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Abstract— In this paper a new electrical model is proposed to 
be used in fault size based fault simulation of crosstalk 
aggravated resistive short defects. The electrical behavior of 
the defect is first described and analyzed in details. Then an 
electrical model is proposed allowing to efficiently compute the 
critical resistance determining the range of detectable short 
resistance. The model is validated by comparison with SPICE 
simulations. 

I. INTRODUCTION  

It is usually admitted that transition test sets are not able 
to guarantee an acceptable coverage of small delay faults 
[1]. The small delay faults are common in current DSM 
process; they are originated by interconnect opens or 
interconnect shorts, each one for a given range of the defect 
resistance [2-6]. Consequently, specific techniques and tools 
(ATPG, fault simulator…) must be developed targeting 
small delay faults. 

Today, the interconnect open simulators described in the 
literature target full open defects that create large delays and 
can be detected by transition test sets [7-9]. On the other 
hand, the small delay fault simulators presented in recent 
papers focus on the concept of fault size. Indeed, they intent 
to determine for every fault the size of the fault for which 
the fault is detected [10-11]. However, most of these 
simulators do not take into account the precise electrical and 
physical parameters of the defect, while these parameters 
directly impact the size of the fault [12]. A recent paper 
proposes to consider these electrical parameters to compute 
the fault size when simulating small delays caused by 
resistive open defects [13]. 

In this paper, we propose an electrical model that allows 
to efficiently compute the range of resistance for which the 
fault is detected when simulating small delays caused by 
resistive short defects. In order to develop a precise and 
realistic model, we consider that the short may be 
aggravated by a coupling capacitance, i.e. a crosstalk as 
illustrated in Fig. 1. It is very important to note here that the 
crosstalk is due to the topology of the circuit, it is not a 
manufacturing defect and we consider that every 
manufactured circuit will exhibit approximately the same 
coupling capacitance as illustrated in Fig. 1.a. On the other 
hand, the short is a manufacturing defect randomly affecting 

some of the circuits as illustrated in Fig. 1.b. Consequently, 
the value of the coupling capacitance is a deterministic 
parameter that can be extracted from the layout, while the 
short resistance is a random defect with an unpredictable 
value.  

 
a) Fault-free circuit           b) Faulty circuit 

Figure. 1 Crosstalk aggravated resistive short 

Two important works deal with delay caused by 
crosstalk aggravated resistive short defects: 

- In [4], the authors propose an electrical model for delay 
caused by a resistive short. However, the model does not 
consider the coupling capacitance. 

- In [14], the authors analyze crosstalk aggravated 
resistive short defects. The analysis is based on SPICE 
simulations but no electrical model is derived that could be 
used in logic fault simulation. 

Obviously, these reference works are used here as a 
starting point for our model development. Section 2 presents 
the fundamental principle of the fault size based simulation 
used in this work. Then section 3 analyses the electrical 
behavior of a resistive short aggravated by a crosstalk. 
Finally, a model is proposed in section 4 that allows to easily 
compute, during simulation, the range of resistance for which 
the defect is detected. Section 5 gives some concluding 
remarks. 

II. FAULT SIZE BASED FAULT SIMULATION 

The fault simulation method used in this work is similar 
to the one described in a previous paper from the same 
authors but for a different defect [13]. For this reason, the 
method will be just briefly described hereafter.  

The inputs of the simulation are a gate-level netlist of 
the circuit with timing and physical information such as gate 

 



delays, clock cycle and transistor topology on the one hand, 
plus a test pair and a list of faults on the other hand. Faults 
are specified by a pair of logic nodes including an aggressor 
node and a victim node, and two opposite transitions on the 
nodes. The transition on the victim node is slowed down: 
the amount of the slowing down is called the fault size. 

It is important to note that the amount δ of slowing down 
is not an input of the simulation and so, it is not specified in 
the fault list. It is a result of the simulation. For a given fault 
f i and a given test pair tpj, the simulation determines the 
propagation path of the fault and derives the corresponding 
slack time Tsl(f i, tpj). It is clear that any delay larger than the 
determined slack time can be detected and consequently, the 
slack time is equal to the minimum detectable fault size. We 
finally define the Detection Interval in time domain Dt(f i, 
tpj) that contains all the values of δ(f i) for which the circuit 
will fail under test pair tpj, i.e. a transition at one or more 
outputs will be delayed beyond the clock cycle time:   

 - ∀ δ(f i) > Tsl(f i, tpj)  =>  fi is detected (1) 

 - δmin(f i) = Tsl(f i, tpj) (2) 

 - Dt(f i, tpj) = [δmin(f i), ∞] (3) 

As demonstrated in the next section, the size of the fault 
δ(f i) depends on the resistance Rs of the short which is a 
random and unpredictable parameter. Therefore, a realistic 
defect cannot simply be declared as detected or not detected. 
The concept of fault coverage associated to a test pair does 
not apply directly to realistic defects and it is replaced by 
the concept of test pair efficiency as presented below.    

First, for a given delay δ(f i), it is possible to determine 
the corresponding value of the short resistance Rs. Because 
we deal with short defects, a small resistance implies a large 
delay, while a large resistance implies a small delay. So the 
minimum fault size δmin(f i) can be transformed into a 
maximum resistance Rs

max(f i): 

 - δmin(f i)  => Rs
max(f i) (4) 

 - Dt(f i, tpj)=[δmin(f i), ∞]  => DRs(f i, tpj)=[0, Rs
max(f i)] (5) 

Following this idea, the detection interval in time 
domain Dt(f i, tpj) becomes a detection interval in resistance 
domain DRs(f i, tpj). It is then possible to compute the 
detection probability of the fault by computing the integral 
of the resistance density ρ(r) on the considered interval: 

 P(fi, tpj)=∫ρ(r) dr    and    Pmax(f i, tpbest)=∫ρ(r) dr (6) 

           DRs(f i, tpj)                                            DRs
max(f i, tpbest) 

Second, the fault simulation also computes in the same 
way the highest detection probability Pmax(f i, tpbest) of the 
fault corresponding to the largest detectable interval 
DRs

max(f i, tpbest) that could be obtained with the best test pair 

tpbest (not necessarily contained in the simulated test 
sequence). 

Finally, the efficiency of the test pair tpj to detect fault fi 
is simply computed as the ratio of the detection probability 
associated to the considered test pair tpj and the detection 
probability of the best test pair tpbest: 

 εfi(tpj) = P(fi, tpj) / P
max(f i, tpbest) (7) 

 with   0 ≤ εfi(tpj)  ≤ 1 (8) 

In other words, the efficiency of a given test pair is 
evaluated by comparing its probability to detect the fault 
with the probability of the best test pair that we could apply 
to the circuit. It is to note that all these concepts of detection 
interval, detection probability, efficiency have been 
proposed and used for different defects: static detection of 
resistive shorts (without crosstalk) in [12], delay detection 
of resistive opens in [13]. The problem here is to extend this 
new concept to the delay detection of ‘crosstalk aggravated 
resistive shorts’. 

In the fault simulation algorithm, the most important 
difficulty comes from the computation of the Detection 
Interval in the resistance domain DRs(f i, tpj). In other words, 
the critical problem is to determine, for a given fault and a 
given test pair, the maximum resistance Rs

max(f i) 
corresponding to a delay equal to the slack time. The 
determination of the maximum resistance through electrical 
SPICE simulations is far too long and time consuming when 
dealing with logic fault simulation. In order to perform the 
fault simulation at the logic level in an efficient way, we 
need a model in a quite simple form allowing to compute 
the maximum resistance without SPICE simulation. Before 
to derive this simple model (section 4), we analyze in detail 
in the next section the electrical behavior of the considered 
defect. 

III.  SHORT ELECTRICAL ANALYSIS 

This section analyses the electrical behavior of a 
resistive short aggravated by a crosstalk. As mentioned 
before, the capacitance is assumed to be known (extracted 
from the layout) and the resistance is considered as a 
random parameter. We hence analyze here the electrical 
behavior assuming different values of the resistance. 
Simulations are performed with a CMOS 180nm process. 

Fig. 2.b gives the SPICE simulation of the didactic fault-
free circuit of Fig. 1.a. When input In1 performs a positive 
transition, its corresponding output Out1 performs a 
negative transition with a delay depending on the crosstalk 
capacitance Cc and the load capacitance C1 (i.e. the input 
capacitance of the driven gates): this fault-free circuit delay 
is considered as the nominal delay Td

n used as a reference.  
Note that in the simulation, input In2 also performs a 

transition. This transition implies a corresponding transition 
on output Out2 which in turn influences the Out1 transition 



through the crosstalk capacitance Cc. The time difference 
between the two input transitions is called the skew and 
denoted Tsk (Tsk can be positive or negative).  

 
Figure 2. Fault-free and faulty SPICE simulations 

Fig. 2.c gives the SPICE simulation of the faulty circuit 
of Fig. 1.b including a short resistance Rs of 5000Ω. The 
simulation is made of 3 steps: 

- Step 1. Before node In2 transition, output Out1 should 
be equal to Vdd and output Out2 to Gnd. However, they 
exhibit degraded voltage levels due to the short between 
Out1 and Out2.  

- Step 2. When input In2 performs a negative transition, 
Out2 becomes high and so both Out1 and Out2 tend to be 
equal to Vdd. 

- Step 3. When input In1 performs a positive transition, 
Out1 becomes low conflicting with the high Out2. As a 
result, the final voltage level Vfinal of Out1 is degraded and 
the transition is delayed: this faulty circuit delay is noted Tdf 
with Tdf > Tdn. 

A. Influence of the short resistance Rs on Td
f 

We consider here 2 different values of the short 
resistance. For a very low short resistance Rs=200Ω as 
illustrated in Fig. 3.b, the final voltage Vfinal of Out1 is 
lower than half Vdd. In this case, it is usually considered 
that the node has not performed any transition and so, the 
corresponding delay is infinite.  

For a medium range short resistance Rs=2000Ω as 
illustrated in Fig. 3.c, the output node Out1 performs a 
degraded transition with a delay depending on the value of 
the resistance.  

As a conclusion, we note that the delay decreases from 
infinite to the nominal delay value when the resistance 
increases. Obviously, this delay fault is detected for a large 
delay, i.e. when the delay is higher than the slack time Tsl 
associated to node Out1. In other words, the delay fault is 
detected for a range of resistance comprised between 0 and 
a maximum value Rs

max with: 
 Rs

max  /  Tdf = Tsl (9) 

 

Figure 3. Influence of the short resistance Rs 

B. Influence of the skew Tsk on Td
f 

We consider here 2 different values of the skew. Fig. 4.a 
gives the simulation of our didactic circuit of Fig. 1.b for a 
quite large skew of 2.5ns and for a short resistance of 
Rs=2000Ω. Fig. 4.b gives the simulation of the same circuit 
with the same short resistance but for a small skew of 50ps. 

 

Figure 4.  Influence of the skew 

From these simulations, we can say that the faulty delay 
Td

f decreases when the skew Tsk decreases. This means that 
a close transition of input In2 speeds up the transition of 
output Out1. One of the reasons for this speeding up can be 
found in the initial Vinitial and final Vfinal voltages. For a 
small skew, the Out1 output must switch from Vinitial to 
Vfinal, i.e. a small swing while for a large skew, output 
Out1 must switch from Vdd to Vfinal, i.e. a large swing. It 
is amazing to note that the faulty delay may even become 
smaller than the fault-free delay for a very small skew! 

 

 



Indeed in Fig. 4.b the delay is smaller than the delay 
observed in the fault-free simulation of Fig. 2.a. 

From the simulations in Fig. 2, 3 and 4, it is now 
possible to draw the faulty delay Tdf versus skew Tsk 
characteristics for different values of the short resistance Rs, 
as illustrated in Fig. 5. We clearly observe that the delay 
decreases when the resistance increases and when the 
absolute value of the skew decreases. Note that we consider 
short resistances in the range from 0 to a few kilo-ohms 
because it has been proved to be a realistic assumption [15]. 

 
Figure 5. Faulty delay Tdf versus skew Tsk characteristics 

IV.  MODEL FOR RESISTANCE INTERVAL ESTIMATION 

This section describes the electrical model we propose to 
evaluate the Detection Interval during fault simulation. As 
explained in section 2, during fault simulation, the most 
important difficulty comes from the computation of the 
Detection Interval in the resistance domain DRs(f i, tpj). In 
other words, the critical problem is to determine, for a given 
fault and a given test pair, the maximum resistance Rs

max(f i) 
corresponding to a delay equal to the slack time as given by 
equation (9). 

In fact, the maximum resistance can be easily extracted 
from the characteristics given in Fig. 5. For a given test pair 
tpj and a given short fi, the fault simulation process 
determines: 

- the skew Tsk(f i) associated to the In1 and In2 signals on 
the inputs of the driving gates, 

- the slack Tsl(f i) associated to the path used for the fault 
propagation. 

As illustrated in Fig. 5, using Tsk(f i) and Tsl(f i) as inputs, 
the intersection gives the maximum short resistance Rs

max(f i) 
that can be detected. Consequently, we need to determine 
these Tdf versus skew Tsk characteristics for each simulated 
fault. Fault simulation is performed at the logic level and 
must be fast, so we do not want to use SPICE simulations to 
obtain these Tdf versus skew Tsk characteristics for each 
simulated short and each test pair. To this purpose we 
propose below a semi-empirical electrical model which 
allows to easily obtain the characteristics. 

The model is based on the circuit representation given in 
Fig. 6 where the transistors are represented by their 
equivalent resistances R1 and R2 [4]. In Fig. 5, we observe, 
for a given resistance Rs, that the faulty delay starts from a 
minimum value called d(Rs) when Tsk=0. The faulty delay 
increases when the skew increases till a maximum value 
called D(Rs) when the skew is around 1ns. After this 
maximum value, the faulty delay remains constant and 
independent from the skew. In the following subsections we 
first analytically determine the two extreme values D(Rs) 
and d(Rs), then we determine by extrapolation the curve that 
joins these two extreme points. 

 

Figure 6.  Simplified circuit for the resistive short 

A. Computation of D(RS) 

For a large skew the faulty delay becomes constant and 
independent of the skew as observed in Fig. 5. This means 
that, for a large skew, the crosstalk capacitance has no 
impact on the circuit behavior and therefore no impact on 
the value of the maximum delay D(Rs). This means that we 
could remove the crosstalk capacitance Cc from the 
equivalent circuit of Fig. 6 to compute the value of D(Rs). 

By removing the crosstalk capacitance, we can now 
reuse previous works that have proposed an electrical model 
for resistive shorts with no consideration of the crosstalk 
capacitance. It is the case for the previously mentioned 
paper [4] from Walker where the following model is 
proposed: 

 
 
 
                                                                               (10) 
In equation (10), the maximum delay expressed in 

seconds depends on the load capacitances (C1 and C2 in 
Farads), the transistor equivalent resistances (R1 and R2 in 
Ohms) and obviously the short resistance (Rs). This 
equation that has been initially developed for resistive short 
without crosstalk capacitance gives in fact the different 
points D(Rs) of Fig. 5 for a crosstalk aggravated resistive 
short. 

B. Computation of d(RS) 

For a skew equal to 0, the faulty delay d(Rs) is 
minimum. From our knowledge, there is no published 
model giving the faulty delay d(Rs) for a zero skew as a 
function of the short resistance. So, we develop here an 
original model using the superimposition theorem. 
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According to the theorem, the output signal of a system with 
multiple input signals can be computed as the sum of the 
output responses for each individual input considering the 
other inputs or sources equal to 0. So, we obtain the 
following four steps.  

 
a) Step 1: We firstly consider that Input In1 performs a 

negative transition while input In2 is constant and equals to 
0. Under these conditions, we determine the transfer 
function TF1(p) of the circuit: 

(11) 
with S1 and S2 solutions of: 
 
and  

 
 From the switching input In1 we deduce the 

expression of the output Out1(t): 

 
with  (12) 
 
For K1

S2 (resp. K1
-τ1), replace S1 by S2 (resp. -τ1) above. 

 
b) Step 2: We secondly consider, in a very symmetric 

way, that input In2 performs a positive transition while 
input In1 is constant and equal to 0. Under these conditions, 
we determine the transfer function TF2(p) of the circuit: 

 
 

 (13) 
 
 
From the switching input In2 we deduce the expression 

of the output Out1(t): 

 
with  (14) 
 
 
For K1

S2 (resp. K1
-τ2), replace S1 by S2 (resp. –τ2) above. 

 
c) Step 3: We thirdly consider the circuit initial 

conditions. Before the switching of the two inputs, input 
In1(0)=Vdd and input In2(0)=0. From this steady state we 
deduce: 

with 

 
 

 (15) 
For K3

S2, replace S1 by S2 in the above expression. 
 
d) Step 4: Using the superimposition theorem, we can 

now write that the general output expression is given by the 
sum of the 3 previous ones: 

 
 

 (16) 
From the above equation, we obtain the value of the 

delay for a given short resistance for a zero skew. Indeed, 
the delay corresponds to the time value when Out1 is equal 
to half Vdd. Fig. 7 clearly shows that the d(Rs) obtained 
with the equation perfectly maps with the d(Rs) obtained 
from SPICE simulations. 

 
Figure 7. Computed and simulated d(Rs) 

C. Extrapolation of the Td
f versus Tsk curves 

Using the equations given in the two previous sections, 
it is possible to determine the extreme points D(Rs) and 
d(Rs) for a given short resistance Rs. Now, starting from the 
SPICE simulations as the ones given in Fig. 5, we 
extrapolate the Tdf versus skew characteristics. The SPICE 
simulation extrapolation leads to the following equation 
giving the faulty delay as a function of the skew and the 
short resistance:  
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 (17) 
As a validation of the proposed model, we compare in 

Fig. 8, for different resistance values, the simulated delay 
characteristics and the computed ones (equation 12). The 
agreement is good and so, we can easily extract from these 
characteristics the maximum resistance Rs

max(f i) 
corresponding to a delay equal to the slack time. Indeed, as 
already explained in Fig. 5, using Tsk(f i) and Tsl(f i) as inputs, 
the intersection gives the maximum detectable short 
resistance Rs

max(f i).  

 
Figure 8.  Computed vs. simulated Tdf vs Tsk characteristics 

TABLE I.  COMPUTED AND SIMULATED EFFICIENCY FUNCTIONS 

 
Remember that the ultimate goal of the model is to allow 

fast computation of the efficiency function εfi(tpj) (equation 
7) during fault size based fault simulation. Indeed, during 
simulation, the maximum resistance allows to compute the 
detection probability of the resistive short both for the 
considered test pair and for the best test pair. An efficiency 
function close to 1 means that the used test pair is as 
efficient as the best possible test pair. In table 1, the 
efficiency function is computed using equation (12) for 3 
different gates, i.e. for different equivalent R1 and R2, each 

gate for two coupling capacitances (40fF and 70 fF), each 
gate for two different skews (1ns and 0.5ns). The computed 
function is compared to the value obtained with accurate but 
time consuming SPICE simulations. We observe that the 
agreement is very good for the different values of the 
efficiency functions. 

V. CONCLUSION 

In this paper, we propose an electrical model to 
efficiently compute the maximum detected resistance in 
case of crosstalk aggravated resistive shorts. The electrical 
model is used during fault size based fault simulation to 
avoid prohibitive CPU time consuming electrical 
simulations. Agreement between computed and SPICE 
simulated efficiency functions proves the validity of the 
model. 
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