
HAL Id: lirmm-00374749
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00374749v1

Submitted on 9 Apr 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distinguishing Answers in Conceptual Graph Knowledge
Bases

Nicolas Moreau, Michel Leclère, Madalina Croitoru

To cite this version:
Nicolas Moreau, Michel Leclère, Madalina Croitoru. Distinguishing Answers in Conceptual Graph
Knowledge Bases. ICCS: International Conference on Conceptual Structures, Jul 2009, Moscow,
Russia. pp.233-246, �10.1007/978-3-642-03079-6_18�. �lirmm-00374749�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00374749v1
https://hal.archives-ouvertes.fr

Distinguishing Answers in Conceptual Graph

Knowledge Bases

Nicolas Moreau, Michel Leclère, and Madalina Croitoru

LIRMM, Univ. Montpellier 2, CNRS
161, rue Ada

34392 Montpellier, France
{moreau,leclere,croitoru}@lirmm.fr

Abstract. In knowledge bases (KB), the open world assumption and
the ability to express variables may lead to an answer redundancy prob-
lem. This problem occurs when the returned answers are comparable.
In this paper, we define a framework to distinguish amongst answers.
Our method is based on adding contextual knowledge extracted from
the KB. The construction of such descriptions allows clarification of the
notion of redundancy between answers, based not only on the images of
the requested pattern but also on the whole KB. We propose a defini-
tion for the set of answers to be computed from a query, which ensures
both properties of non-redundancy and completeness. While all answers
of this set can be distinguished from others with a description, an open
question remains concerning what is a good description to return to an
end-user. We introduce the notion of smart answer and give an algorithm
that computes a set of smart answers based on a vertex neighborhood
distance.

1 Motivation

In the semantic web age, a large number of applications strongly rely on the
building and processing of knowledge bases (KB) for different domains (multi-
media, information management, semantic portals, e-learning, etc.). The formal
languages used for representation will encounter obvious scaling problems and
therefore rely on implicit or explicit graph based representations (see for ex-
ample Topic Maps, RDF, Conceptual Graphs, etc.) As a direct consequence,
querying such systems will have to be done through graph based mechanisms
and, accordingly, optimization techniques implemented [1].

In ICCS’08 [2], we identified the semantic database context in which a set of
answers has to be computed. For this case, there are two kinds of answer graphs:
answers as subgraphs of the knowledge base graph that are used for browsing
the KB or for applying rules; and answers as graphs, independent of the KB,
corresponding to the classical use of a querying system1. With this latter kind

1 For example, in SPARQL, as blank node labels can be renamed in results, see [1] ¶
2.4.

of answer, an important problem concerns detecting redundant answers. Unlike
classical databases, redundancies are not limited to duplicate tuples. Indeed, the
presence of unspecified entities (generic markers in CG or blank nodes in RDF)
and also a type hierarchy leads us to consider that an answer which is more
general than another as redundant. In [2], we studied this problem and proposed
to return irredundant forms of the most specific answers to a query.

An important problem arising in this context is ultimately related to the
nature of a KB vs. a database. With a classical database, one can assume that
a query designer knows the database schema and is thus able to build a query
corresponding to its needs. With a KB, the schema is extended to an ontology
and the different assertions are not supposed to instantiate a specific frame (the
knowledge is semi-structured). Consequently, it is difficult for a query designer
to specify the content of the searched knowledge: he/she wants to obtain some
information about a specific pattern of knowledge. The suppression of redundant
answers only by comparing answer graphs independently of the KB results in the
problem not being considered. A better way to address the redundancy problem
consists of completing the answer graphs with their neighborhood to obtain more
detailed answers in order to return some relevant knowledge to the end-user in
order to get insight (restitution, reflet) into the diversity of the knowledge in the
KB. Moreover, users seem to prefer answers in their context (e.g. paragraph)
rather than the exact answer[3].

In this paper we focus on answers given in a graph based form. Our motivation
stems from the homogeneity of preserving the same format between the KB,
query and answer. Moreover, this will allow the reuse of answers as a KB for
different future answers (see for example nested queries). Note that while this
paper focuses solely on the problem of distinguishing graph based answers, the
same research problem will arise and results will be obtained when of answers
are represented as a tuple.

2 Contribution and related work

Figure 1 shows a query, a conceptual graph formalized KB (see section 3.1) and
all five answers to the query in the KB (from A1 to A5, in gray in the picture).

The problem that arises in this scenario is how to define relevant answers
when they are independent of the KB (i.e. a set of answer graphs and not a set
of answer subgraphs of the KB). For instance, answers A1 and A5 are equivalent
(“there is a human who owns an animal”), and knowledge expressed by these
answers is expressed by all of the others. The open world assumption makes it
impossible to state that all humans or animals represent distinct elements of the
described world. Therefore it seems preferable to only return answers that bring
more knowledge, i.e. in our example that “Mary owns a cat” and “a human owns
a dog”. But another relevant answer could be that “there is a human knowing
Mary who owns a cat”.

The contribution of the paper is to refine our preceding notion of redundancy
between answers, to take the knowledge of the KB into account, through the

Q

KB

A1
A2 A3 A4 A5

21
Animal: *ownHuman: *

2 2

11

12

222

Animal: *Animal: * Dog: *Cat: *Cat: *

know

ownown

1

own

1

own

1

own

21
know Human: *Human: *Human: MaryHuman: *

Fig. 1. Query, KB and highlighted answers.

notion of a fair extension of an answer, a graph that specifically describes an
answer. Thus, an answer is irredundant if there is such a “fair” extension. A
special case of this problem (when the answer is a concept node) corresponds
to the problem of Generation of Referring Expressions (GRE) studied in the
conceptual graph context in [4], that we extend for our purposes. Based on
the extended notion of redundancy, we define two answer subset properties of
non-redundancy (there is no redundant answer in the subset) and completeness
(each answer is redundant to an answer of the subset). We then explain how
to compute all the non-redundant and complete subsets of answers, based on a
redundancy graph. We then discuss what is a good set of referring graphs to be
returned to the user, and give an algorithm that fulfills these good properties.

As previously mentioned, a special case of answer identification was studied
in [4]. The RDF query language SPARQL offers a way to describe answers (by
the DESCRIBE primitive) but it does not address the specific problem of dis-
tinguishing one answer from another according to semantically sound syntactic
criteria. The problem of answer redundancy in the Semantic Web context has
been studied in [5], but the redundancy stated in this paper concerns the union
of all answers, and corresponds, in the CG field, to the classical notion of ir-
redundancy (see section 3.1), as opposed to our redundancy between answers.
In an article about OWL-QL [6] the notion of server terseness is defined, which
is the ability of a server to always produce a response collection that contains
no redundant answers (i.e. there is no answer that subsumes another one). This
corresponds to our previous notion of redundancy defined in [2].

In the next section, preliminary notions about conceptual graphs and our
query framework are given. Section 4 deals with the extended notion of redun-
dancy between answers and its application to a subset of answers. In section 5
we discuss the relevancy of the set of referring graphs returned to the user. We
conclude our work in the last section.

3 Preliminary notions

3.1 Simple Graphs

The conceptual graph formalism we use in this paper has been developed at
LIRMM over the last 15 years [7]. The main difference with respect to the initial

general model of Sowa [8] is that only representation primitives allowing graph-
based reasoning are accepted.

Simple graphs (SGs) are built upon a support, which is a structure S =
(TC , TR, I, σ), where TC is the set of concept types, TR is the set of relations
with any arity (arity is the number of arguments of the relation). TC and TR

are partially ordered sets. The partial order represents a specialization relation
(t′ ≤ t is read as “t′ is a specialization of t”). I is a set of individual markers.
The mapping σ assigns a signature to each relation specifying its arity and the
maximal type for each of its arguments.

SGs are labeled bipartite graphs denoted G = (CG, RG, EG, lG) where CG

and RG are the concept and relation node sets respectively, EG is the set of
edges and lG is the mapping that labels nodes and edges. Concept nodes are
labeled by a couple (t : m), where t is a concept type and m is a marker. If the
node represents an unspecified entity, its marker is the generic marker, denoted
∗, and the node is called a generic node, otherwise its marker is an element of
I, and the node is called an individual node. Relation nodes are labeled by a
relation r and, if n is the arity of r, it is incidental to n totally ordered edges.

A specialization/generalization relation corresponding to a deduction notion
is defined over SGs and can be easily characterized by a graph homomorphism
called projection. When there is a projection π from G to H, H is considered to
be more specialized than G, denoted H ≤ G. More specifically, a projection π

from G to H is a mapping from CG to CH and from RG to RH , which preserves
edges (if there is an edge numbered i between r and c in G then there is an edge
numbered i between π(r) and π(c) in H) and may specialize labels (by observing
type orders and allowing substitution of a generic marker by an individual one).

In the following, we use the notion of bicolored SG that was first introduced
in [9]. A bicolored SG is an SG H = 〈H0, H1〉 in which a color on {0, 1} is
assigned to each node of H, in such a way that the subgraph generated by 0-
colored nodes, denoted H0 and called the core of H, is a subSG. H1, which is the
sub-SG defined by 1-colored vertices and 0-colored concepts that are in relation
with at least one 1-colored concept, is called the description.

3.2 Query framework

The chosen context is a base composed of assertions of entity existences and rela-
tions over these entities, called facts, and stored in a single graph (not necessarily
connected) named the knowledge base. This graph is assumed to be normalized
if it does not contain two individual nodes with the same marker i. A normal
form is easily computed by merging duplicate individual nodes of the graph. On
the other hand, we do not require the KB graph to be in irredundant form: a
graph G is in irredundant form iff there is no a projection from G in one of these
strict subgraphs; otherwise this graph is said to be in redundant form. Indeed,
computation of the irredundant form of a graph is expensive as the base can be
large [10] and, moreover, there is not any local criterion for computation of the
irredundant form and thus no incremental method (started at each updating of
the base) can be expected. Such a KB graph B is simply queried by specifying a

SG Q called the query. There is no constraint on the query (normalization or ir-
redundancy). The answers to the query are found by computing the set Π(Q, B)
of projections from Q to B. The primary notion of answer consists of returning
the set of subgraphs of B image of Q by a projection in Π(Q, B).

Definition 1 (Answer set). The set of answers of a query Q in a base B,
denoted Q(B), is {π(Q) | π ∈ Π(Q, B)}2.

The first research question we address in this paper is whether this set of
answers contains redundant answers? In fact, three kinds of redundancies can
arise:

1. Duplication: two answers are identical. There is a duplication when two
projections define the same subgraph. This problem can be solved easily by
only keeping one of the duplicate subgraphs (this is done in the answer set
Q(B)). An example of duplication is given in fig. 3(b) taken as the KB and
fig. 3(c) taken as the query: there are two projections from the query whose
images are the whole KB.

2. Inclusion: An answer is contained in another one. There is an inclusion
when an answer is in a redundant form. Then its subgraph, in irredundant
form, is also an answer. In the previous example (fig. 3(b) and 3(c)), there
are two projections that define included answers.

3. Redundancy: An answer is more general or equivalent than another one.
There is a redundancy when two answers are comparable (thus the knowledge
expressed by one is also expressed by another); as an example answers A1

and A2 of figure 1.

Inclusion will be studied in section 4.4. The true redundancy problem be-
comes crucial since the answers are no longer KB subgraphs. Indeed, two an-
swers can appear redundant when they are not really redundant. In [2], we define
the notion of redundancy based only on the comparability of the answer graphs.
This approach was motivated by the following argument: as the returned set of
answers is independent of the KB, the subset of the more specific irredundant
answers, denoted Rmin, is sufficient to bring the entire range of answers. More-
over, Rmin is minimal in terms of vertex number. In the following section, we
characterize the true redundancy.

4 Dealing with true redundancy

In [2], the completeness criterion (the knowledge expressed by each initial answer
is expressed by one of the answers contained in the returned subset of answers)
ensures that no knowledge is lost when a redundant answer is deleted. But this
redundancy is based only on the comparability of answer subgraphs (that are
semantically close as they are specializations of the query).
2 “Answer set”, denoted Q(B), and “answer” notions correspond respectively in our

previous work [2] to notions of “answers by image subgraphs”, denoted RIP (Q, B),
and “images of proof”. Names have been changed for simplification.

4.1 The true redundancy

The true redundancy has to take the knowledge brought by the neighbor vertices
of the answer into account. With this aim, we introduced the notion of extended
answer, which is an answer supplemented with some knowledge extracted from
its neighborhood.

Definition 2 (Extension of an answer). Let B be a KB graph and Q a
query graph. An extension of an answer A from Q(B) is a bicolored graph E =
〈E0, E1〉, where E0 is isomorphic to A and such that there is a projection π from
E to B with π(E0) = A.

2

2
Animal: *

Cat: *

1

own

1
ownHuman: *

(a)

1 2
Cat: *own

2
Cat: *

1
own

2

1

know

Human: *

Human:Mary

(b)

Fig. 2. Several extensions of answer A2 of fig. 1.

Fig. 2 represents several extensions of answer A2 of fig. 1. Note that the
extensions are not necessarily isomorphic copies of subgraphs of the KB.

With the previous definition of redundancy (section 3.2), if two answers have
two incomparable extensions, they are two distinct answers and thus have to
be considered as non-redundant answers, the one w.r.t. the other one. However,
these two answers must not be distinguished in an “artificial” way: i.e. if the
answers are distinguished by selectively adding knowledge to the extension of
only certain answers but not to all of those which possess this knowledge in
their neighborhood.

Definition 3 (Fairness property). An extension E of an answer A from a
set Q(B) is fair iff there is no extension E′ of another answer A′ from Q(B)
such that there is a projection π from E to E′ with π(E0) = E′

0 and π(E1) = E′

1.

The extension of figure 2(b) is a fair extension of the answer A2 of figure 1,
contrary to the extension of figure 2(a). One can now give a definition of the
true redundancy:

Definition 4 (True redundancy). An answer A from a set of answers Q(B)
is truly redundant if there is no fair extension of this answer.

In the example of fig. 1, answer A1 is redundant. The search for a fair exten-
sion may seem to be a difficult task, considering that the number of extensions
that can be generated for an answer is infinite. However, these extensions are
semantically bounded by a more specific one that corresponds to an isomorphic
copy of the base, 〈A, B \ A〉3. Naturally, the more one adds knowledge to the

3 For clarity, we sometimes denote subgraphs of KB as cores or descriptions of bicol-
ored graph instead of their isomorphic copies.

extension (the more it is specific), the more one potentially distinguishes this
answer. So A is irredundant only if 〈A, B \ A〉 is a fair extension.

Theorem 1. There is a fair extension E of an answer A iff 〈A, B \A〉 is a fair
extension.

Proof. By contraposition. Suppose that there is a fair extension E = 〈E0, E1〉 of
A and that 〈A, B \ A〉 is not a fair extension of A. 〈A, B \ A〉 is an extension of
A and is isomorphic (without considering the colors) to B. As E is an extension
of A, there is a projection π from E to B such that π(E0) = A. As 〈A, B \ A〉
is not a fair extension of A, there is a projection π′ from 〈A, B \ A〉 to B such
that π(R0) 6= A. So there is a projection π′′ = π ◦ π′ from E to B such that
π′′(E0) 6= A. Thus E is not a fair extension of A. ⊓⊔

Corollary 1. An answer A of Q(B) is truly irredundant iff 〈A, B \A〉 is a fair
extension.

4.2 The GRE problem

The problem of finding a fair extension of an answer is strongly related to the
problem of generation of referring expressions (GRE) known in the natural lan-
guage processing field, which aims to describe an object in a scene such that the
description only refers to this object. The GRE problem was formalized in the
CG framework in [4], where the scene is an SG and the object to identify is a
concept of the SG. A referring graph of a concept v is a subgraph of the KB
containing this concept, and a distinguishing graph is a referring graph whose v

is a fixed point for all projections of the graph in the KB. Our problem of answer
redundancy can be seen as an extension of this formalization.

Definition 5 (Referring graph). A referring graph of a subgraph G′ of a
graph G is a subgraph R of G that contains G′ as a subgraph. To distinguish
G′ from the rest of the referring graph, we denote it as a bicolored graph R =
〈R0, R1〉 where R0 = G′ and R1 = R \ G′.

Definition 6 (Distinguishing graph). A referring graph R of a subgraph G′

of a graph G is distinguishing if, for each projection π from R to G, π(R0) = G′.

The referring graph of figure 2(b) is a distinguishing graph of the answer
A2 of figure 1, contrary of the referring graph of figure 2(a). We can now link
the true redundancy notion with the existence of a distinguishing graph for a
given answer. The next properties strengthen the notion of true redundancy by
showing its independence in the query and thus in the other answers.

Property 1. Let A be an answer of Q(B). There is a fair extension of A iff there
is a distinguishing graph of A w.r.t. B.

Proof. Let E = 〈E0, E1〉 be a fair extension of A. Then π(E) is a distinguishing
graph of A w.r.t. B. On the other hand, a distinguishing graph of A is also a
fair extension of A. ⊓⊔

Corollary 2. An answer A of Q(B) is irredundant iff R = 〈A, B \ A〉 is a
distinguishing graph of A w.r.t. to B.

Thus, determining whether an answer is irredundant can be done by testing
the distinguishness of the referring graph built from KB. However, the cost of
such a test is exponential in the size of the KB.

4.3 Redundancy and subset of answers

Since the redundancy of an answer has been defined, it could be considered that
for building a set of answers without redundancies one could simply remove
redundant answers. However, the redundancy defined in the preceding section
hides the fact that they are two types of redundancy. This is shown in fig. 3 (a
query and three different KBs) :

The first case will arise when an answer is completely redundant with respect
to another answer (fig. 3(b)). This means that A2 is redundant w.r.t. A1 but the
reverse does not hold. In this case, we say that A2 is strongly redundant w.r.t.
A1. Thus, we only return the answer A1.

The second case arises when there are a set of answers which are redundant
amongst themselves (fig. 3(c) and 3(d)). In these two examples, an answer is
redundant with respect to the others and vice-versa. In this case, we say that
the answers are mutually redundant and we have to choose an answer in this
set.

Note that the answer redundancy problem still holds in KBs in irredundant
forms, as in the example of fig. 3(d).

21
likeHuman : * Human : *

(a) Query

A1

A2

1
2

Human: *like

2
Human: Mary1 like

Human: *

(b) Strong redundancy

A4

A3

1
2

Human: *like

2
Human: *1 like

Human: *

(c) Mutual redundancy

A5

A6

12

like

2

Human: *

1 like

Human: *

(d) Mutual redundancy

Fig. 3. Different cases of redundant answers

Strong and mutual redundancies are based on the redundancy of an answer
w.r.t. another one:

Definition 7 (Redundancy relation). An answer A is redundant to an an-
swer A′ iff for each referring graph RA of A, there is a projection π from RA to
a referring graph RA′

of A′ with π(RA
0) = π(RA′

0) = A′.

One can test the redundancy relation with the KB referring graph:

Property 2. An answer A is redundant to an answer A′ iff there is a projection
π from 〈A, B \ A〉 to a referring graph RA′

of A′ with π(A) = A′.

Therefore an answer A is redundant to an answer A′, the redundancy relation
between A′ and A defines the two previously seen redundancy cases:

Definition 8 (Redundancies between answers). Given A and A′ ∈ Q(B),
such that A is redundant to A′:

– A is strongly redundant to A′ if A′ is not redundant to A ;
– A and A′ are mutually redundant if A′ is redundant to A ;

Based on the notion of true redundancy, we can refine our notions of non-
redundancy and completeness of subsets of answers that we defined in [2] :

Definition 9 (Non-redundant subset of answers). A subset of answers A
of Q(B) is non-redundant if there are no two answers A and A′ ∈ A such that
A 6= A′ and A is redundant to A′.

Definition 10 (Completeness). A subset of answers A of Q(B) is complete if
for each answer A of Q(B) there is an answer A′ of A such that A is redundant
to A′.

We define a graph of redundancies based on the notions of strong and mutual
redundancies. All types of redundancies of definition 8 can be viewed as relations
on Q(B)2, for example (A, A′) belongs to the strong redundancy relation if
A is strongly redundant to A′. Thus we can characterize properties of these
relations. Particularly, mutual redundancy defines equivalent classes over the set
of answers, and strong redundancy links all answers of an equivalent class to all
answers of another equivalent class. We construct the redundancy graph such
that each vertex is an equivalent class, and is linked by the strong redundancy:

Definition 11 (Graph of redundancy). The graph of redundancy G = (V,E)
of Q(B) is a directed graph, where vertices represent equivalent classes of the
mutual redundancy relation and where there is an edge between v1 and v2 if all
answers of the class represented by v1 are strongly redundant to all answers of
the class represented by v2.

Fig. 4(a) represents the redundancy graph of query and KB of fig. 1, whereas
fig. 4(b) represents the redundancy graph of query of fig. 3(a) and KB defined
by the union of KBs of fig. 3(b), 3(c) and 3(d).

A2 A3 A4 A5A1

(a)

A4A3
A2A1 A5 A6

(b)
Fig. 4. Redundancy graph of the previous examples.

To construct a complete and non-redundant set of answers, one has to only
choose a single answer per equivalent class (to avoid mutual redundancy), only
from equivalent classes that are sinks (to avoid strong redundancy), and for all
of them (to be complete). This is why there is more than one non-redundant
complete subset in the second example (fig. 4(b)): there is an equivalent class
that is a sink and contains more than one element ({A5, A6}).

Theorem 2. A subset of answers A of Q(B) is complete and non-redundant
iff for each sink in the redundancy graph there is a single answer of A that is
represented by this sink.

Proof. Given a non-redundant and complete subset of answers A. Non-redundancy
means that there is a single answer for each equivalent class represented in A
and that there are no two answers Ai and Aj such that there is a path from
Ai to Aj . Completeness ensures that for all answers Ai of Q(B) (particularly
answers belonging to a sink) there is an answer Aj such that Ai is redundant to
Aj . So A has to contain an answer of each sink. When combining completeness
and non-redundancy, only one answer of each sink is taken.
• Given a subset of answers A that is composed of an element of each sink of
the redundancy graph. Given two answers of A. These answers are not mutu-
ally redundant because there are no two answers of the same equivalent class.
These answers are not strongly redundant because each answer comes from a
sink. Thus A is non-redundant. For each answer Ai of Q(B), either there is an
answer Aj of the same equivalent class in A (thus Aj is redundant to Ai), or
there is an answer Ak in A that comes from a sink such that there is a path
from the equivalent class of Ai to the sink, and thus Ai is redundant to Ak. A
is complete.

The construction of a redundancy graph combines the problem of finding all
projections of a graph into another graph (to compute the set of answers) and the
problem of computation of the irredundant form of a graph. Indeed, as stated by
property 2, computation of all redundancy links of all answers used to construct
the graph is based on all projections of the most specific referring graph of each
answer (i.e. a bicolored isomorphic copy of the whole KB). Therefore, a way to
compute all redundancy links is to compute all projections from the KB into
itself, and check images of a each answer by all projections.

4.4 Inclusion of answers

As mentioned in section 3.2, the inclusion of answers is one of the problems that
can occur. If treated as a kind of duplication, included answers are just deleted
from the answer set before computation of a non-redundant complete subset.
But this approach is not the best one. We think that the inclusion problem
should be treated after the redundancy problem.

In the example of fig. 5, there are seven answers: three that contain only one
relation (A1, A2, A3), three that contain two relations (A12

4, A13, A23), and

4 Answer Aij represents the answer that is the union of answers Ai and Aj .

one with three relations (A123). Considering all answers, only answers A2, A3

and A23 are irredundant (see fig. 5(c)), but it is not suitable to keep A2 and A3.
Otherwise, if only non-included answers are kept, this leads to keeping answers
that were redundant to deleted answers (here A123, redundant to A23), which is
not good.

2

1

2
1

2

1

own

own

own

Cat : *

Cat: *

Cat : *

Human : *

(a) Query

A1

A2

A3

212

1

2
1

2

1

own

own

own

color Color: *Cat : *

Cat: Felix

Cat : *

Human : *

(b) KB

A3 A13 A123A23A1A2A12

(c) Redundancy graph

Fig. 5. A query and a KB that produce included answers, and their redundancy graph.

So the best way is to deal with redundancy first (by computing a subset that
is non-redundant and complete) and to delete included answers after that. In
the previous example, this strategy led to the subset {A23}.

4.5 Redundancy at a considered distance

In the query framework section, it was stated that computation of the irredun-
dant form of the KB is a difficult problem. But we also see that computation of
the redundancy graph also requires finding all projections of the KB into itself.
Thus, we propose to restrict referring graphs of an answer to a portion of the
base that is “near” this answer. This is also due to the fact that a referring graph
that contains too much knowledge, even if it distinguishes an answer, does not
help the user much. So we propose to bound referring graphs by a distance k,
and to only consider vertices that are in the distance field of one of the vertex
of an answer, which forms the k-neighborhood graph of the answer:

Definition 12 (k-neighborhood graph). Given a KB B, a subgraph S of
B, and a step k (k ≥ 0), the k-neighborhood graph, denoted Nk(S), is defined
recursively by:

– N0(S) = S

– Nn+1(S) is composed of Nn(S) expanded by every relation r not in Nn(S)
and which is linked to a concept of Nn(S), and by all concepts linked to r.

Recursion stops when n = k or Nn(S) = Nn+1(S) and returns Nn(S).

It seems obvious that all definitions put forward previously should now take
this constraint into account. Bounding referring graphs can be seen as a restric-
tion of the KB, which is now considered as the union of the k-neighborhood
graph of each answer, for a given distance.

Definition 13 (Truncated KB). Given a KB B, a query Q, and a distance
k ≥ 0, the truncated KB at distance k is Bk =

⋃
A∈Q(B) Nk(A)

Now we can apply all previous definitions to the truncated KB. For example,
an answer A of Q(B) is irredundant considering the distance k iff R = 〈A, Bk\A〉
is a distinguishing graph of A w.r.t. Bk (see corollary 2).

5 Building smart answers

In the previous section, redundancy and completeness were only studied from a
theoretical standpoint. A more user-aspect oriented standpoint was introduced
in the section 4.5. Even if the user gets a subset of answers that is non-redundant
and complete, he/she has no way to distinguish answers, i.e. the only assumption
that can be made is that there is, for each answer, a way to distinguish them
from the others. Otherwise, property 1 states that the most specific referring
graph is one of them, but it usually contains too much knowledge.

So what are the properties of a really good set of referring graphs returned
to the user? To keep the notions of non-redundancy and completeness, only
answers of such a subset of answers should have a referring graph. As all of these
answers can be distinguished, all referring graphs should be a distinguishing
graph. Finally, to not introduce unnecessary redundancies in the set of referring
graphs, there should be only one distinguishing graph by referred answer. A set
of referring graphs that fulfills these properties is called a set of smart answers:

Definition 14 (Set of smart answers). A set of smart answers S of a query
Q on a KB B is a set of distinguishing graphs of all answers of a non-redundant
complete set A of Q(B) such as |S| = |A|.

We propose the Bounded Smart Answers (BSA) algorithm (see algo. 1) that
takes the answers and a distance as parameters, and returns a set of smart
answers of truncated KB at distance k such that each extension is the minimal
k-neighborhood graph that distinguishes the answer5.

Theorem 3. Algorithm BSA(Q(B), k) produces a set of smart answers of Q

on the truncated KB Bk.

Proof. In DAK, all referring graphs are constructed with the same distance.
Therefore, thanks to the distance conservation property of the projection, that
if there is a bicolored projection from Nk(Ai) to Nk(Aj), there is a projection
from Nk(Ai) to Bk such that image of the core of Nk(Ai) is equal to Aj (i.e.
Nk(Ai) is a referring graph of Aj in Bk). For each answer A that belongs to
an equivalent class that is not a sink, A will not be returned by DAK because
of the second “foreach” of DAK. The third foreach of DAK ensures that for
each equivalent class that is a sink, the algorithm will only add one (the first
taken) answer that belongs to this class once the good distance is reached. Thus

5 Note that comparisons in DAK (algo. 2) are between bicolored graphs, that is
B ≤ B′ iff there is a π from B′ to B such that π(B′

0) = B0.

Data: Answers Q(B), a distance k

Result: A set of smart answers of truncated KB Bk

begin
i← 0
D ← ∅ // distinguished answers

S ← ∅ // smart answers

while i ≤ k or D 6= Q(B) do

D′ ← DISTING AT K(Q(B), D, i)
D ← D ∪D′

foreach A ∈ D′ do

S ← S ∪ {〈A, N i(A) \A〉}

return S
end

Algorithm 1: BOUNDED SMART ANSWERS (BSA)

the union of all answers returned by DAK is a non-redundant complete subset
of answers of Bk. As BSA returns only one graph per answer of the computed
non-redundant complete subset, BSA returns a set of smart answers of Bk. ⊓⊔

6 Conclusion

We extended our previously defined notion of answer redundancy. Our new
framework now considers answers but also descriptions (called referring graphs)
that can distinguish an answer amongst others. These descriptions could be
adapted to query languages of the semantic web, e.g. by giving a formal def-
inition of the SPARQL DESCRIBE query form. Therefore this new redundancy
is now linked to the whole KB. Based on this new redundancy, we refined two
other previous definitions concerning subsets of answers: non-redundancy prop-
erty (there is no redundant answer in the subset) and completeness (each answer
is redundant to an answer of the subset). We proposed a way to construct all
non-redundant and complete subsets of answers using a redundancy graph. We
introduced the notion of smart answer and gave an algorithm that computes a
set of smart answers based on a vertex neighborhood distance.

Answer redundancy arises because of open world assumption and undefined
objects (generic concepts). A deeper redundancy still exists, that is not related
to the formalized world (the KB), but rather to the “real world” (described by
the KB). For example, it is possible that non-redundant answers “a big cat” and
“a white cat” refer to a single cat of the “real world”, which is big and white.
The study of this new kind of redundancy can provide a foundation for using
aggregation operators (e.g. number of results to a query) in graph based KB
query languages.

References

1. Prud’hommeaux, E., Seaborne, A.: SPARQL Query Language for RDF. Technical
report, W3C (2008)

Data: Answers Q(B), distinguished answers D, a distance k

Result: A set D′ of distinguished answers at distance k

begin

D′ ← ∅
foreach A ∈ Q(B) \D do

disting ← true

foreach A2 ∈ Q(B) \ {A} do

if Nk(A) ≥ Nk(A2) and Nk(A2) � Nk(A) then
disting ← false

foreach A3 ∈ D′ do

if Nk(A) ≥ Nk(A3) then
disting ← false

if disting = true then

D′ ← D′ ∪ {A}

return D′

end

Algorithm 2: DISTING AT K (DAK)

2. Leclère, M., Moreau, N.: Query-answering cg knowledge bases. In: ICCS ’08:
Proceedings of the 16th international conference on Conceptual Structures, Berlin,
Heidelberg, Springer-Verlag (2008) 147–160

3. Lin, J.J., Quan, D., Sinha, V., Bakshi, K., Huynh, D., Katz, B., Karger, D.R.: What
makes a good answer? the role of context in question answering. In: INTERACT.
(2003)

4. Croitoru, M., van Deemter, K.: A Conceptual Graph approach to the Generation of
Referring Expressions. In: Proceedings of the 20 th International Joint Conference
on Artificial Intelligenc (IJCAI-2007). (2007)

5. Gutierrez, C., Hurtado, C., Mendelzon, A.O.: Foundations of semantic web
databases. In: PODS ’04: Proceedings of the twenty-third ACM SIGMOD-
SIGACT-SIGART symposium on Principles of database systems, New York, NY,
USA, ACM Press (2004) 95–106

6. Fikes, R., Hayes, P., Horrocks, I.: OWL-QL, a language for deductive query an-
swering on the Semantic Web. Web Semantics: Science, Services and Agents on
the World Wide Web 2(1) (2004) 19–29

7. Chein, M., Mugnier, M.L.: Conceptual Graphs: Fundamental Notions. Revue
d’Intelligence Artificielle 6(4) (1992) 365–406

8. Sowa, J.F.: Conceptual Structures: Information Processing in Mind and Machine.
Addison-Wesley (1984)

9. Baget, J.F., Mugnier, M.L.: The SG family: Extensions of simple conceptual
graphs. In: IJCAI. (2001) 205–212

10. Mugnier, M.: On generalization/specialization for conceptual graphs. Journal of
Experimental & Theoretical Artificial Intelligence 7(3) (1995) 325–344

