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LIRMM - CNRS, UM2 UMR 5506
161 rue Ada, 34392 Montpellier Cedex 5 - France
simonin@lirmm.fr

Abstract where every acquisition task,; have a precedence relation
with one treatment task; of one unit long (the processing
This paper introduces a scheduling problem with coupledtime is denoted by} for a better reading).

tasks in presence of a compatibility graph on a single Lastly, there exist compatibility constraints between ac-
processor. We investigate a specific configuration, in whichquisition tasks, due to the fact that some acquisition tasks
the coupled-tasks possess an idle time equabR.toThe cannot be processed at the same time that another tasks.
complexity of these problems will be studied according ton order to represent this constraint a compatibility graph
the presence or absence of triangles in the compatibilityG. = (A, E.) is introduced, whered is the set of coupled-
graph. As an extended matching, we propose a polynomiatasks andE. represents the edges connecting two coupled-
time algorithm which consists in minimizing the number oftasks which can be executed simultaneously. In other words,
non-covered vertices, by covering vertices with edges oat least one sub-task of a tagk may be executed during
paths of length two in the compatibility graph. This type ofthe idle time of another tasK; (see example in Figure 1).
covering will be denoted b8+cover technique. According on There is hone compatibility constraints betweEmand A,
the compatibility graph type, th&-cover technique provides and so, treatment tasks can be executed in the idle time of
a polynomial-timep-approximation algorithm withp = % the acquisition tasks.

(resp.p = 1?0) in absence (resp. presence) of triangles. 3 3
1. |ntrOdUCtI0n Compatibility graph ’:‘ @1 b2 [a3|b1 m

1.1. Presentation Figure 1. Example of compatibility constraints with ;=2

In this paper, we present the problem of data acquisi- The aim of the TORPEDO problem is to produce a
tion according to compatibility constraints in a submarinegy g riest schedule (i.e. to minimize the moment after the ex-
torpedo, denoted by"ORPEDO problem. The torpedo  ecytion of the last task in the schedule denotedy,,) in
is used in order to realize cartography, topology studiesyhich compatibility contraints between acquisition taaksl
temperature measures and many other tasks in the water. Thgscedence constraints are respected. In schedulingytheor
aim of this torpedo is tq collect and process a set o_f data ag problem is categorized by its machine environment, job
soon as possible on a single processor. In this way, it p§SSegharacteristic and objective function. So using the notati
feV\( sensors, a single processor _and two types of taSkéchemegéWh proposed by [2], the TORPEDO problem will
which must be scheduled: Acquisition tasks and Treatmentq gefined byl |prec, (ai,Li,bi) U (T; = 1), Ge|Crmas.
tasks. First, the acquisition task$ = {A;,..., A,} can Our work consists in measuring the impact of the com-
be assigned to coupled-tasks |r_1troduced by [1_]. Indeed thﬁatibility graph on the complexity and approximation of
torpedo sensors emit a wave which propagates in the water ¥theduling problems with coupled-tasks on a single proces-
order to collect the data. Each acquisition tagkshave tWo  gor This paper is focusing on the limit between polynomial

sub-tasks, the first; sends an echo, the secohdreceives problems and\P-complete problems, when the compati-
it. For a better reading, we will denote the processing timeoility constraint is introduced.

of each sub-task; and b;. Between the sub-tasks, there

is an incompressible idle timd.; which represents the 1.2. Related work

spread of the echo in the water. Second, treatment tasks

7 = {Ty,...,T,} are obtained from acquisition tasks. The complexity of the scheduling problem, with coupled-
Indeed after the return of the echo, various calculationgasks and a complete compatibility gr&phas been inves-
will be execgted from gathered informations. 'I_'hese _tasks 1. prec represents the precedence constraints betviegnd 7

are preemptive and have precedence constraints with theZ. Notice, the lack of compatibility graph is equivalent to fally
acquisition tasks. In this paper, we will consider the peotl connected graph. In this way, all tasks may be compatiblé etter.



tigated by [3], [4], [5]. In existing works about coupled- ., (4) — |« n|/n C —[aa] o2 mi[ra)/r\ /72

tasks on a single processor, authors focus their studies on R
precedence constraints between thgs. We have studied CH ai [/ v [ - [
the complexity of this type of problem according to the value Ly=2

of the different parameters, and we find the gap between th@ — oy [an ‘ o5 ‘hl ‘ va | vg V;\/T—z\/;a\ \dle times

polynomial cases and/’P-complete ones. We have shown
in [6] that the relaxation of the compatibility constraint gigyre 2. Illustration of the four types of scheduling
imply the A/P-completeness of the probleFRORPEDO; :

1lpree, (a;=b;=1, L;=a)U(T; = 1), G.|Cpaa, in the case

wherea > 3. In this article we present two results, first we

will study a special case GFORPEDO,; problem where Theorem 1.1TORPEDOWT'RandTORPEDO-TR
L; =2, and soty, = t, +a; + L; = t,, + 3 wheret,, is arej\./P-comp_Ie.te.

the starting time of a task;. Second, we will design an It is not difficult to prove thatTORPEDO, + TR
interesting polynomial-time approximation algorithm it (r€Sp- TORPEDO, — T'R) can be reduced from the
non-trivial ratio guarantee for this problem, which can beWell-known triangle packing probletn(resp. hamiltonian

generalized for th@ ORPEDO problem. path problerfi).The proof of the Theorem 1.1 is given in
Appendix 5.1.

1.3. Presentation of the TORPEDO problem With the previously hypotheses, it is clear to have an
approach based on the covering of the verticegrpf but
This section is devoted to definitions and notations usedrom [8] or [9] we know that covering a graph by paths of
in the rest of the article. All the graphs in this paper different length greater than two j§P-complete. In order
are non-oriented. We will calpath a non-empty graph to obtain a good polynomial-time approximation algorithm
C = (V,E) of the formV = {zg,z1,...,2x} and E = in the two cases, we will use the same approach. It consists
{zox1, 2122, ..., K127k }, Where ther; are all distinct. The in finding a maximum covering of vertices with only edges
number of edges of a path corresponds to its length. A pathnd paths of length two. In the next section, we will define
of length & is denoted byCy, in the rest of the paper. Note this covering and we will prove that it can be found in
that k. = 0 is allowed, thusCy corresponds to a simple polynomial-time.
vertex. The study of the’ORPFEDO;, problem depends
on two essential points, the structure of the coupled-task9 9_cover definition
and the compatibility graply.. This structure gives special
constraints for the schedule which provides specific cogeri
problems inG.. To begin the study, we will investigate the
four different possibilities of scheduling the coupledia
with this structure (see Figure 2).
Observation 1.1:The inactivity time between the two
sub-tasks restraints the possibilities of schedulingedttion simple vertices, edges, or paths of length two.

the Figure 2 we can see the four types of scheduling, and pefinition 2.2 (M -covered vertex)An M-covered ver-

so four types of covering odr.. For each case, we have oy (resp A7-non-covered) is a vertex which belongs (resp.
at most two slots and more than two treatment tasks whichjyag ot belong) to at least one edge Mt The set of

can be executed after the coupled-tasks. So, if we schedulgy_.overed vertices (respu-non-covered vertices) will be
triangles, chains, and edges the ones after the other® thefjanted byS (M) (resp.NS(M))

is no idle slot (except from the first slot if there is no Definition 2.3 (Maximun2-cover): In a maximum 2-
tr_|angle). T_he only idle slots we can get, come from thecover, the number of covered vertices is maximum, therefore
simple verticesC,. Because of their structure, they are the o number of non-covered vertices is minimum

last to be scheduled. o ) ) Definition 2.4 (Vertex degree in relation ff): Let M
These four types of scheduling immediately imply four pa s39_cover in a graptG = (V, E). For eachi = 1,... .k

types of covering inii.: non-covered vertices, edges, paths gt dar(x;) be the number of edges 8f which are incident
of length greater than one, and triangles denote@ By The ;.

presence of triangles i@, will raise problems in our study.

For better results, th€ORPE DO problem is divided into 3. In a graphG = (V, E), a triangle packing is a collectiob, . . ., V;,
two cases: depending to wheth@t. contains triangles or of disjoint subsets o/, each containing exactly three vertices linked by
not. We denote these problefi® RPEDO; + TR and three edges which belong i (see [7]).

4. In a graphG = (V, E), a hamiltonian path is a path compound by
TORPEDO; —TR. all the vertices ofV (see [7]).

In the following, we will present several definitions con-
cerning2-cover.

Definition 2.1 @-cover): Let G = (V,E) be a graph,
a 2-cover M is a set of edges such that the connected
components of the partial graph induced b¥ are either



We will now give the definition of the alternating path in  Definition 2.8 (Even vertex and odd vertet)et ¢ =
a 2-cover which is similar to the classical alternating pathzy, ...,z be anM-alternating path, andy € NS(M).
in a maximum matching by [10]. A vertex z; with an index equal to an even number (resp.
Definition 2.5 (M -alternating path): Let M be a2-cover  odd number) irC is called an even vertex (resp. odd vertex).
in a graphG = (V,E), an M-alternating pathC =
20,1, ...,z iSapathinG suchthatfor = 0,..., [5]-1, 51 Results
Ty € NS(M), {xgi,I2i+1} ¢ M, and if k 7§ (2Z+ 1)
{2211, X242} €M

Definition 2.6 (Vertebral column of afd/-alternating path): This section is devoted to Lemma 2.1 about the augment-

Let M be a 2-cover in a graphG = (V,E), and ing M-alternating paths and the fundamental Theorem 2.1
C = uxg,x1,...,2, an M-alternating path inG. The of the 2-cover with M-alternating path.
Lemma 2.1:Let M be a2-cover,C = zg,x1,...,z; @n

vertebral column, denoted ¥, associated with the path ‘ -
is composed of’, the edges of/ which are incident tq”, ~ M/-alternating path withey € N.S(M), and letT' be the

and eventually the extremity of these edges (see Figure 3)/ertebral column associated with thé-alternating pattC.
C is an augmenting/-alternating path if and only if there

exists a vertexa; 1, ¢ € IN*, such thatdy;(ze;—1) # 2.

Proof by contradiction

X N\ €M

: LM
\ = Suppose tha€ may be an augmentingy/-alternating
path, and suppose that an odd vertex_; such that
dpr(zei—1) # 2 does not exist (sd@” does not contain any
cycle). Thus,C' and its vertebral columfi’ have the shape
of Figureb.

Figure 3. Example of a vertebral column T' associated
with an M -alternating path C

Remark 2.1:Therefore, ifT" contains a cycle, there exists
e € M which links two vertices o€”. If one of these vertices
is not an extremity of” then we will have a path of length
three inM (all the vertices are covered by edgesbéxcept
eventually the extremities). By definitiomy, € N.S(M), T
thus T' contains a cycle when the last vertex of C is
connected to another vertex 6f by an edgee € M and  Figure 5. Skeleton of the vertebral column T associated
e ¢ C (see illustration in Figure 4(a)). Note that; (z;)=1. toC

\eM

S EM

o From Definition 2.7 and Remark 2.2,if does not contain

Q{}Q@%@ any cycle, we can simply increase the cardinality of the

o =
Q covered vertices in the pathi by changing the belonging to
M of the edges of”. If we change the belonging td/ of
(a) Example of a cycle in the ver-  (b) Example of the augmenting the edge{xo’xl} in order to coverxg, the edge{xl’xg}
tebral column” operation with a cycle inV must change, else; will be a star centér In this way,
we change the belonging t of the edge{z, z2}, which
means that we must be changgd,, x3}. Recursively, we
Definition 2.7 (Augmenting/-alternating path ): will change the belonging td/ of all C' edges. Thus, the
Let C = x,...,x; be an M-alternating path, and last vertexz, will not be covered, and” will not be an
o € NS(M). C is an augmenting\/-alternating path if ~augmenting\/-alternating path. This is inconsistent with the
the cardinality of the2-cover given byC' can be increased former assumptions. Therefore, there exists a vertgx,
(i.e. the number of non-covered vertices is reduced by asuch thatdy (w2, 1) # 2.
least one) by changing the belongingté of the edges of < If T contains a cycle, the@' contains an augmenting
C. M-alternating path (see Figure 2.1). Else, suppose that
Remark 2.2:From Remark 2.1, a path of length three or does not contain a cycle, but there exists a ventgx ,,
four can be created thanks to the augmenting operation uséde IN*, such thatdy,(z2;—1) # 2. We will show thatC
in Definition 2.7. Lete be the edge of\/ which creates is an augmenting\/-alternating path. Let; = z2;_1, ¢ €
the cycle inT and thus creates the path of length three orlN*, be the first odd vertex on th&/-alternating path with
four after the augmenting operation. Then, the edgan be  d(z;) < 2. We have three cases:
removed fromM in order to increase the number of covered
vertices by the2-cover (see Figure 4(b)). 5. A star center is the vertex with degree greater than a star.

0@8

Figure 4. lllustrations for the Remark 2.1



1) du(z;) = 0, the M-alternating pathC' ends with
an non-covered vertex. S@ is an augmentingV/-
alternating path (see illustration in Figure 6.a).
dy(zj) = 1 anddy(z41) = 1, the M-alternating
path C' contains an edgéz;,z;.1) € M whose
extremities have a degree equalltowe remove the
part of the path which is after this edge, this part is
already covered. Thus, we have Afalternating sub-
path, in which all the vertices of odd index have a
degree equal t@ and the sub-path end is an edge
(xj,xzj41). It is easy to see that this sub-path is
an augmentingM -alternating path by changing the
belonging toM of the edges of’, except the last one
(z;,zj4+1). SoC is an augmenting/ -alternating path
(see illustration in figure 6.b).

du(z;) = 1 andday(zj11) = 2, the M-alternating
path C' owns an odd vertex with degree equal o
adjacent to an even vertex with degree equdl.téve

2)

3)

remove the path part which is after the even vertex

with degree equal t@, this part is already covered.
Thus, we have an\/-alternating sub-path, in which

all the vertices of odd index have a degree equal to

2, and the sub-path end is a path of length two. It
is easy to see that this sub-path is an augmentifig
alternating path by changing the belonging\toof all

C edges. SAU is an augmenting\/-alternating path

(see Figure 6.c).
a)O E j—( ) (( Z—( = ( ) E i
z ol Tj=2 Tj—-1 T z j=2 %j-1 *j Tjt+l
w@g@ G060~ @% %O@@
c i—2 ¢ Yo Yi—2

JZ”Jl‘T'

Figure 6. Augmenting operation of the three cases with
j=2i—-1

1 T

Tj—2 T ] 1 ®j _+~ Augmenting

\EM

Yi—2

O

Theorem 2.1:Let M be a2-cover in a graplix, M admits
maximum cardinality if and only i{G does not possess an
augmentingM -alternating path.

Before giving the proof, we define two types of vertices
in non-augmenting\/ -alternating paths:

Definition 2.9 (Leaf and root)Let M be a2-cover in a
graphG, and letC be a non-augmentindy -alternating path.

Proof of the Theorem 2.1

This proof is drawn from the classical maximum matching
proof given in [10].

= Let M be a maximun®-cover inG. If G contains an
augmentingM -alternating path, the cardinality af/ will
be able to increase by Lemma 2.1, and thénwill be not
maximum.

< Let M; be a2-cover inG. Suppose thaf7 does not
contain an augmenting/, -alternating path.

Suppose thad/; is not maximum, and led/, be another
2-cover inG which is maximum. Clearly)M, covers more
vertices thanM;. From these hypotheses, the following
structure is defined (see illustration in Figure 7):

e Suppose thatM/, covers K vertices non-covered by
M, this set is denoted by, = {z;|z; € S(Mz) N
NS(My)}.

From any vertex; of Sy, there is necessarily an edge
in G betweenz; and a non-augmentiny; -alternating
path. LetS; be the set of vertices covered B¥;, which
belongs to these non-augmentihg -alternating paths.
|S2] = 3N is the number of covered vertices in these
paths with NV roots and2N leafs.

By hypothesis, we know that there may exist vertices
covered byM;, which do not belong taS;. These
vertices are covered either by edges or by paths of
Iength two. LetS; = {$Z|.§CZ S S(Ml) N x; ¢ SQ}

be the set of these vertices.

Lastly, there exists vertices non-covered My nor by
M. This set is denoted b$, = {z;|x; € NS(M;) N
NS(M2)}.

Sg

O O OO0

Figure 7. Diagram of the proof of Theorem 2.1

According to previous definitions, we can derive the

A leaf (resp. a root) is defined as a vertex which admits onhyfollowing properties:

one neighbor (resp. two neighbors) id. A vertexz; € C
with j = 2i, i € IN, is a leaf. Moreover, all the vertices
y; € T\C are also leaves. On the contrary, a vertexc C
with j = 2i 4+ 1 is a root,; € IN.

« S; is necessarily an independent set, otherwise there
would be two vertices non-covered by; connected
by an edge. Then, we would have an augmenfifig
alternating path.



In setS,, a root may be connected by an edgeGof

Algorithm 1: Research of a maximumcover

to any vertices ofS; and S,. A leaf of S; cannot be
connected neither to another leaf 8§ nor a vertex
of S1, by an edge of7. As a matter of fact, in both

cases we would have either a cycle or an augmenting

M -alternating path (see illustration in figure 7).
Every root of S may be connected by an edge Gf
to any vertices ofSs. If a leaf of S is connected by
an edge ofG to an extremity of an edge or path of
length two of S5, then there will be an augmenting

Data: G = (V, E)
Result A 2-cover M
begin
M =0
while there exists an augmentiny -alternating
path C' do
| M := Augmenting(M,C)
Return M
end

M -alternating path. And if a leaf o, is connected
to the center of a path of length two 6%, this path
will belong to Ss. Finally, leaves ofS; may only be
connected to roots of, by an edge of5.

We define two setX andY composed of all vertices
which belong toS; U Ss. The first setX is composed
of all the leaves ofS, and of all the vertices of,
and its cardinality isX| = (2N + K). Furthermore,

The algorithm which searches an augmentidg-
alternating path from a non-covered vertey is based on
"breadth first search tree” where the rootaig. For each
vertex, we check if the distance tey is odd, and then
we select the first vertex whose degree is less than two
according toM. This algorithm is:

the setX is an independent set in regard to previous

properties. The second s&t is composed of all the
roots ofSs, and its cardinality i$Y'| = N. Y represents
the neighborhood o, we denotey” = I'(X).

For all 2-cover M, we have|S(M) N X| < 2|Y|,
becauser € S(M)NX = Je = {z,y} € M and
yeY =T(X).

Now, we show thatM, cannot cover more vertices than
My, and thUS|M2| = |]\/[1|

« Due to the fact thatS(Mz)| > |S(M7)| and thatM,
coversK vertices non-covered by/; in Sy, M> does
not cover at most K — 1) vertices in Sy. So, Ms
must cover at leasfX|— (K—1) = 2N+1 vertices of
X. From previously remarks, the number of covered
vertices ofX by any covering is inferior t@|Y'|. There
is a contradiction becausgN+1| > 2|Y|. As a result,
there cannot exist 2-cover M, such thaf Ms|> | M.

So, |Ms|=|M;| and M; is a maximum2-cover.

d

2.2. Polynomial-time algorithm for maximum 2-
cover

From Theorem 2.1, we can now introduce the algorithm |

which gives a maximun2-cover. LetM be a2-cover, and
let C' be an augmenting/-alternating path. The algorithm
substitutes covered edges for non-covered edg€'s @xcept

one of the edges at the end according to different cases. We

denote this operatiodugmenting(M, C'), which results in
a new2-cover which covers one or two vertices more than
M. The algorithm which creates a maximu®acover is:

Algorithm 2: Search of an augmentiny-alternating
path
Data: G = (V, E), with |V| = n, a vertexzy, andM a
2-cover
Result An augmentingM -alternating pathC' from the
vertexxg

begin

gLet Q (resp.Z) be a queue whose unique element
is the vertexxy (resp. an empty queue)

Let F' be a function which gives the precedent
vertex of an other given vertex

while Q # 0 do

Let u be the first element of)

if uwe Z then

Push in@ the two neighbors of:
according toM

else

for every vertexo which is neighbor ofu
andv ¢ Z do

Fv] =u

if v is a vertex of odd distance from,
and with degreel,;(x¢) <2 according
to M then

Return the augmenting path

C ={xzo,..., F(F(v)), F(v),v}
else

if v is a vertex of odd distance from
zo then

Pushv in Z

Pushv in Q

Pull v of @

end




The breadth first search has a complexiyn+m) where  Proof
n (resp.m) is the number of vertices (resp. edges). In the It is obvious that minimizingf provides an optimal

worst case we searahtimes an augmenting/-alternating . .
path. The Algorithm 1 is performed i@(n?), solution toTORPEDO;—TR. Letus igg\{v that itVb(C)

is minimized in f, the valueNb(C;) + Z (i —1)NH(Cy)

3. Study of approximation _ _ i=2
will be increased. Let's suppose that we ha¥&(C))

non-covered vertices in a non-maximum covering’.
Now, we consider thal/ covers one more vertex,, there
are two possibilities. Ifxy is connected inG. to an edge
of M, a path is created id/ and f increases (indeed, we
have two slots for the non-covered vertex plus one slot
for the edge, whereas a path only has two slots)lfis
) ) ) ) connected in&, to a vertex of a path of\/, two paths are

In this case, there will always be an idle time when wecreated ind and f increases (indeed, cutting the chain in
will schedule the first acquisition task coveredGh by an  qrger to create two paths, edges included, gives four stots i
edge or a path. From Observation 1.1, we will compute thgne worst case). By minimizing the number of non-covered
number of idle slots after executing all thecoupled-tasks vertices, f either increases or remains the same, thus we

In this part, we present a polynomial-time approximation
algorithm with a performance ratio bounded t;b} for
TORPEDO; — TR and % for TORPEDO, + TR.

3.1. First case:TORPEDO; — TR

and treatment tasks. In this way, for one optimal schedulingsptain an optimal solution fof ORPEDO; — TR. 0
we extract an covering denoted I$vl;. In this covering,
let Nb(C;) be the number of path€;. In the following, Remark 3.1:From the Lemma 3.1, the coveringol:,

we will haven = Nb(Co) + n2, wherens is the number  associated with the optimal scheduling, covers a maximum
of covered vertices in an optimal solution (see Figure 8)of vertices. In the following, we will call this covering a
Now, we can define a functiofi which depends on all the aximum covering.

Nb(C;) and counts the number of idle slots (except for the | emma 3.2:A maximum 2-cover minimizes the same
first represented by-d in the equation) in the schedule, after ,ymper of non-covered vertices iff, as any maximum

the processing of treatment tasks within the slots creayed begyering with paths of different lengths (edges accepted).
coupled-tasks:

f = Idle slots from non-covered vertices Treatment ~ Proof

tasks remairrgig? after the execution of path@Nb(Co) + The proof is trivial, indeed any path can be cut into edges
NB(Cy) +(2 Z NB(Cy)—1) — (Nb(Co) — 1) — 2Nb(Cy ) — and paths of length two. O

na—1 =2 na—1 Let's search the upper bound, our heuristic is based on the
> [(i+1)Nb(Ci)] = Nb(Co)-Nb(C1)— > [(i~1)Nb(C;)]  2-cover algorithm. From the Lemma 3.2 we know that the
i=2 i=2 number of remaining non-covered vertices is alét(Cy).

Thus, the aim is to cut paths of different lengths into edges
0O~ aO-O~ 1], 77 C2O—O—O*D_[[[DZ[J;TT and paths of length two. LeNb"(Cy) (resp. Nb*(Cy))
B ’ : be the number of edges (resp. paths of length two) in our

e N

«O0-C-0 OO-UL__ K] .7 heuristic. An edge creates one slot and leaves two treatment
s HEED ny tasks, whereas a path of length two creates two slots and
o1 O-O-O- O-O-[0[__H] rr7...7 leaves two treatments tasks (because the third is used to fill
2(nz +2) one slot). For a better upper bound, we maximize the edges
Figure 8. Different paths of the covering of G, in the 2-cover after. having mipimized the non-covered tasks
(see Lemma 5.1 in Appendix 5.2 for the proof). $wi;,
According to f, the lower boun@iwill be equal to: for each pathC; of odd (resp. even) length, we haye?)
edges (resp(.%) edges and one path of length two). Thus
Cﬁfém 2 Tsequentiul + Tidle =3n+1+ ma:v{O, f} (1) n2—1 i+1
_ _ _ we obtain Nb"(C1) = Nb(C1)+ Y [(——)Nb(Cy)]+
Lemma 3.1:There exists an optimal solution to i(odd)=3 2

TORPEDO;—TR that minimizesNb(Cy). na-l L, nazl .o g
Y. [(FON(CHI=Nb(Cr)+ D [(—5-)Nb(C:) -
i(even)=2 i=2
6. CSPL. denotes the length of an optimal sched®, gyential (rESP.

T;aq1e) denotes the processing time of all tasks (resp. idle tinmethe 7. In this paper, we call maximum covering a covering whickers a
schedule). maximum of vertices with a minimum of paths.



’n.gfl

> Nb(Cy).

i(even)=2

ngfl

>

i(even)=2

ng(CZ), andth(CQ):

Therefore, the length of the makespan is the sequential Result

Algorithm 3: Use of2-cover forTORPEDO, — TR

Data: G, = (V, E), with |[V|=n
Ch _: length of the schedule with the heuristic

max *

time plus the idle slots from the non-covered vertices which Pegin

are not filled by treatment tasks. The upper bdumsl
Ch .. < 3n+1+maz{0, Nb(Co)— N (C1)—Nb"(Cs)}.

Now, we will study the relative performangeaccording
to Nb(Cop). First, we haven = Nb(Cy) + 2Nb(Cy) +
’n2—1

Z (i+1)Nb(C;), secondly from the equation 1, the worst

=2
ngfl

case occurs wheiVb(Co) = Nb(Cy) + Z [(i—1)Nb(Cy)]
(see Figure 9). =

With the substitutions ofNb(Ch)
Ch ., we obtain:

max’

andn in C°! and

max

n 2—1

e CoPt, > 3n+1=14+3Nb(CoHENb(C1 3D [(i+1)Nb(C;)]

ngfl
=14+ 9Nb(C1) +6 > _ [iNb(C;)]
=2

.Cgmw < 3n+1+ Nb(Co)—th(Cl)— bh(Cg)
’n2—1

no—1 .
_3n+1+2[(l_3)1\76(0¢)}+ > Nb(G)

2 .
i(even)=2

’n2—1

1 .
<Bn+l+g ; [iNbB(C;)]
Thus, we have: )
1~ .
Bn+1+5 z; [iNb(Cy)]
< max 1=
P=gopt = 3n + 1
171271
3 > [INH(C)] 3
_ i=2 19
=1+ — <3
1+ 9NB(Cy) +6 > [iNb(C;)]
=2
Nb(Co) ‘ 0 71 Y2 n
13
cl e 2
p < Cf,f’(fl, / \
1

1
no—1
2= 3 [ND(C))(i=D]+Nb(C1)

Figure 9. Variation of p depending on Nb(C)) value

v1=Nbl(C1)+ Nl (Cg)

The following algorithm first consists in minimizing
Nb(Cp), and secondly in maximizingvb(C3) from a 2-
cover. It gives a;%-approximation folORPEDO; —TR.

8. Ch ... denotes the length of the schedule given by our heuristic.

M, := Maximum matching inG.

M> := Maximum 2-cover fromM/;

M; := Trans formation(Ms)

Schedule vertices covered by edgesiiij, then by
paths inMj3

Schedule non-covered vertices, then schedule

dtreatment tasks at the first idle time
en

Remark 3.2:Trans formation(Mz) is the operation in
M, which turns the paths of length two into edges in
polynomial time. Indeed, in a first time each path of length
two in M is contracted into one vertex, which keeps the
edges inGG,. connected to the extremities of the path. Then in
a second time, we search a maximum matching in this new
graph with the contracted vertices. Finally, the contrdcte
vertices are transformed into edges (illustration Figuig 1

(5 ie 15

Figure 10. lllustration of the transformation from paths
of length two into edges

3.2. Second caseTORPEDO; + TR

This study is similar as previously. In this case we must
simply add triangles to the set of all the paths in the cowgrin
of G,, in order to obtain an optimal schedule. U&b(T'R)
be the number of triangles in the covering, denotedbi,
associated with the optimal schedule. With the triangles
added to the solution, we have= Nb(Cy) + 2Nb(Cy) +
’n.gfl
> (i + 1)Nb(C;) + BNH(TR). For the lower bound, we
=2
obtain C°F¢

max

> 3n + ]l{Nb(TR):Q} + max{O,Nb(Co) —

’n.gfl
Nb(Cy) = > [Nb(Ci)(i — 1)] — BNH(TR)}°.
=2
In this case, minimizingNb(C,) does not imply the
’n.zfl

minimization of f = Nb(Co)—Nb(C1)— Y  [Nb(C;)(i—1)]

=2
—3Nb(TR). Indeed, in specific cases, it is wiser to leave
a non-covered vertex in order to get a triangle and no idle
slot in the scheduling. But for the calculus, we need that the

9. 1y nb(TR)=0} is the indicator function which represents the first slot
when t{here is no triangle in the covering.



number ofCj in our heuristic, denoted bi¥b"(Cy), equals 4. Conclusion

to Nb(Cy). In this way we can say without loss of generality

that the worst case occurs whaf" (Co) = Nb(Cp). In this paper, we studied twd/P-complete scheduling
Now, for the upper bound, the heuristic used is stit-a Problems with coupled-tasks where the idle time is equal to

cover, but in the case with triangles @. we cannot predict WO- In order to approximate these problems, we introduced

which vertices of the triangles will be covered by edges orth€ notion of2-cover which is an extension of the classical

paths of length two in the optimal solution. The worst case¢maiching definition, and we developed the principle of

occurs when the triangles are covered by paths of lengtRltérnating path according to thiscover. Then, we have

na—1 shown two results for the-cover. Firstly, the cardinality of
two, and thusNb"(Cy) = Z Nb(C;) + Nb(TR).  a2-cover M is maximum when there are no augmenting
i(even)=2 M-alternating paths. Secondly, we defined a polynomial-
For the upper bound we still have” . < 3n+ 1+  time algorithm that yields a maximumcover of a graph.
maz{0, Nb(Cy) — Nb"(Cy) — Nb"(Cy)}. From these results, we have shown that our heuristic, based

As with the previous case, we will study the relative per-0n a2-cover, provides ag-approximation for this problem
formance according td7b(Cy). The worst case occurs when if the compatibility graph has no triangle, and in the case

n2—1 of triangles, our heuristic gives a@-approximation. This
Nb(Co) = Nb(Cy) + Y [(i = 1)Nb(C,)] + 3Nb(TR), heuristic based on a-cover let us suppose that it can be
. =2 generalized for more general problems.
We obtain:
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5. Appendixes Because of the compatibility constraint between the isdlat
coupled-tasks and the other tasksdnwe can only fill the
5.1. Proof of N’P-completeness idle time of these isolated tasks withtreatment tasks. The
scheduling of the tasks af must given treatment tasks,
5.1.1. TORPEDO; + TR problem]. We will show that  but it is possible only if all the coupled-tasks are procdsse
the TORPEDO; + TR problem is A’/P-complete when without idle slot (see Figure 13b). Thus, the covering of the

G, contains triangles. In this way, we will use the triangle vertices ofG is necessarily a triangle packing. O
packing (" P) problem.
Proof 5.1.2. TORPEDO; — TR problem]. We will show that

theTORPEDO; — TR problem is\"P-complete wherG,.

~ The construction of the polynomial time transformation s ng triangle. In this way, we will use the Hamiltonian path
is given for the reductioll’P «« TORPEDO; + TR. (HC) problem.

From an instancdl of TP, we built an instancdl’ of
TORPEDO; +TR. LetG = (V, E) in IT with |V| = n, Proof

. . L ) ]
tr:cchons(,jtructlo;l O.GCI '? clj_I cot|_'13|sts n ”.‘lf‘k'?g :he :i.n'on The construction of the polynomial time transformation
0 and (n — 1) isolated vertices (see illustration Figure is given for the reductionHC « TORPEDO; — TR.

12). From an instancdl of HC, we built an instancdl’ of
G TORPEDO; — TR. LetG = (V,E) in II with |V| = n,
O O " vertices the construction of7. in I’ consists in making the union
(n—1) verices (O of G and (n — 2) isolated vertices (see illustration Figure
O O O 14).
R
G. G
0Q0 |
Figure 12. lllustration of the polynomial time transfor- (% — 2) vertices O  vertices
mation O O O
_

= Let's suppose that there exists a triangle packingin Ge

we will show that the scheduling of all the tasks@f admits  Figure 14. lllustration of the polynomial time transfor-

a makespan of length(2n — 1), the sequential time without mation

idle slot. If there exists a triangle packing, so all versice#

G are covered, and there remain — 1) isolated vertices = Let’'s suppose that there exists a Hamiltonian path in
which cannot be covered. The scheduling of this covering; we will show that the scheduling of all the tasks @f

is the following, first we process the coupled-tasks coveregidmits a makespan of leng®#i2n — 2) + 1, the sequential
by the triangle packing, then the non-covered (isolated}ime plus one idle slot. If there exists a Hamiltonian path,
coupled-tasks. Thanks to the processing of the treatmerfy all vertices ofG are covered, and there remaifis— 2)
taSkS, all the idle slots are filled. ThUS, the SChedUlingﬂbn isolated vertices. The Schedu"ng of this Covering is the
is equal to3(2n — 1). following, first we process the coupled-tasks covered by
the Hamiltonian path, then the non-covered (isolated)

s n WVZ\%@\ an—lﬁn—z\ ~_pn|Tnd deime  coupled-tasks. Thanks to the processing of the treatment

tasks, all the idle slots are filled except for the first idle
slot created by the Hamiltonian path. Thus, the scheduling

oo Jofma - [ length is equal t&(2n — 2) + 1.

ay| az| ag| by ‘bz ‘ b3 @n—2|An-1| an bn72|bn71

n

a)‘ ay % by ‘ as E\% by ‘ S an_;/T,nﬁQ\%bn_l/Tn_l\ dle time

Figure 13. lllustration of the covering of G

< Let’s suppose that the scheduling of all the tasks of
G. in II' admits a makespan of leng#{2n — 1), we will  »
show that the covering iid7 is a triangle packing. Notice
that the length of the makespan is without idle slot in the
scheduling. The scheduling of the isolated coupled-tasks i
simple and gives: idle slots (see illustration Figure 13a). Figure 15. lllustration of the covering of G

by|ag |ba [ag |- |an |bpq|T1|bn |T2\[T3

© | Tn

n—1




< Let’s suppose that the scheduling of all the task&of FE = {X,Y,Z}. Let 521 v be the set of edges which has
in IT" admits a makespan of leng8{2n — 2) + 1, we will an extremity inT' € E and the other itV € E. And finally,
show that the covering 67 is a hamiltonian path. Notice let 55 7,y be the set of paths of length two which has an
that the length of the makespan leaves only one idle slot iextremity in7 € E, another inV € E and the third vertex
the scheduling. The scheduling of the isolated couplekistas in U € F.
is simple and give$n — 1) idle slots (see illustration Figure Remark 5.1:With the definition of the three sefs, Y, 7,
5.1.2a). Because of the compatibility constraint betwéen t we havef, x x = f2,x,z = 0 and all thefs ;v are
isolated coupled-tasks and the other task&'jrwe can only — empty except fofs x v x, 03,x,v,z, 53,v,z,2z, 93,v,y,y and
fill the idle time of these isolated tasks with—1) treatment (s z z z. AtleastVYU,V,T B2 v = Bour @andBs ru v =
tasks. The scheduling of the tasks @fmust give(n — 1)  Gsvur.
treatment tasks, but it is possible if all the coupled-tasies In order to make the proof more easy visibility, we have
processed with only two idle slots (see Figure 5.1.2b). Thusthe following notationsw; = |02, x,v |, a2 =|0s.x.v. x|, as =
the covering of the vertices @ is necessarily a hamiltonian |85 x v,z|, csa =182y, z|, a5 =|03,v,2,2|, 06 = |82, 2,2|, a7 =

path. 0O Bszzzlas = |B1,z],0 = |Brx], 210 = [Bry], 01 =

|B3.v,y.y|, 12 =1|82,y,y|.- And thus, we have the following

. . : equations:
5.2. Proof of the lemma in order to find a maximum
2
2-cover ag = ng+ % — a1 — 202 — a3
n
Lemma 5.1:A maximum 2-cover consists in firstly min- a0 = ?3 -1 — Q2 — oz —ag — a5 — 3011 — 2002

imizing Nb(Cy), then secondly maximizing/b(C ). ag = N9 — a3 —ay — 25 — 206 — 3ag
Proof Now we can computef,, for 7, f., is the number of

Let's -, be a maximune-cover of the graplG. which  Slots which stay after the processing of treatment tasks in
first minimizes the non-covered vertices, then maximizeghe inactivity time of the non-covered acquisition tasks.
the edges in the cover; is composed ofus (resp.np) 1S depending of they; and then,: _
vertices covered by paths of length two (resp. by edges), /. = Number of slots given by non-covered vertices
and n; non-covered vertices. Three sets are defined fronfNumber of treatment tasks availabte (a0 + a9 + as) —
71 (see figure 16(a))X which contains thezs extremities (20‘1 toztagt+astoas+asgt+artonn+ o) =(nm+
of paths of length two and the; non-covered vertices/ Ftap—o —20—az) —ar -2 — a3 — Qg — o5 —
contains the’? vertices of the middle of paths of length @6 — @7 +oag —an —o1p =11+ o + a5+ ag + 20 +
two, and Z contains then, vertices covered by edge¥ P11+ 302 —az —ag — a7
is an independent set and the fact thatdoes not contain ~ From hypothesis om and, f-, < f-,, and so:
an augmenting -alternating path implies that there cannot

exist edges betweeN and Z. ny + a4+a5+ag—a2—a6—a7<n1—%—%
: : 3o Sa « 3a
X z X Y ! z [ —3+—4+3Oé5+—7+—8+40410+80411+50612<O

- 2 2 2 2
O QOO

oyl oyl
o | O o " O O ag
OLQ‘

| |
. as
;
O———0=o0
L« i

o——H o

10—0 a ! 0—0 ag

09| 120 O
i a1 g
@011 o

(a) lllustration of the covering of; (b) llustration of the three sets
and the different types of cov-
ering in T2

This equation is impossible becaugé o; > 0. So o
does not exist, and; is an optimal2-cover.

o BEO

Figure 16. lllustrations for the proof of the Lemma 5.1

The proof is by contradiction, let's suppose that there is
another maximun®-cover , in graph G. which has its
function f and its number of non-covered vertices lower than
those ofr;. From; and the three sets defined previously,
we will give all the possible covers fop, (see figure 16(b)).
Let 5, 1 be the set of non-covered vertices@ine E where
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