demand in term of performance. Together with this, issues
such as reliability and power consumption are yet to be
addressed. The solutions that are suggested in literature often
rely on the capability of the system to take online decisions
for coping with these issues, such as scaling supply voltage
and frequency for increasing energy efficiency, or testing
the circuit for identifying faulty components and discarding
them from the functionality.

MPSoCs are certainly the natural target for bringing
these techniques into practice: provided they comply with

International Journal of Reconfigurable Computing 19

T3T2

T1

T6

T7 T8

T5T4

Figure 24: Dummy task graph.

some design rules they may prove scalable from a perfor-
mance point of view, and since they are in essence distributed
architectures, they are well suited to locally monitoring and
controlling system parameters.

From the software point of view, the system presented
in this paper relies on a tiny operating system that is used
on every processing element. This decision certainly helps in
improving system scalability as the adaptability policies that
were proposed rely on a purely decentralized decisionmaking
approach. The three presented policies suggest that although
distributed and operating on either local or possibly non
up-to-date system information, performance versus static
scenarios are comparable. Finally we also demonstrated that
such as solution could be viable even considering economic
constraints such as silicon cost: the overhead incurred by this
approach has been quantified in term of logic and memory
thanks to the realization of the 16 processors prototype
which is fully functional.

This paper describes an adaptive MPSoC framework that
utilizes a message passing programming model. Based on
information implemented in the form of distributed software
monitors, the user can specify migration policies that enable
the architecture to refine task placement. The conducted
experiments show the following.

(i) Migration helps better balancing processor load at
run-time for achieving better performance.

(ii) Task migration incurs a minimal performance over-
head.

The important characteristics that have been consid-
ered are mostly flexibility, scalability, and adaptability. The
remapping policies adopted show that it is possible to have
a very flexible, scalable, and self-adaptable MPSoC by using
monitoring systems not complex which does not affect the
overhead of the system.

The proposed architecture relies on the following design
decisions.

(i) Decentralized control.

(ii) Homogeneous array of processing elements.

(iii) Distributed memory.

(iv) Scalable NoC-style communication network.

Although such principles have so far demonstrated the
interest in the sole context of performance, it suggests that

other benefits could be achieved such as power management
where highly communicating task could be mapped to
neighbor processors whereas this constraint is relaxed for
others. Future work aims at exploring these functionalities
in connection with voltage and frequency scaling techniques
since these approaches combined could reveal useful for
better balancing performance and power consumption.

Another promising perspective of this work relies on
task replication which helps further taking advantage of
processing resources whenever needed. Although this is
applicable for certain applications only, our first experiment
on the MJPEG application shows that only critical task gets
replicated with similar mapping/replication policies as the
one presented in this paper. This should prove particularly
useful for tasks which data dependant processing load such
as the IVLC in our case.

Although this has not yet been demonstrated, the
structure also intrinsically supports fault tolerance to a
certain degree since each processor is aware of all others
in the system. A faulty processor identified as such using
mutual testing techniques could be discarded from the list
of functional units, and further mapping decisions would
therefore target the remaining processors only. Extending the
control to some different system parameters such as process-
ing elements frequency and supply voltage would certainly
help further improving observed performance. Among the
considered possible strategies, task replication is certainly
of significant interest as it would help better matching
the number of processing resources to the performance
demand. This technique would prove applicable in some
restricted domains (mostly for dataflow applications) but
could probably be extended.

Similarly, for the growing concern of fault tolerance the
developed techniques could here constitute a viable solution;
since the system is entirely distributed, faulty units could be
identified by others and therefore functionality would rely on
the remaining processing units.

Finally, we think that adaptability is an approach that will
in the near future be widely adopted in the area of MPSoC.
Not only because of the here mentioned limitations such
as technology shrinking, power consumption, and reliability
but also because computing undoubtedly goes pervasive.
Pervasive or ambient computing is a research area on its
own and in essence implies using architectures that are
capable of self-adapting to many time-changing execution
scenarios. Examples of such applications range from ad-
hoc networks of mobile terminals such as mobile phones to
sensor networks systems aimed at monitoring geographical
or seismic activity. In such application fields, power effi-
ciency, interoperability, communication and scalability are
primary concerns such systems have to cope with many
limitations such as limited power budget, interoperability,
communication issues, and finally, scalability.

References

[1] D. E. Culler, Parallel Computer Architecture: A Hard-
ware/Software Approach, Morgan Kaufmann, San Francisco,
Calif, USA, 1st edition, 1998.

20 International Journal of Reconfigurable Computing

[2] W. M. Collier, Reasoning about Parallel Architectures, Prentice-
Hall, Englewood Cliffs, NJ, USA, 1992.

[3] M. J. Flynn, “Some computer organizations and their effec-
tiveness,” IEEE Transactions on Computers, vol. 21, no. 9, pp.
948–960, 1972.

[4] B. Nichols, D. Buttlar, and J. P. Farrell, Pthreads Programming,
O’Reilly, Sebastopol, Calif, USA, 1996.

[5] “The OpenMP API specification for parallel programming,”
http://openmp.org/wp.

[6] W. Gropp, E. Lusk, and A. Skjellum, Using MPI: Portable Par-
allel Programming with the Message-Passing Interface, Scientific
and Engineering Computation Series, MIT Press, Cambridge,
Mass, USA.

[7] G. Kahn, “The semantics of a simple language for parallel
programming,” in IPIP Congress, pp. 471–475, 1974.

[8] M. Saldana and P. Chow, “TDM-MPI: an MPI implementa-
tion for multiple processors across multiple FPGAs,” in Pro-
ceedings of the International Conference on Field Programmable
Logic and Applications (FPL ’06), pp. 1–6, Madrid, Spain,
August 2006.

[9] J. Kohout and A. D. George, A High-Performance Communica-
tion Service for Parallel Computing on Distributed DSP Systems,
Elsevier Science, Amsterdam, The Netherlands, 2003.

[10] J. J. Murillo, D. Castells-Rufas, and J. C. Bordoll, “HW-
SW framework for distributed parallel computing on pro-
grammable chips,” in Proceedings of the Conference on Design
of Circuits and Integrated Systems (DCIS ’06), 2006.

[11] “MPCore Linux 2.6 SMP kernel and tools,” ARM Limited,
http://www.arm.com/products/os/linux download.html.

[12] A. Barak, O. La’adan, and A. Shiloh, “Scalable cluster comput-
ing with MOSIX for Linux,” in Proceedings of the Linux Expo,
pp. 95–100, Raleigh, NC, USA, May 1999.

[13] J. Robinson, S. Russ, B. Heckel, and B. Flachs, “A task
migration implementation of the message-passing interface,”
in Proceedings of the IEEE International Symposium on High
Performance Distributed Computing (HPDC ’96), p. 61, 1996.

[14] A. R. Dantas and E. J. Zaluska, “Improving load balancing
in an MPI environment with resource management,” in
High-Performance Computing and Networking, pp. 959–960,
Springer, Berlin, Germany, 1996.

[15] L. Chen, C.-L. Wang, F. C. M. Lau, and K. K. Ricky, “A grid
middleware for distributed Java computing with MPI binding
and process migration supports,” Journal of Computer Science
and Technology, vol. 18, no. 4, pp. 505–514, 2003.

[16] S. Carta, M. Pittau, A. Acquaviva, et al., “Multi-processor
operating system emulation framework with thermal feedback
for systems-on-chip,” in Proceedings of the 17th Great Lakes
Symposium on VLSI (GLSVLSI ’07), pp. 311–316, Stresa-Lago
Maggiore, Italy, March 2007.

[17] S. Bertozzi, A. Acquaviva, D. Bertozzi, and A. Poggiali,
“Supporting task migration in multi-processor systems-on-
chip: a feasibility study,” in Proceedings of the Conference on
Design, Automation and Test in Europe (DATE ’06), vol. 1, pp.
1–6, Munich, Germany, March 2006.

[18] L. Benini, D. Bertozzi, A. Bogliolo, F. Menichelli, and M.
Olivieri, “MPARM: exploring the multi-processor SoC design
space with systemC,” Journal of VLSI Signal Processing Systems
for Signal, Image, and Video Technology, vol. 41, no. 2, pp. 169–
182, 2005.

[19] M. Pittau, A. Alimonda, S. Carta, and A. Acquaviva, “Impact
of task migration on streaming multimedia for embedded
multiprocessors: a quantitative evaluation,” in Proceedings of
the IEEE/ACM/IFIP Workshop on Embedded Systems for Real-
Time Multimedia (ESTIMedia ’07), pp. 59–64, October 2007.

[20] MIPS corp., http://www.mips.com.
[21] F. Moraes, et al., “Hermes: an infrastructure for low area

overhead packet-switching networks on chip integration,”
VLSI Journal, vol. 38, pp. 69–93, 2004.

[22] J. R. Levine, Linkers and Loaders, Morgan Kaufmann, San
Francisco, Calif, USA, 1999.

[23] P. E. Black, “Manhattan distance,” http://www.itl.nist.gov/
div897/sqg/dads.

International Journal of

Aerospace
Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2010

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Active and Passive
Electronic Components

Control Science
and Engineering

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 International Journal of

 Rotating
Machinery

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com

 Journal ofEngineering
Volume 2014

Submit your manuscripts at
http://www.hindawi.com

VLSI Design

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Shock and Vibration

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Civil Engineering
Advances in

Acoustics and Vibration
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Advances in
OptoElectronics

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Sensors
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Chemical Engineering
International Journal of Antennas and

Propagation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Navigation and
 Observation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
Sensor Networks

International Journal of

