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Abstract

This paper introduces a scheduling problem with coupled-
tasks in presence of a compatibility graph on a single
processor. We investigate a specific configuration, in which
the coupled-tasks possess an idle time equal to2. The
complexity of these problems will be studied according to
the presence or absence of triangles in the compatibility
graph. As an extended matching, we propose a polynomial-
time algorithm which consists in minimizing the number of
non-covered vertices, by covering vertices with edges or
paths of length two in the compatibility graph. This type of
covering will be denoted by2-cover technique. According on
the compatibility graph type, the2-cover technique provides
a polynomial-timeρ-approximation algorithm withρ = 13

12
(resp.ρ = 10

9 ) in absence (resp. presence) of triangles.

1. Introduction

1.1. Presentation

In this paper, we present the problem of data acquisi-
tion according to compatibility constraints in a submarine
torpedo, denoted byTORPEDO problem. The torpedo
is used in order to realize cartography, topology studies,
temperature measures and many other tasks in the water. The
aim of this torpedo is to collect and process a set of data as
soon as possible on a single processor. In this way, it possess
few sensors, a single processor and two types of tasks
which must be scheduled: Acquisition tasks and Treatment
tasks. First, the acquisition tasksA = {A1, . . . , An} can
be assigned to coupled-tasks introduced by [1]. Indeed the
torpedo sensors emit a wave which propagates in the water in
order to collect the data. Each acquisition tasksAi have two
sub-tasks, the firstai sends an echo, the secondbi receives
it. For a better reading, we will denote the processing time
of each sub-taskai and bi. Between the sub-tasks, there
is an incompressible idle timeLi which represents the
spread of the echo in the water. Second, treatment tasks
T = {T1, . . . , Tn} are obtained from acquisition tasks.
Indeed after the return of the echo, various calculations
will be executed from gathered informations. These tasks
are preemptive and have precedence constraints with the
acquisition tasks. In this paper, we will consider the problem

where every acquisition taskAi have a precedence relation
with one treatment taskTi of one unit long (the processing
time is denoted byTi for a better reading).

Lastly, there exist compatibility constraints between ac-
quisition tasks, due to the fact that some acquisition tasks
cannot be processed at the same time that another tasks.
In order to represent this constraint a compatibility graph
Gc = (A, Ec) is introduced, whereA is the set of coupled-
tasks andEc represents the edges connecting two coupled-
tasks which can be executed simultaneously. In other words,
at least one sub-task of a taskAi may be executed during
the idle time of another taskAj (see example in Figure 1).
There is none compatibility constraints betweenT andA,
and so, treatment tasks can be executed in the idle time of
the acquisition tasks.

A1 A2A3

a1 b1a2 b2 a3 b3

L1
L2 L3

Compatibility graph

Figure 1. Example of compatibility constraints with Li=2

The aim of the TORPEDO problem is to produce a
shortest schedule (i.e. to minimize the moment after the ex-
ecution of the last task in the schedule denoted byCmax) in
which compatibility contraints between acquisition tasksand
precedence constraints are respected. In scheduling theory,
a problem is categorized by its machine environment, job
characteristic and objective function. So using the notation
schemeα|β|γ proposed by [2], the TORPEDO problem will
be defined by1|prec, (ai,Li,bi) ∪ (Ti = 1), Gc|Cmax

1.
Our work consists in measuring the impact of the com-

patibility graph on the complexity and approximation of
scheduling problems with coupled-tasks on a single proces-
sor. This paper is focusing on the limit between polynomial
problems andNP-complete problems, when the compati-
bility constraint is introduced.

1.2. Related work

The complexity of the scheduling problem, with coupled-
tasks and a complete compatibility graph2, has been inves-

1. prec represents the precedence constraints betweenA andT
2. Notice, the lack of compatibility graph is equivalent to afully

connected graph. In this way, all tasks may be compatible each other.
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tigated by [3], [4], [5]. In existing works about coupled-
tasks on a single processor, authors focus their studies on
precedence constraints between theAi’s. We have studied
the complexity of this type of problem according to the value
of the different parameters, and we find the gap between the
polynomial cases andNP-complete ones. We have shown
in [6] that the relaxation of the compatibility constraint
imply theNP-completeness of the problemTORPEDO1 :
1|prec, (ai =bi =1, Li=α)∪(Ti = 1), Gc|Cmax, in the case
whereα ≥ 3. In this article we present two results, first we
will study a special case ofTORPEDO1 problem where
Li = 2, and sotbi

= tai
+ ai + Li = tai

+ 3 wheretai
is

the starting time of a taskai. Second, we will design an
interesting polynomial-time approximation algorithm with
non-trivial ratio guarantee for this problem, which can be
generalized for theTORPEDO problem.

1.3. Presentation of the TORPEDO problem

This section is devoted to definitions and notations used
in the rest of the article. All the graphs in this paper
are non-oriented. We will callpath a non-empty graph
C = (V, E) of the form V = {x0, x1, . . . , xk} and E =
{x0x1, x1x2, . . . , xk−1xk}, where thexi are all distinct. The
number of edges of a path corresponds to its length. A path
of lengthk is denoted byCk in the rest of the paper. Note
that k = 0 is allowed, thusC0 corresponds to a simple
vertex. The study of theTORPEDO1 problem depends
on two essential points, the structure of the coupled-tasks
and the compatibility graphGc. This structure gives special
constraints for the schedule which provides specific covering
problems inGc. To begin the study, we will investigate the
four different possibilities of scheduling the coupled-tasks
with this structure (see Figure 2).

Observation 1.1:The inactivity time between the two
sub-tasks restraints the possibilities of scheduling. Indeed on
the Figure 2 we can see the four types of scheduling, and
so four types of covering onGc. For each case, we have
at most two slots and more than two treatment tasks which
can be executed after the coupled-tasks. So, if we schedule
triangles, chains, and edges the ones after the others, there
is no idle slot (except from the first slot if there is no
triangle). The only idle slots we can get, come from the
simple verticesC0. Because of their structure, they are the
last to be scheduled.

These four types of scheduling immediately imply four
types of covering inGc: non-covered vertices, edges, paths
of length greater than one, and triangles denoted byTR. The
presence of triangles inGc will raise problems in our study.
For better results, theTORPEDO1 problem is divided into
two cases: depending to whetherGc contains triangles or
not. We denote these problemsTORPEDO1 + TR and
TORPEDO1 − TR.

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��
��

��
��
��
��
��

Ti. . .. . .

Idle times

A1

A1

A1

A1

A2

A2

A2

A3

C0 C1

Ci

T R

T1

T1 T1

T1

T2

T2

T2 T3

i

Ai
Ai−1 a1

a1 a1

a1

a2

a2

a2 a3

aib1

b1 b1

b1

b2

b2 b3

bibi−1

L1 =2

Figure 2. Illustration of the four types of scheduling

Theorem 1.1:TORPEDO1+TR andTORPEDO1−TR
areNP-complete.

It is not difficult to prove thatTORPEDO1 + TR
(resp. TORPEDO1 − TR) can be reduced from the
well-known triangle packing problem3 (resp. hamiltonian
path problem4).The proof of the Theorem 1.1 is given in
Appendix 5.1.

With the previously hypotheses, it is clear to have an
approach based on the covering of the vertices ofGc, but
from [8] or [9] we know that covering a graph by paths of
different length greater than two isNP-complete. In order
to obtain a good polynomial-time approximation algorithm
in the two cases, we will use the same approach. It consists
in finding a maximum covering of vertices with only edges
and paths of length two. In the next section, we will define
this covering and we will prove that it can be found in
polynomial-time.

2. 2-cover definition

In the following, we will present several definitions con-
cerning2-cover.

Definition 2.1 (2-cover): Let G = (V, E) be a graph,
a 2-cover M is a set of edges such that the connected
components of the partial graph induced byM are either
simple vertices, edges, or paths of length two.

Definition 2.2 (M -covered vertex):An M -covered ver-
tex (resp.M -non-covered) is a vertex which belongs (resp.
does not belong) to at least one edge ofM . The set of
M -covered vertices (resp.M -non-covered vertices) will be
denoted byS(M) (resp.NS(M)).

Definition 2.3 (Maximum2-cover): In a maximum 2-
cover, the number of covered vertices is maximum, therefore
the number of non-covered vertices is minimum.

Definition 2.4 (Vertex degree in relation toM ): Let M
be a2-cover in a graphG = (V, E). For eachi = 1, . . . , k,
let dM (xi) be the number of edges ofM which are incident
to xi.

3. In a graphG = (V, E), a triangle packing is a collectionV1, . . . , Vk

of disjoint subsets ofV , each containing exactly three vertices linked by
three edges which belong toE (see [7]).

4. In a graphG = (V, E), a hamiltonian path is a path compound by
all the vertices ofV (see [7]).
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We will now give the definition of the alternating path in
a 2-cover which is similar to the classical alternating path
in a maximum matching by [10].

Definition 2.5 (M -alternating path):Let M be a2-cover
in a graph G = (V, E), an M -alternating pathC =
x0, x1, . . . , xk is a path inG such that fori = 0, . . . ,

⌈

k
2

⌉

−1,
x0 ∈ NS(M), {x2i, x2i+1} /∈ M , and if k 6= (2i + 1)
{x2i+1, x2i+2} ∈ M

Definition 2.6 (Vertebral column of anM -alternating path):
Let M be a 2-cover in a graphG = (V, E), and
C = x0, x1, . . . , xk an M -alternating path inG. The
vertebral column, denoted byT , associated with the pathC
is composed ofC, the edges ofM which are incident toC,
and eventually the extremity of these edges (see Figure 3).

x0 x1 x2 x3 x4 xk−1 xk

C

T

. . .
∈ M

6∈ M

Figure 3. Example of a vertebral column T associated
with an M -alternating path C

Remark 2.1:Therefore, ifT contains a cycle, there exists
e ∈ M which links two vertices ofC. If one of these vertices
is not an extremity ofC then we will have a path of length
three inM (all the vertices are covered by edges ofC except
eventually the extremities). By definition,x0 ∈ NS(M),
thus T contains a cycle when the last vertexxk of C is
connected to another vertex ofC by an edgee ∈ M and
e 6∈ C (see illustration in Figure 4(a)). Note thatdM (xk)=1.

x0 x1 x2 x3 x4 x5

e

(a) Example of a cycle in the ver-
tebral columnT

x0 x1 x2 x3 x4 x5

e

(b) Example of the augmenting
operation with a cycle inT

Figure 4. Illustrations for the Remark 2.1

Definition 2.7 (AugmentingM -alternating path ):
Let C = x0, . . . , xk be an M -alternating path, and
x0 ∈ NS(M). C is an augmentingM -alternating path if
the cardinality of the2-cover given byC can be increased
(i.e. the number of non-covered vertices is reduced by at
least one) by changing the belonging toM of the edges of
C.

Remark 2.2:From Remark 2.1, a path of length three or
four can be created thanks to the augmenting operation used
in Definition 2.7. Lete be the edge ofM which creates
the cycle inT and thus creates the path of length three or
four after the augmenting operation. Then, the edgee can be
removed fromM in order to increase the number of covered
vertices by the2-cover (see Figure 4(b)).

Definition 2.8 (Even vertex and odd vertex):Let C =
x0, . . . , xk be anM -alternating path, andx0 ∈ NS(M).
A vertex xi with an index equal to an even number (resp.
odd number) inC is called an even vertex (resp. odd vertex).

2.1. Results

This section is devoted to Lemma 2.1 about the augment-
ing M -alternating paths and the fundamental Theorem 2.1
of the 2-cover withM -alternating path.

Lemma 2.1:Let M be a2-cover,C = x0, x1, . . . , xk an
M -alternating path withx0 ∈ NS(M), and letT be the
vertebral column associated with theM -alternating pathC.
C is an augmentingM -alternating path if and only if there
exists a vertexx2i−1, i ∈ IN∗, such thatdM (x2i−1) 6= 2.

Proof by contradiction

⇒ Suppose thatC may be an augmentingM -alternating
path, and suppose that an odd vertexx2i−1 such that
dM (x2i−1) 6= 2 does not exist (soT does not contain any
cycle). Thus,C and its vertebral columnT have the shape
of Figure5.

∈ M

6∈ M

x0 x1 x2 xkxk−3 xk−2 xk−1

yr yr+1y0

C

T

. . .

Figure 5. Skeleton of the vertebral column T associated
to C

From Definition 2.7 and Remark 2.2, ifT does not contain
any cycle, we can simply increase the cardinality of the
covered vertices in the pathC by changing the belonging to
M of the edges ofC. If we change the belonging toM of
the edge{x0, x1} in order to coverx0, the edge{x1, x2}
must change, elsex1 will be a star center5. In this way,
we change the belonging toM of the edge{x1, x2}, which
means that we must be changed{x2, x3}. Recursively, we
will change the belonging toM of all C edges. Thus, the
last vertexxk will not be covered, andC will not be an
augmentingM -alternating path. This is inconsistent with the
former assumptions. Therefore, there exists a vertexx2i−1

such thatdM (x2i−1) 6= 2.
⇐ If T contains a cycle, thenC contains an augmenting

M -alternating path (see Figure 2.1). Else, suppose thatT
does not contain a cycle, but there exists a vertexx2i−1,
i ∈ IN∗, such thatdM (x2i−1) 6= 2. We will show thatC
is an augmentingM -alternating path. Letxj = x2i−1, i ∈
IN∗, be the first odd vertex on theM -alternating path with
dM (xj) < 2. We have three cases:

5. A star center is the vertex with degree greater than1 in a star.
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1) dM (xj) = 0, the M -alternating pathC ends with
an non-covered vertex. SoC is an augmentingM -
alternating path (see illustration in Figure 6.a).

2) dM (xj) = 1 and dM (xj+1) = 1, the M -alternating
path C contains an edge(xj , xj+1) ∈ M whose
extremities have a degree equal to1. We remove the
part of the path which is after this edge, this part is
already covered. Thus, we have anM -alternating sub-
path, in which all the vertices of odd index have a
degree equal to2 and the sub-path end is an edge
(xj , xj+1). It is easy to see that this sub-path is
an augmentingM -alternating path by changing the
belonging toM of the edges ofC, except the last one
(xj , xj+1). SoC is an augmentingM -alternating path
(see illustration in figure 6.b).

3) dM (xj) = 1 and dM (xj+1) = 2, the M -alternating
path C owns an odd vertex with degree equal to1
adjacent to an even vertex with degree equal to2. We
remove the path part which is after the even vertex
with degree equal to2, this part is already covered.
Thus, we have anM -alternating sub-path, in which
all the vertices of odd index have a degree equal to
2, and the sub-path end is a path of length two. It
is easy to see that this sub-path is an augmentingM -
alternating path by changing the belonging toM of all
C edges. SoC is an augmentingM -alternating path
(see Figure 6.c).

a)

b)

c)

yi−1 yi−1

x0

x0

x0

x0

x0

x0

x1

x1

x1

x1

x1

x1

x2

x2

x2

xj−2

xj−2

xj−2

xj−2

xj−2

xj−2

xj−1

xj−1

xj−1

xj−1

xj−1

xj−1

xj

xj

xj
xj

xj

xj

xj+1

xj+1

xj+1

xj+1

y0

y0

y0

y0

y0

y0 yi−2yi−2

yi−2

yi−2
yi−2

yi−2

C

C

CC

C

C

∈ M

6∈ M

Augmenting

Figure 6. Augmenting operation of the three cases with
j = 2i − 1
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Theorem 2.1:Let M be a2-cover in a graphG, M admits
maximum cardinality if and only ifG does not possess an
augmentingM -alternating path.

Before giving the proof, we define two types of vertices
in non-augmentingM -alternating paths:

Definition 2.9 (Leaf and root):Let M be a2-cover in a
graphG, and letC be a non-augmentingM -alternating path.
A leaf (resp. a root) is defined as a vertex which admits only
one neighbor (resp. two neighbors) inM . A vertexxj ∈ C
with j = 2i, i ∈ IN, is a leaf. Moreover, all the vertices
yi ∈ T \C are also leaves. On the contrary, a vertexxj ∈ C
with j = 2i + 1 is a root,i ∈ IN.

Proof of the Theorem 2.1

This proof is drawn from the classical maximum matching
proof given in [10].
⇒ Let M be a maximum2-cover inG. If G contains an

augmentingM -alternating path, the cardinality ofM will
be able to increase by Lemma 2.1, and thenM will be not
maximum.
⇐ Let M1 be a2-cover in G. Suppose thatG does not

contain an augmentingM1-alternating path.
Suppose thatM1 is not maximum, and letM2 be another

2-cover inG which is maximum. Clearly,M2 covers more
vertices thanM1. From these hypotheses, the following
structure is defined (see illustration in Figure 7):

• Suppose thatM2 coversK vertices non-covered by
M1, this set is denoted byS1 = {xi|xi ∈ S(M2) ∩
NS(M1)}.

• From any vertexxi of S1, there is necessarily an edge
in G betweenxi and a non-augmentingM1-alternating
path. LetS2 be the set of vertices covered byM1, which
belongs to these non-augmentingM1-alternating paths.
|S2| = 3N is the number of covered vertices in these
paths withN roots and2N leafs.

• By hypothesis, we know that there may exist vertices
covered byM1, which do not belong toS2. These
vertices are covered either by edges or by paths of
length two. LetS3 = {xi|xi ∈ S(M1) ∧ xi 6∈ S2}
be the set of these vertices.

• Lastly, there exists vertices non-covered byM1 nor by
M2. This set is denoted byS4 = {xi|xi ∈ NS(M1) ∩
NS(M2)}.
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∈ M2∈ M2∈ M2∈ M2

∈ M1

SetX

SetY

∈ G

S1

S2

S3 S4

. . .

Figure 7. Diagram of the proof of Theorem 2.1

According to previous definitions, we can derive the
following properties:

• S1 is necessarily an independent set, otherwise there
would be two vertices non-covered byM1 connected
by an edge. Then, we would have an augmentingM1-
alternating path.
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• In set S2, a root may be connected by an edge ofG
to any vertices ofS1 and S2. A leaf of S2 cannot be
connected neither to another leaf ofS2 nor a vertex
of S1, by an edge ofG. As a matter of fact, in both
cases we would have either a cycle or an augmenting
M1-alternating path (see illustration in figure 7).

• Every root ofS2 may be connected by an edge ofG
to any vertices ofS3. If a leaf of S2 is connected by
an edge ofG to an extremity of an edge or path of
length two of S3, then there will be an augmenting
M1-alternating path. And if a leaf ofS2 is connected
to the center of a path of length two ofS3, this path
will belong to S2. Finally, leaves ofS2 may only be
connected to roots ofS2 by an edge ofG.

• We define two setsX andY composed of all vertices
which belong toS1 ∪ S2. The first setX is composed
of all the leaves ofS2 and of all the vertices ofS1,
and its cardinality is|X | = (2N + K). Furthermore,
the setX is an independent set in regard to previous
properties. The second setY is composed of all the
roots ofS2, and its cardinality is|Y | = N . Y represents
the neighborhood ofX , we denoteY = Γ(X).

• For all 2-cover M , we have |S(M) ∩ X | ≤ 2|Y |,
becausex ∈ S(M) ∩ X ⇒ ∃e = {x, y} ∈ M and
y ∈ Y = Γ(X).

Now, we show thatM2 cannot cover more vertices than
M1, and thus|M2| = |M1|:

• Due to the fact that|S(M2)| > |S(M1)| and thatM2

coversK vertices non-covered byM1 in S1, M2 does
not cover at most(K − 1) vertices in S2. So, M2

must cover at least|X|−(K−1) = 2N+1 vertices of
X . From previously remarks, the number of covered
vertices ofX by any covering is inferior to2|Y |. There
is a contradiction because|2N+1| > 2|Y |. As a result,
there cannot exist a2-coverM2 such that|M2|> |M1|.
So, |M2|= |M1| andM1 is a maximum2-cover.

�

2.2. Polynomial-time algorithm for maximum 2-
cover

From Theorem 2.1, we can now introduce the algorithm
which gives a maximum2-cover. LetM be a2-cover, and
let C be an augmentingM -alternating path. The algorithm
substitutes covered edges for non-covered edges inC, except
one of the edges at the end according to different cases. We
denote this operationAugmenting(M, C), which results in
a new2-cover which covers one or two vertices more than
M . The algorithm which creates a maximum2-cover is:

Algorithm 1 : Research of a maximum2-cover

Data: G = (V, E)
Result: A 2-coverM
begin

M :=Ø
while there exists an augmentingM -alternating
path C do

M := Augmenting(M, C)
ReturnM

end

The algorithm which searches an augmentingM -
alternating path from a non-covered vertexx0, is based on
”breadth first search tree” where the root isx0. For each
vertex, we check if the distance tox0 is odd, and then
we select the first vertex whose degree is less than two
according toM . This algorithm is:

Algorithm 2 : Search of an augmentingM-alternating
path

Data: G = (V, E), with |V | = n, a vertexx0, andM a
2-cover

Result: An augmentingM -alternating pathC from the
vertexx0

begin
Let Q (resp.Z) be a queue whose unique element
is the vertexx0 (resp. an empty queue)
Let F be a function which gives the precedent
vertex of an other given vertex
while Q 6= ∅ do

Let u be the first element ofQ
if u ∈ Z then

Push inQ the two neighbors ofu
according toM

else
for every vertexv which is neighbor ofu
and v 6∈ Z do

F [v] = u
if v is a vertex of odd distance fromx0

and with degreedM (x0)<2 according
to M then

Return the augmenting path
C = {x0, . . . , F (F (v)), F (v), v}

else
if v is a vertex of odd distance from
x0 then

Pushv in Z
Pushv in Q

Pull u of Q

end

5



The breadth first search has a complexityO(n+m) where
n (resp.m) is the number of vertices (resp. edges). In the
worst case we searchn times an augmentingM -alternating
path. The Algorithm 1 is performed inO(n2).

3. Study of approximation

In this part, we present a polynomial-time approximation
algorithm with a performance ratio bounded by1312 for
TORPEDO1 − TR and 10

9 for TORPEDO1 + TR.

3.1. First case:TORPEDO1 − TR

In this case, there will always be an idle time when we
will schedule the first acquisition task covered inGc by an
edge or a path. From Observation 1.1, we will compute the
number of idle slots after executing all then coupled-tasks
and treatment tasks. In this way, for one optimal scheduling,
we extract an covering denoted bySol1. In this covering,
let Nb(Ci) be the number of pathsCi. In the following,
we will have n = Nb(C0) + n2, wheren2 is the number
of covered vertices in an optimal solution (see Figure 8).
Now, we can define a functionf which depends on all the
Nb(Ci) and counts the number of idle slots (except for the
first represented by a-1 in the equation) in the schedule, after
the processing of treatment tasks within the slots created by
coupled-tasks:

f = Idle slots from non-covered vertices− Treatment
tasks remaining after the execution of paths= 2Nb(C0)+

Nb(C1)+(2

n2−1
∑

i=2

Nb(Ci)−1)−(Nb(C0)−1)−2Nb(C1)−

n2−1
∑

i=2

[(i+1)Nb(Ci)]=Nb(C0)−Nb(C1)−
n2−1
∑

i=2

[(i−1)Nb(Ci)]

4

2(i + 1)

2(n2 + 2)

C0 C1 C2

Ci

Cn2−1

5 8

(i + 1) vertices

n2 vertices

T

T

T TTTT

i
z }| {

T T T . . . T

n2−1
z }| {

T T T . . . T. . .

. . .

Figure 8. Different paths of the covering of Gc

According tof , the lower bound6 will be equal to:

Copt
max ≥ Tsequential + Tidle = 3n + 1 + max{0, f} (1)

Lemma 3.1:There exists an optimal solution to
TORPEDO1−TR that minimizesNb(C0).

6. C
opt
max denotes the length of an optimal schedule,Tsequential (resp.

Tidle) denotes the processing time of all tasks (resp. idle times in the
schedule).

Proof

It is obvious that minimizingf provides an optimal
solution toTORPEDO1−TR. Let us show that ifNb(C0)

is minimized inf , the valueNb(C1) +

n2−1
∑

i=2

(i − 1)Nb(Ci)

will be increased. Let’s suppose that we haveNb(C0)
non-covered vertices in a non-maximum coveringM7.
Now, we consider thatM covers one more vertexx0, there
are two possibilities. Ifx0 is connected inGc to an edge
of M , a path is created inM and f increases (indeed, we
have two slots for the non-covered vertex plus one slot
for the edge, whereas a path only has two slots). Ifx0 is
connected inGc to a vertex of a path ofM , two paths are
created inM andf increases (indeed, cutting the chain in
order to create two paths, edges included, gives four slots in
the worst case). By minimizing the number of non-covered
vertices,f either increases or remains the same, thus we
obtain an optimal solution forTORPEDO1 −TR. �

Remark 3.1:From the Lemma 3.1, the coveringSol1,
associated with the optimal scheduling, covers a maximum
of vertices. In the following, we will call this covering a
maximum covering.

Lemma 3.2:A maximum 2-cover minimizes the same
number of non-covered vertices inGc as any maximum
covering with paths of different lengths (edges accepted).

Proof

The proof is trivial, indeed any path can be cut into edges
and paths of length two. �

Let’s search the upper bound, our heuristic is based on the
2-cover algorithm. From the Lemma 3.2 we know that the
number of remaining non-covered vertices is alsoNb(C0).
Thus, the aim is to cut paths of different lengths into edges
and paths of length two. LetNbh(C1) (resp. Nbh(C2))
be the number of edges (resp. paths of length two) in our
heuristic. An edge creates one slot and leaves two treatment
tasks, whereas a path of length two creates two slots and
leaves two treatments tasks (because the third is used to fill
one slot). For a better upper bound, we maximize the edges
in the2-cover after having minimized the non-covered tasks
(see Lemma 5.1 in Appendix 5.2 for the proof). InSol1,
for each pathCi of odd (resp. even) length, we have( i+1

2 )
edges (resp.( i−2

2 ) edges and one path of length two). Thus

we obtainNbh(C1) = Nb(C1)+

n2−1
∑

i(odd)=3

[(
i+1

2
)Nb(Ci)]+

n2−1
∑

i(even)=2

[(
i−2

2
)Nb(Ci)]=Nb(C1)+

n2−1
∑

i=2

[(
i+1

2
)Nb(Ci)]−

7. In this paper, we call maximum covering a covering which covers a
maximum of vertices with a minimum of paths.
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n2−1
∑

i(even)=2

3

2
Nb(Ci), andNbh(C2)=

n2−1
∑

i(even)=2

Nb(Ci).

Therefore, the length of the makespan is the sequential
time plus the idle slots from the non-covered vertices which
are not filled by treatment tasks. The upper bound8 is
Ch

max ≤ 3n+1+max{0, Nb(C0)−Nbh(C1)−Nbh(C2)}.
Now, we will study the relative performanceρ according

to Nb(C0). First, we haven = Nb(C0) + 2Nb(C1) +
n2−1
∑

i=2

(i+1)Nb(Ci), secondly from the equation 1, the worst

case occurs whenNb(C0)=Nb(C1)+

n2−1
∑

i=2

[(i−1)Nb(Ci)]

(see Figure 9).
With the substitutions ofNb(C0) and n in Copt

max and
Ch

max, we obtain:

•Copt
max≥3n+1=1+3Nb(C0)+6Nb(C1)+3

n2−1
∑

i=2

[(i+1)Nb(Ci)]

= 1 + 9Nb(C1) + 6

n2−1
∑

i=2

[iNb(Ci)]

•Ch
max ≤ 3n+1+ Nb(C0)−Nbh(C1)−Nbh(C2)

=3n+1+

n2−1
∑

i=2

[

(i−3)

2
Nb(Ci)

]

+
1

2

n2−1
∑

i(even)=2

Nb(Ci)

≤3n+1+
1

2

n2−1
∑

i=2

[iNb(Ci)]

Thus, we have:

ρ ≤
Ch

max

Copt
max

≤

3n+1+
1

2

n2−1
∑

i=2

[iNb(Ci)]

3n + 1

=1+

1

2

n2−1
∑

i=2

[iNb(Ci)]

1 + 9Nb(C1) + 6

n2−1
∑

i=2

[iNb(Ci)]

≤
13

12

γ1

γ1 =Nbh(C1)+Nbh(C2) γ2 =

n2−1
X

i=2

[Nb(Ci)(i−1)]+Nb(C1 )

γ20

111

nNb(C0)

ρ ≤
Ch

max

C
opt
max

13
12

Figure 9. Variation of ρ depending on Nb(C0) value

The following algorithm first consists in minimizing
Nb(C0), and secondly in maximizingNb(C2) from a 2-
cover. It gives a13

12 -approximation forTORPEDO1−TR.

8. Ch
max denotes the length of the schedule given by our heuristic.

Algorithm 3 : Use of2-cover forTORPEDO1 − TR

Data: Gc = (V, E), with |V | = n
Result: Ch

max : length of the schedule with the heuristic
begin

M1 := Maximum matching inGc

M2 := Maximum 2-cover fromM1

M3 := Transformation(M2)
Schedule vertices covered by edges inM3, then by
paths inM3

Schedule non-covered vertices, then schedule
treatment tasks at the first idle time

end

Remark 3.2:Transformation(M2) is the operation in
M2 which turns the paths of length two into edges in
polynomial time. Indeed, in a first time each path of length
two in M is contracted into one vertex, which keeps the
edges inGc connected to the extremities of the path. Then in
a second time, we search a maximum matching in this new
graph with the contracted vertices. Finally, the contracted
vertices are transformed into edges (illustration Figure 10).

Figure 10. Illustration of the transformation from paths
of length two into edges

3.2. Second case:TORPEDO1 + TR

This study is similar as previously. In this case we must
simply add triangles to the set of all the paths in the covering
of Gc, in order to obtain an optimal schedule. LetNb(TR)
be the number of triangles in the covering, denoted bySol2,
associated with the optimal schedule. With the triangles
added to the solution, we haven = Nb(C0) + 2Nb(C1) +
n2−1
∑

i=2

(i + 1)Nb(Ci) + 3Nb(TR). For the lower bound, we

obtain Copt
max ≥ 3n + 1{Nb(TR)=0} + max{0, Nb(C0) −

Nb(C1) −
n2−1
∑

i=2

[Nb(Ci)(i − 1)] − 3Nb(TR)}9.

In this case, minimizingNb(C0) does not imply the

minimization off =Nb(C0)−Nb(C1)−
n2−1
∑

i=2

[Nb(Ci)(i−1)]

−3Nb(TR). Indeed, in specific cases, it is wiser to leave
a non-covered vertex in order to get a triangle and no idle
slot in the scheduling. But for the calculus, we need that the

9. 1{Nb(TR)=0} is the indicator function which represents the first slot
when there is no triangle in the covering.
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number ofC0 in our heuristic, denoted byNbh(C0), equals
to Nb(C0). In this way we can say without loss of generality
that the worst case occurs whenNbh(C0) = Nb(C0).

Now, for the upper bound, the heuristic used is still a2-
cover, but in the case with triangles inGc we cannot predict
which vertices of the triangles will be covered by edges or
paths of length two in the optimal solution. The worst case
occurs when the triangles are covered by paths of length

two, and thusNbh(C2) =

n2−1
∑

i(even)=2

Nb(Ci) + Nb(TR).

For the upper bound we still haveCh
max ≤ 3n + 1 +

max{0, Nb(C0) − Nbh(C1) − Nbh(C2)}.

As with the previous case, we will study the relative per-
formance according toNb(C0). The worst case occurs when

Nb(C0) = Nb(C1) +

n2−1
∑

i=2

[(i − 1)Nb(Ci)] + 3Nb(TR).

We obtain:
• Copt

max ≥ 3n+1{Nb(TR)=0} ≥ 3n

≥ 9Nb(C1)+18Nb(TR)+6

n2−1
∑

i=2

[iNb(Ci)]

• Ch
max ≤ 3n+1+ Nb(C0)−Nbh(C1)−Nbh(C2)

≤ 3n+1+2Nb(TR)+
1

2

n2−1
∑

i=2

[iNb(Ci)]

Thus, we have :

ρ ≤
Ch

max

Copt
max

≤

3n+1+2Nb(TR)+
1

2

n2−1
∑

i=2

[iNb(Ci)]

3n + 1{Nb(TR)=0}

≤1+

1+2Nb(TR)+
1

2

n2−1
∑

i=2

[iNb(Ci)]

9Nb(C1)+18Nb(TR)+6

n2−1
∑

i=2

[iNb(Ci)]

≤ 1 +

2Nb(TR)+
6

9

n2−1
∑

i=2

[iNb(Ci)]

18Nb(TR)+6

n2−1
∑

i=2

[iNb(Ci)]

≤
10

9

γ1

γ1 =Nbh(C1)+Nbh(C2)

γ20

111

nNb(C0)

ρ ≤
Ch

max

C
opt
max

γ2 =

n2−1
X

i=2

[Nb(Ci)(i−1)]+Nb(C1 )+3Nb(T R)

10
9

Figure 11. Variation of relative performance ρ depen-
dent of Nb(C0) value

4. Conclusion

In this paper, we studied twoNP-complete scheduling
problems with coupled-tasks where the idle time is equal to
two. In order to approximate these problems, we introduced
the notion of2-cover which is an extension of the classical
matching definition, and we developed the principle of
alternating path according to this2-cover. Then, we have
shown two results for the2-cover. Firstly, the cardinality of
a 2-cover M is maximum when there are no augmenting
M -alternating paths. Secondly, we defined a polynomial-
time algorithm that yields a maximum2-cover of a graph.
From these results, we have shown that our heuristic, based
on a2-cover, provides an1312 -approximation for this problem
if the compatibility graph has no triangle, and in the case
of triangles, our heuristic gives an109 -approximation. This
heuristic based on a2-cover let us suppose that it can be
generalized for more general problems.
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5. Appendixes

5.1. Proof of NP-completeness

5.1.1. [TORPEDO1 + TR problem]. We will show that
the TORPEDO1 + TR problem isNP-complete when
Gc contains triangles. In this way, we will use the triangle
packing (TP ) problem.

Proof

The construction of the polynomial time transformation
is given for the reductionTP ∝ TORPEDO1 + TR.
From an instanceΠ of TP , we built an instanceΠ′ of
TORPEDO1 + TR. Let G = (V, E) in Π with |V | = n,
the construction ofGc in Π′ consists in making the union
of G and (n − 1) isolated vertices (see illustration Figure
12).

(n − 1) vertices

G

Gc

n vertices

Figure 12. Illustration of the polynomial time transfor-
mation

⇒ Let’s suppose that there exists a triangle packing inG,
we will show that the scheduling of all the tasks ofGc admits
a makespan of length3(2n−1), the sequential time without
idle slot. If there exists a triangle packing, so all vertices of
G are covered, and there remain(n − 1) isolated vertices
which cannot be covered. The scheduling of this covering
is the following, first we process the coupled-tasks covered
by the triangle packing, then the non-covered (isolated)
coupled-tasks. Thanks to the processing of the treatment
tasks, all the idle slots are filled. Thus, the scheduling length
is equal to3(2n − 1).
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n

a1
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a3 b1

b1

b2

b2

b3 T1

T1

T2 Tn

Tn−2 Tn−1

an−2 bn−2

an−1

an−1

bn−1

bn−1an bn

Idle timea)

b)

Figure 13. Illustration of the covering of G

⇐ Let’s suppose that the scheduling of all the tasks of
Gc in Π′ admits a makespan of length3(2n − 1), we will
show that the covering inG is a triangle packing. Notice
that the length of the makespan is without idle slot in the
scheduling. The scheduling of the isolated coupled-tasks is
simple and givesn idle slots (see illustration Figure 13a).

Because of the compatibility constraint between the isolated
coupled-tasks and the other tasks inG, we can only fill the
idle time of these isolated tasks withn treatment tasks. The
scheduling of the tasks ofG must given treatment tasks,
but it is possible only if all the coupled-tasks are processed
without idle slot (see Figure 13b). Thus, the covering of the
vertices ofG is necessarily a triangle packing. �

5.1.2. [TORPEDO1 − TR problem]. We will show that
theTORPEDO1−TR problem isNP-complete whenGc

has no triangle. In this way, we will use the Hamiltonian path
(HC) problem.

Proof

The construction of the polynomial time transformation
is given for the reductionHC ∝ TORPEDO1 − TR.
From an instanceΠ of HC, we built an instanceΠ′ of
TORPEDO1 − TR. Let G = (V, E) in Π with |V | = n,
the construction ofGc in Π′ consists in making the union
of G and (n − 2) isolated vertices (see illustration Figure
14).

G

Gc

(n − 2) vertices n vertices

Figure 14. Illustration of the polynomial time transfor-
mation

⇒ Let’s suppose that there exists a Hamiltonian path in
G, we will show that the scheduling of all the tasks ofGc

admits a makespan of length3(2n − 2) + 1, the sequential
time plus one idle slot. If there exists a Hamiltonian path,
so all vertices ofG are covered, and there remains(n − 2)
isolated vertices. The scheduling of this covering is the
following, first we process the coupled-tasks covered by
the Hamiltonian path, then the non-covered (isolated)
coupled-tasks. Thanks to the processing of the treatment
tasks, all the idle slots are filled except for the first idle
slot created by the Hamiltonian path. Thus, the scheduling
length is equal to3(2n− 2) + 1.
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Figure 15. Illustration of the covering of G
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⇐ Let’s suppose that the scheduling of all the tasks ofGc

in Π′ admits a makespan of length3(2n − 2) + 1, we will
show that the covering inG is a hamiltonian path. Notice
that the length of the makespan leaves only one idle slot in
the scheduling. The scheduling of the isolated coupled-tasks
is simple and gives(n−1) idle slots (see illustration Figure
5.1.2a). Because of the compatibility constraint between the
isolated coupled-tasks and the other tasks inG, we can only
fill the idle time of these isolated tasks with(n−1) treatment
tasks. The scheduling of the tasks ofG must give(n − 1)
treatment tasks, but it is possible if all the coupled-tasksare
processed with only two idle slots (see Figure 5.1.2b). Thus,
the covering of the vertices ofG is necessarily a hamiltonian
path. �

5.2. Proof of the lemma in order to find a maximum
2-cover

Lemma 5.1:A maximum2-cover consists in firstly min-
imizing Nb(C0), then secondly maximizingNb(C1).

Proof

Let’s τ1 be a maximum2-cover of the graphGc which
first minimizes the non-covered vertices, then maximizes
the edges in the cover.τ1 is composed ofn3 (resp. n2)
vertices covered by paths of length two (resp. by edges),
and n1 non-covered vertices. Three sets are defined from
τ1 (see figure 16(a)):X which contains the2n3

3 extremities
of paths of length two and then1 non-covered vertices,Y
contains then3

3 vertices of the middle of paths of length
two, andZ contains then2 vertices covered by edges.X
is an independent set and the fact thatτ1 does not contain
an augmentingτ1-alternating path implies that there cannot
exist edges betweenX andZ.

X

Y

Z

n1
n2n3

(a) Illustration of the covering ofτ1

X Y Z

α1

α2

α3

α4

α5

α6

α7

α8

α9
α10

α11

α12

(b) Illustration of the three sets
and the different types of cov-
ering in τ2

Figure 16. Illustrations for the proof of the Lemma 5.1

The proof is by contradiction, let’s suppose that there is
another maximum2-cover τ2 in graph Gc which has its
functionf and its number of non-covered vertices lower than
those ofτ1. From τ1 and the three sets defined previously,
we will give all the possible covers forτ2 (see figure 16(b)).
Let β1,T be the set of non-covered vertices inT ∈ E where

E = {X, Y, Z}. Let β2,T,U be the set of edges which has
an extremity inT ∈ E and the other inU ∈ E. And finally,
let β3,T,U,V be the set of paths of length two which has an
extremity inT ∈ E, another inV ∈ E and the third vertex
in U ∈ E.

Remark 5.1:With the definition of the three setsX, Y, Z,
we haveβ2,X,X = β2,X,Z = ∅ and all theβ3,T,U,V are
empty except forβ3,X,Y,X , β3,X,Y,Z, β3,Y,Z,Z , β3,Y,Y,Y and
β3,Z,Z,Z . At least,∀U, V, T β2,T,U = β2,U,T andβ3,T,U,V =
β3,V,U,T .

In order to make the proof more easy visibility, we have
the following notations:α1 = |β2,X,Y |, α2 = |β3,X,Y,X |, α3 =
|β3,X,Y,Z |, α4 = |β2,Y,Z|, α5 = |β3,Y,Z,Z |, α6 = |β2,Z,Z|, α7 =
|β3,Z,Z,Z |, α8 = |β1,Z |, α9 = |β1,X |, α10 = |β1,Y |, α11 =
|β3,Y,Y,Y |, α12 = |β2,Y,Y |. And thus, we have the following
equations:

α9 = n1 +
2n3

3
− α1 − 2α2 − α3

α10 =
n3

3
− α1 − α2 − α3 − α4 − α5 − 3α11 − 2α12

α8 = n2 − α3 − α4 − 2α5 − 2α6 − 3α7

Now we can computefτ2 for τ2, fτ2 is the number of
slots which stay after the processing of treatment tasks in
the inactivity time of the non-covered acquisition tasks.fτ2

is depending of theαi and theni:
fτ2 = Number of slots given by non-covered vertices−

Number of treatment tasks available= (α10 + α9 + α8) −
(α1 + α2 + α3 + α4 + α5 + α6 + α7 + α11 + α12) = (n1 +
2n3

3 + α10 − α1 − 2α2 − α3) − α1 − α2 − α3 − α4 − α5 −
α6 − α7 + α8 − α11 − α12 = n1 + α4 + α5 + α8 + 2α10 +
5α11 + 3α12 − α2 − α6 − α7

From hypothesis onτ1 andτ2, fτ2 < fτ1 , and so:

n1 + α4+α5+α8−α2−α6−α7 <n1−
n2

2
−

n3

3

α1 +
3α3

2
+

5α4

2
+3α5+

α7

2
+

3α8

2
+4α10+8α11+5α12<0

This equation is impossible because∀i αi ≥ 0. So τ2

does not exist, andτ1 is an optimal2-cover.

�
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