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Component directories index components by the services they offer thus enabling us to rapidly
access them. Component directories are also the cornerstone of dynamic component assembly
evolution when components fail or when new functionalities have to be added to meet new
requirements. This work targets semi-automatic evolution processes. It states the theoreti-
cal basis of on-the-fly construction of component directories using Formal Concept Analysis
based on the syntactic description of the services that components require or provide. In these
directories, components are more clearly organized and new abstract and highly reusable com-
ponent external descriptions suggested. Moreover, this organization speeds up both automatic
component assembly and automatic component substitution.

Keywords: Component-Based Software Engineering, Component directories, Formal
Concept Analysis, Component classification

1. Introduction

Component-based software engineering (Cbse) enables software applications to be 
built by assembling off-the-shelf components. To ease this process, components 
expose their external description: a component’s set of required and provided in-
terfaces corresponds to the syntactical description of the services the component 
provides to other components in its environment or requires from other compo-
nents of its environment to execute itself. Previous work on automatic component 
assembly and dynamic component assembly evolution (Desnos et al. 2006, 2007, 
2008) convinced us that an efficient component directory is needed. Indeed, search-
ing in a directory for a component from a given repository that is compatible with, 
or substitutable for, a given component is a non-trivial task. Additionally, white-
page-like directories, which represent the mostly used category of directories, are 
not suitable because they are not structured to enable the search for compatible 
or substitutable components.

The idea of this paper is to propose mechanisms to semi-automatically index 
software components through a yellow-page-like component directory that supports
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efficient search for components that are compatible or substitutable to a given
component. Our approach relies on Formal Concept Analysis (FCA) that enables
us to pre-calculate three categories of lattices:

• Functionality signature lattices order functionality signatures in a way that
naturally eases their search and can be used for required and provided func-
tionality connection or for required or provided functionality substitution. This
category of lattices serves as the basis for building interface lattices.

• Interface lattices are more abstract than functionality signature lattices; they
code information on functionality specialization that has been modeled in func-
tionality signature lattices. They order component interfaces — organize service
descriptions — in a way that naturally eases their search and can be used for
required and provided interface connection or for required or provided interface
substitution. This category of lattices serves as the basis for building component
type lattices.

• Component type lattices are more abstract than interface lattices; they code
the information on interface specialization that has been modeled in interface
lattices. They order component types in a way that naturally eases their search
and can be used for component connection or component substitution.

These lattices provide the architect or developer with intelligible classifications for
functionality signatures, interfaces and component types. They enable us to sepa-
rate the service compatibility calculus from the component search itself during the
processes of assembly or component assembly evolution (component substitution).

Indeed, a component type lattice can be used as an index for the search of a com-
patible component (in order to build an assembly) or of a comparable component
(in order to find a substitute). Furthermore, FCA creates new component external
descriptions (new component types) that do not exist in the component repository
but are more abstract and reusable than existing components. These new abstrac-
tions can be an opportunity for component developers to be guided during their
engineering or re-engineering process. They can also enrich the repository.

The remainder of this paper is organized as follows. Section 2 shows an extension
of object-oriented type theory to component types. Then, after recalling the basics
of FCA and describing the example used in the paper, Section 3 shows how to build
a lattice of functionality signatures and how to use it as a basis for component
assembly or component substitution. Section 4 generalizes these results to entire
interfaces and shows how to use the resulting interface lattice. Section 5 goes one
step further in proposing a methodology to build and interpret a component lattice.
To finish, Section 6 compares our approach to related existing work and Section 7
concludes and presents future research directions.

2. Functionality signatures and interface syntactical compatibility

This section explains how the syntactical compatibility of component interfaces
can be calculated from functionality signatures which define the syntactical type
of interfaces. The syntactical compatibility of interfaces is used to check the validity
of connection and substitution operations on component assemblies. It statically
asserts a certain level of coherence in a component assembly that, before semantic
analysis or execution, provides early error detection and correction.

2.1 Functionality signature compatibility in object-oriented programming

In strongly-typed object-oriented programming languages (Cardelli 1984), method
signature overriding is allowed in subclasses but constrained by rules that enforce



the substitutability of subclass instances towards superclass instances. Thus, a
method signature in a subclass must have contravariant argument types and a
covariant return type: argument types must be generalized and the return type
must be specialized. Intuitively, a method implements a service provided by an
object: when the method is called, assuming that sufficient information is received
(as specified by argument types), a result of the defined return type is sent back.
This corresponds to the concept of software contract, introduced by Meyer (1991)
to reason about interactions between objects. Following the above rules, an instance
of a class can replace an instance of one of its superclasses because it provides at
least the same services, but is allowed to require less invocation information and
to return a richer result.

These principles are also used to define relaxed matching schemes used to re-
trieve a class or a functionality from a repository (Zaremski and Wing 1995). A
request is expressed as the signature of the functionality that is searched for. Any
functionality the signature of which specializes (overrides) the requested signature
is returned as an approximate but still (type-) compatible answer.

2.2 Functionality signatures and component interface specification

An interface is a type that collects functionality signatures; it is used to qualify the
collaborations a component can establish with other components. An interface is
also a communication point through which a component exchanges service request
and response messages with another component. Messages are sent and received
along connections linking the interfaces of a component to compatible interfaces of
other components (Szypersky et al. 2002). Comparing the syntactical types of two
interfaces amounts to compare pairs of functionality signatures from both interfaces
(Zaremski and Wing 1997). But in contrast with object models, a direction is
added to the definition of interfaces in order to specify whether a component is
a client (i.e., uses the interface to require a service) or a server (i.e., uses the
interface to provide a service). Thus, two kinds of compatibilities can be verified
between interfaces: a connection compatibility between a client interface and a
server interface or a substitution compatibility between interfaces that have the
same direction. The connection or substitution compatibility of two components
can in turn be determined by verifying the connection or substitution compatibility
of pairs of interfaces from both components.

In this paper, functionality signatures are defined by a name, a list of argument
types and a return type. As in classical programming languages, names are used
as the primary semantic element to match functionalities. Then, the types of the
in-parameters and out-parameters of homonymic functionalities are considered.
For the sake of simplicity, only a single out-parameter (the functionality result) is
used in this paper. But the same principles can be applied to any out-parameter
when multiple out-parameters are used in a functionality signature.

Figure 1 shows an example of different signatures for homonymic functionali-
ties named create, associated with both required and provided component in-
terfaces. The data type hierarchy used to define parameter types is presented in
Figure 1(d). The different cases of functionality signature specialization are il-
lustrated: argument type specialization (cf. Figure 1(a)), result type specialization
(cf. Figure 1(b)) and argument addition into the in-parameter set (cf. Figure 1(c)).

When associated with a provided interface, a functionality signature has the same
semantics as in object-oriented programming: the argument types define what the
server component requires to receive in order to execute its service and the return
type defines what result it commits to provide. When associated with a required



interface, a functionality signature specifies the service that is searched for by a
client component: the argument types define the invocation information that the
client component will send to a server component and the return type defines the
type of the result it requires.

Figure 1. Interface compatibility when types and number of parameters vary.

2.3 Functionality signature specialization and provided interface substitution

Zaremski and Wing (1997) present functionality signature matching based on pre-
and post- conditions. Consider a provided interface I1, which holds a functionality
of signature S = f(X x) : Z. As informally stated above, its software contract
corresponds to the following pre-condition and post-condition:

Spre(x) : Type(x) ≤ X

Spost(x) : Type(f(x)) ≤ Z

Let us consider another provided interface I2, which holds a functionality of signa-
ture T = f(L l) : M , along with its pre-condition and post-condition:

Tpre(l) : Type(l) ≤ L

Tpost(l) : Type(f(l)) ≤ M

To soundly substitute I2 to I1 in an assembly, the following predicate must hold:

Substitutionprovided(I2, I1) = Spre(x) ⇒ Tpre(x) ∧ Tpost(x) ⇒ Spost(x)

This verifies that f in I2 can execute the same invocations as f in I1; second,
it verifies that the results returned by f in I2 can be used instead of the results
returned by f in I1.

To be true, the predicate entails that:

X ≤ L (indeed, Type(x) ≤ X ∧ X ≤ L ⇒ Type(x) ≤ L),
M ≤ Z (indeed, Type(f(x)) ≤ M ∧ M ≤ Z ⇒ Type(f(x)) ≤ Z).

This respectively corresponds to a contravariant specialization of the argument
types and to a covariant specialization of the result type between the two function-
ality signatures, as previously presented for object-oriented languages. A provided



interface can be replaced by another provided interface with more specific func-
tionality signatures, following the above specialization rules.

For example (cf. Figure 1(a)), a provided interface holding the create(In-

formation) signature can be substituted to a provided interface holding the
create(PersonnalInformation) signature (contravariant specialization of the ar-
gument type). Similarly (cf. Figure 1(b)), a provided interface holding the cre-

ate():GoldCustomer signature can be substituted to a provided interface holding
the create():SilverCustomer signature (covariant specialization of the result
type).

2.4 Functionality signature specialization and required interface substitution

Let us now consider a required interface I3, which holds a functionality of signature
S = f(X x) : Z. The pre-condition and post-condition corresponding to its software
contract are the same as for a provided interface but, as discussed above, their
semantics are converse. Indeed, x now represents the data the client component
commits to send and f(x) the data the client expects to receive:

Spre(x) : Type(x) ≤ X

Spost(x) : Type(f(x)) ≤ Z

Let us also consider another required interface I4, which contains a functionality
of signature T = f(L l) : M . This corresponds to the same pre-condition and
post-condition as above:

Tpre(l) : Type(l) ≤ L

Tpost(l) : Type(f(l)) ≤ M

To soundly substitute I4 to I3 in an assembly, the following predicate must hold:

Substitutionrequired(I4, I3) = Tpre(x) ⇒ Spre(x) ∧ Spost(x) ⇒ Tpost(x)

This firstly verifies that the client component holding I4 will call f in the same
way as the client component holding I3 (to have the guarantee that the connected
server component can execute all invocations); secondly, this verifies that the results
received by I3 will also satisfy the requirements of the client component holding
I4.

To be true, the predicate entails that:

L ≤ X (indeed, Type(x) ≤ L ∧ L ≤ X ⇒ Type(x) ≤ X),
Z ≤ M (indeed, Type(f(x)) ≤ Z ∧ Z ≤ M ⇒ Type(f(x)) ≤ M).

This respectively corresponds to a covariant specialization of the argument types
and a contravariant specialization of the result type between the two functionality
signatures. Unsurprisingly, the specialization rules for functionality signatures in
required interfaces are the opposite of those which apply to provided interfaces.
Here again, following the above rules, a required interface can be replaced by an-
other required interface with more specific functionality signatures.

For example (cf. Figure 1(a)), a required interface holding the create(ChildIn-
formation) signature can be substituted to a required interface holding the
create(PersonnalInformation) signature (covariant specialization of the argu-
ment type). Similarly (cf. Figure 1(b)), a required interface holding the cre-

ate():Customer signature can be substituted to a required interface holding the
create():SilverCustomer signature (contravariant specialization of the result
type).



2.5 Functionality signature specialization and interface connection

Finally, let us again consider the provided interface I1 and the required interface
I4. To soundly connect I1 to I4, the following predicate must hold:

Connection(I4, I1) = Tpre(x) ⇒ Spre(x) ∧ Spost(x) ⇒ Tpost(x)

This firstly verifies that any data sent by the client component holding I4 can
effectively be used by the server component holding I1 to execute f ; secondly, this
verifies that the data sent by the server component holding I1 corresponds to the
result expected by the client component holding I4.

To be true, the predicate entails that:

L ≤ X (indeed, Type(x) ≤ L ∧ L ≤ X ⇒ Type(x) ≤ X),
Z ≤ M (indeed, Type(f(x)) ≤ Z ∧ Z ≤ M ⇒ Type(f(x)) ≤ M).

This corresponds to a contravariant specialization of argument types and a covari-
ant specialization of the result type between the two functionality signatures. The
functionality signatures associated with a required interface of the client compo-
nent must be more generic than the functionality signature associated with the
provided interface of the server component.

For example (cf. Figure 1(a)), a required interface holding the create(Per-

sonalInformation) signature can be connected to a provided interface hold-
ing the create(Information) signature (contravariant specialization of the ar-
gument type). Similarly (cf. Figure 1(b)), a required interface holding the
create():Customer signature can be connected to a provided interface holding
the create():SilverCustomer signature (covariant specialization of the result
type).

2.6 Functionality signature specialization and parameter addition or

suppression

A special case of parameter type generalization is now considered. When a param-
eter type is generalized in a functionality signature, it conceptually means that the
specification becomes less demanding on parameters. The objects of the Object

type (root of the object type hierarchy) are the objects which contain the least
data. We extend the generalization principle by stating that void is the root type
in our system and that it further generalizes the Object type.

This way, a special case of parameter type generalization is to set a parameter
type to void. Any data, including no data, becomes suitable for this parameter.
As this parameter is optional, it is possible to remove the parameter from the
functionality signature. We therefore consider suppressing a parameter as a special
case of parameter type generalization.

Conversely, it is possible to add an extra parameter of type void to a functionality
signature without changing its semantics (this additional parameter can always be
ignored). The type of such a parameter can then be specialized in the process
of functionality signature specialization, thus becoming a parameter of a concrete
type. We therefore consider parameter addition as a special case of parameter type
specialization.

For example (cf. Figure 1(c)), a provided interface holding the create(Informa-
tion) signature can be substituted to a provided interface holding the create(In-
formation,BankIdentity) signature, as the former signature is obtained by re-
moving the second parameter of the latter signature (contravariant specialization
of the parameter type). Similarly, a required interface holding the create(In-



formation,BankIdentity) signature can be substituted to a required interface
holding the create(Information) signature, as the former signature is obtained
by adding a second parameter to the latter signature (covariant specialization of a
virtual second parameter of type void).

2.7 Discussion

In Zaremski and Wing (1997), which proposes an extensive study and classification
of functionality signature matching, the above predicates correspond to a kind of
functionality signature matching called “plug-in” matching. It is used to verify
that the code of a functionality can be plugged into some other code, to handle
some expected behavior, as specified by a syntactical signature. We have adapted
this generic functionality signature matching principle to the specific concepts of
component models, namely the syntactical coherence of interface connection and
substitution.

Our formalization shows that checking the coherence of these operations amounts
to verifying the existence of specialization relations between functionality signa-
tures. Thus, we studied how to build specialization hierarchies of functionality
signatures, interfaces and component types. We intend to use these hierarchies as
a practical, systematic and efficient means to set up and structure a component
directory, where components are indexed by the type of services they provide and
require, in other words, a trading service for component-based platforms (Iribarne
et al. 2004)).

The next sections describe how an FCA-based approach to this problem can
be used to build the necessary specialization lattices. It is to be noticed that,
at any step, a single lattice is sufficient to compare both required and provided
elements for both substitution and connection. Indeed, as shown previously, only
two specialization rules are used, which are converse.

3. Lattice of functionality signatures

The substitutability rules presented in the previous section can be considered as
the basis of a specialization relationship among functionalities: a functionality that
can substitute for another can be considered as its specialization. Existing func-
tionalities can thus be organized — classified — in a hierarchy based on their
substitutability relationships. Furthermore, this section will show that FCA pro-
vides a finer-grained classification. After recalling the basics of Formal Concept
Analysis, we show how it can be used to build a lattice of functionality signatures
and how the lattice can then be interpreted and used.

3.1 A survival kit for Formal Concept Analysis

The classification we build is based on the partially ordered structure known as
Galois connection-based lattice (Birkhoff 1940, Davey and Priestley 1991) or con-
cept lattice (Wille 1982) which is induced by a context K, composed of a binary
relation R over a pair of sets O (objects) and A (attributes) (Table 1). A formal
concept C is a pair of corresponding sets (E, I) such that:

E = { e ∈ O| ∀ i ∈ I, (e, i) ∈ R} is called extent (covered objects),
I = { i ∈ A| ∀ e ∈ E, (e, i) ∈ R} is called intent (shared features).



For example, ({1, 2}, {b, c}) is a formal concept because objects 1 and 2 exactly
share attributes b and c (and vice-versa). On the contrary, ({2}, {b, c}) is not a
formal concept.

Furthermore, the set of all formal concepts C constitutes a lattice L when pro-
vided with the following specialization order based on intent / extent inclusion:

(E1, I1) ≤L (E2, I2) ⇔ E1 ⊆ E2 (or equivalently I2 ⊆ I1).

Figure 3.1 shows the Hasse diagram of ≤L.

Table 1. Binary relation of K = (O, A, R) where O={1, 2, 3, 4, 5, 6} and A= {a, b, c, d, e, f, g, h}.

a b c d e f g h
1 × × × ×
2 × × × × ×
3 × × × × ×
4 × ×
5 × ×
6 × ×

Figure 2. Hasse diagram of the concept lattice L.

3.2 Example of an online bookstore application

In the rest of this article, we will use, as an illustration, the example of an online
bookstore application that targets both the adult and children audiences (cf. Fig-
ure 3(a) to see the hierarchy of product types). Two categories of customers can
interact with this application. Adults can save favorite book lists (as wish lists)
through the application or shop for books following various protocols defined ac-
cording to a client typology (cf. Figure 1(d)). Children can establish children book
wish lists that constitute virtual orders that adults can offer them as soon as their
parents obtain the SilverCustomer client category. For this online bookstore ap-
plication, we have a component repository (cf. Figure 3(b)) in which we can see
various components to manage orders (by adults or children) and various compo-
nents to manage customer lists. These components each expose an interface list
the types of which are enumerated in Figure 3(c).
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( a ) S u b t y p e r e l a t i o n b e t w e e n d a t a t y p e s ( b ) C o m p o n e n t e x t e r n a l d e f i n i t i o nc r e a t e ( I n f o r m a t i o n , b a n k I d e n t i t y , c o u n t r y ) : C u s t o m e rm o d i f y ( I n f o r m a t i o n ) : C u s t o m e rc r e a t e ( P e r s o n a l I n f o r m a t i o n , b a n k I d e n t i t y , c r e d i t C a r d N u m b e r ) : S i l v e r C u s t o m e rm o d i f y ( P e r s o n a l I n f o r m a t i o n , b a n k I d e n t i t y ) : S i l v e r C u s t o m e rc r e a t e ( P e r s o n a l I n f o r m a t i o n , b a n k I d e n t i t y , c r e d i t C a r d N u m b e r ) : G o l d C u s t o m e rm o d i f y ( P e r s o n a l I n f o r m a t i o n , b a n k I d e n t i t y , c r e d i t C a r d N u m b e r ) : G o l d C u s t o m e rc r e a t e ( C h i l d I n f o r m a t i o n , b a n k I d e n t i t y ) : S i l v e r C u s t o m e rm o d i f y ( C h i l d I n f o r m a t i o n ) : v o i dc r e a t e ( P e r s o n a l I n f o r m a t i o n ) : G o l d C u s t o m e rm o d i f y ( P e r s o n a l I n f o r m a t i o n ) : G o l d C u s t o m e r

I 1I 2I 3I 4I 5
a d d ( P r o d u c t ) : v o i dr e m o v e ( P r o d u c t ) : v o i dI 6 a d d ( A d u l t B o o k ) : v o i dr e m o v e ( P r o d u c t ) : v o i dI 7 a d d ( C h i l d r e n B o o k ) : v o i dr e m o v e ( C h i l d r e n B o o k ) : v o i dI 8 a d d ( A d u l t B o o k ) : v o i dr e m o v e ( P r o d u c t ) : v o i dI 9 a d d ( E d u c a t i o n a l B o o k ) : v o i dr e m o v e ( E d u c a t i o n a l B o o k ) : v o i dI 1 0( c ) I n t e r f a c e t y p e d e f i n i t i o n s

Figure 3. Data types, interfaces and components of an online bookstore application.

3.3 Building the functionality signature lattice

We explain here the construction of the required functionality signature lattice. As
provided functionality signatures are reversely ordered, the lattice we obtain can
also be used to deal with them, when considered upside down.

We illustrate our explanation considering the required functionality create(PI,

BI,CCN):SC as it is described by Table 2. At first, for each create functionality
whose signature is held by one of the interfaces of Figure 3, attributes are deduced
from in and out parameter types that explicitly appear in the signature. These
attributes are marked using the × symbol in Table 2: create(PI,BI,CCN):SC is
thus described explicitly by attributes in:PI, in:BI, in:CCN and out:SC. Then,
we infer attributes (marked with a ⊗ symbol in Table 2) when their types are
compatible, regarding specialization of signatures. Here are our inference rules:

• in parameters. As explained previously, if a required functionality sends a
parameter of some type, it implicitly sends a parameter of any more general
type. For example, the in:I attribute is inferred when the in:PI attribute is
already present.

• out parameters. If a required functionality expects to receive a return value
of a type, any return value of a more specific type is also suitable. For example,
the out:GC attribute is inferred when the out:SC attribute is already present.

Figure 4 depicts the concept lattice corresponding to the binary relation shown in
Figure 2, built with the GaLicia FCA tool (GaLicia 2002). Concepts are presented
using reduced intents and extents (resp. denoted by ReducedI et ReducedE) for
readability sake: an object (signature) that belongs to the reduced extent of a con-
cept is inherited by all concepts that are above (down-to-up inheritance); similarly,
a property (in or out parameter type) that belongs to the reduced intent of a
concept is inherited by all concepts that are below (up-to-down inheritance).



Table 2. Rcreate context describing signatures of the required create functionality through its parameters.

in parameters out param.
I PI CI BI CCN Co C SC GC

create(I,BI,Co):C × × × × ⊗ ⊗
create(PI,BI,CCN):SC ⊗ × × × × ⊗
create(PI,BI,CCN):GC ⊗ × × × ×

create(CI,BI):SC ⊗ ⊗ × × × ⊗
create(PI):GC ⊗ × ×

I Information
PI PersonalInfo.
CI ChildInfo.
BI BankIdentity.

CCN CreditCardNb
Co Country
C Customer
SC SilverCustomer
GC GoldCustomer
FC ForeignCustomer

Figure 4. Signature lattice Lcreate for the create functionalities.

3.4 Using the functionality signature lattice

The functionality signature lattice can be used in various types of situations related
to component connection or substitution.

Let us consider the lattice of Figure 4 with the viewpoint of required func-
tionalities. In this lattice, create(PI):GC is represented by concept C3 while
create(CI,BI):SC is represented by concept C8. Concept C3 is more general than
concept C8 which can be interpreted as: concept C8 can replace concept C3. In
a component assembly, a connection to a required functionality corresponding to
concept C3 can be replaced by a connection to a required functionality correspond-
ing to concept C8. In the general case, when there is a path between two concepts,
the more specific (which has more properties) can replace the more general (which
has a subset of properties) when the more general concept is connected (cf. Fig-
ure 5(a)). The same lattice can also be used to substitute a provided functionality
when read upside down (cf. Figure 5(b)). This generalizes as follows.

Property 3.1 Functionality substitution. Let Cfather, Cson be two concepts of the
signature lattice of functionality f , such that Cson ≤Lf

Cfather. Functionalities of
Cson can replace functionalities of Cfather when the functionalities are required.
Opposite replacement applies when the functionalities are provided.

Both provided and required points of view can be combined to address com-



ponent connection. Let us consider the create(PI,BI,CCN):GC signature (con-
cept C7). The corresponding required functionality can obviously connect to
the provided functionality that has the same signature (create(PI,BI,CCN):GC).
Given the substitution rule, provided functionalities which are upper in the lat-
tice, such as provided create(PI):GC (concept C3), can be connected to re-
quired create(PI,BI,CCN):GC (cf. Figure 5(c)). Using the same rule in the
symmetric way, required functionalities which are below in the lattice, such as
required create(PI,BI,CCN):SC (concept C10), can be connected to provided
create(PI,BI,CCN):GC. By transitivity, we can deduce that required create(PI,

BI,CCN):SC can be connected to provided create(PI):GC. This is expressed in the
following connection rule that formalizes how valid functionality connection can be
deduced from the lattice.

Figure 5. Interpretation of the lattice of functionality signatures.

Property 3.2 Functionality connection rule. Let C, Cfather, Cson be three concepts
of the signature lattice of functionality f such that Cson ≤Lf

C ≤Lf
Cfather,

required functionalities of Cson can be connected to provided functionalities of
Cfather.

4. Interface lattice

Components are reusable software entities that are chosen off-the-shelf and fulfill
high-level goals (database component, planning component, and so on). Interfaces
play an important role to achieve these goals by grouping functionalities that have
close semantics and may participate together in potential collaborations. Com-
ponent assembly is based mainly on the connection of compatible interfaces in a
higher abstraction level than simple functionalities.

Considering included functionalities, the interfaces can be provided with a spe-
cialization order in a natural way. This “natural” classification simply uses the
inclusion relation between sets of functionalities in the interfaces and can equally
benefit from FCA to look for factorizable functionalities (in our case remove(P)

can be factored out).
Then, if we consider substitution or connection, we can improve our search and

discover more pertinent abstractions when using the abstractions discovered in the
functionality signature lattice. Lattices of the modify, add and remove functional-
ities of our example are built similarly to the lattice of the create functionality.
Tables 3 and 4 detail the contexts, while Figure 6 and 7 show the corresponding
lattices. As we have observed, these abstractions on the signatures are the concepts
the extent of which has a set of signatures (the signatures covered by the concept)
and the intent of which has a set of attributes describing the signature (in and
out parameters). For each concept, we can calculate a corresponding canonical
signature. We show an example before giving the general definition.

Figure 4 shows the concepts built using the binary relation described in Table
2. A concept the reduced extent of which has an original signature (e.g., concept



Table 3. Context Rmodify describing the signatures of the required modify functionalities.

In parameters Out param.
I PI CI BI CCN void C SC GC

modify(I):C × × ⊗ ⊗
modify(PI,BI):SC ⊗ × × × ⊗

modify(PI,BI,CCN):GC ⊗ × × × ×
modify(CI):void ⊗ ⊗ × × ⊗ ⊗ ⊗
modify(PI):GC ⊗ × ×

Table 4. Context Radd describing the signatures of the required add functionalities. The context Rremove is

identical.
In parameters Out param.

P AB CB EB void
add(P):void × ×

add(AB):void ⊗ × ×
add(CB):void ⊗ × ×
add(EB):void ⊗ ⊗ × ×

Figure 6. Signature lattice Lmodify for the modify functionalities

C9) exactly represents that signature (e.g., create(I,BI,Co):C). A concept the
reduced extent of which is empty can be interpreted as a new signature that we
can infer starting from the attributes inherited by the concept, and considering only
the more specific ones. For example, concept C6 of Figure 4 inherits attributes in:I,
in:PI, in:BI, out:GC, out:SC. In case of required signatures, in:PI is more specific
than in:I meanwhile out:SC is more specific than out:GC. Concept C6 can be then
interpreted as signature create(PI,BI):SC which we call the canonical signature
of the concept. This enables us to build an interface description based on the set
of original signatures completed by all the signatures created in the generalization
process (cf. Table 5).



Figure 7. Signature lattice Ladd for the add functionalities. The lattice Lremove, isomorphic to Ladd, is
not represented.

Definition 4.1 Canonical functionality signature of a concept: Let C be a
concept in a signature lattice Lf which describes functionality f and ≤Types, the
specialization partial order on parameter types. σ(C), the canonical signature of
C, is defined as follows:

• If ReducedE(C) = {s}, then σ(C)= s.

• If ReducedE(C) = ∅, then σ(C)= f(i) : o, where i = min≤Types
{T |in : T ∈

Intent(C)} and where o = max≤Types
{T |out : T ∈ Intent(C)}.

This exact description enables us to build more pertinent interface generalizations
than those we obtained with the “natural” classification of interfaces. It is used as
follows to build interface descriptions within the new context RIntSigCar.

• The canonical signatures are used as attributes in the formal context.

• When an interface I has a signature s in a functionality f in its original
description, if we denote by C the concept such that σ(C)= s, we associate to
the interface the attribute s and all the canonical signatures of the concepts that
are upper of C in the lattice:
RIntSigCar = {(I, sc)|s belongs to the definition of I, sc =σ(Cfather),
Cfather ≥Lf

C with s =σ(C)}.

For example, interface I1 holds the signature create(I,BI,Co):C. This signature
is the canonical signature of concept C9 in lattice Lcreate. In Tab. 5, we associate
I1 to create(I,BI,Co):C (marked with symbol ×) and we equally associate to
I1 the canonical signatures of all concepts of Lcreate that are upper of C9. That
results in the following signatures (marked with symbol ⊗) : create(I,BI):SC
(concept C5), create(I,BI):GC (concept C2), and create(I):GC (concept C1).
From required functionality viewpoint, these signatures are generalizations of the
original signature create(I,BI,Co):C (with the semantics of substitutability).

The built lattice LI (cf. Figure 8) shows specialization relations between inter-
faces. These relations show possible connections or substitutions which are deduced
from the previously mentioned rules on functionality signatures that are extended
to interfaces (repeatedly applied to all signatures that constitute these interfaces).

For example, the required interface I10 can be connected to provided interface



Table 5. Context RIntSigCar encoding required interfaces using signature generalizations.
Rows: interfaces. Columns: canonical signatures and concepts.

create modify

c
re

a
te

(I
):

G
C

—
C

1

c
re

a
te

(I
,B

I)
:G

C
—

C
2

c
re

a
te

(P
I)

:G
C

—
C

3

c
re

a
te

(P
I,
B

I)
:G

C
—

C
4

c
re

a
te

(I
,B

I)
:S

C
—

C
5

c
re

a
te

(P
I,
B

I)
:S

C
—

C
6

c
re

a
te

(P
I,
B

I,
C

C
N

):
G

C
—

C
7

c
re

a
te

(C
I,
B

I)
:S

C
—

C
8

c
re

a
te

(I
,B

I,
C

o
):

C
—

C
9

c
re

a
te

(P
I,
B

I,
C

C
N

):
S
C

—
C

1
0

c
re

a
te

(C
I,
B

I,
C

C
N

,C
o
):

C
—

C
1
1

m
o
d
if
y
(I

):
G

C
—

C
1

m
o
d
if
y
(P

I)
:G

C
—

C
2

m
o
d
if
y
(I

):
S
C

—
C

3

m
o
d
if
y
(P

I)
:S

C
—

C
4

m
o
d
if
y
(P

I,
B

I)
:G

C
—

C
5

m
o
d
if
y
(I

):
C

—
C

6

m
o
d
if
y
(P

I,
B

I)
:S

C
—

C
7

m
o
d
if
y
(P

I,
B

I,
C

C
N

):
G

C
—

C
8

m
o
d
if
y
(C

I)
:v

o
id

—
C

9

m
o
d
if
y
(C

I,
B

I,
C

C
N

):
v
o
id

—
C

1
0

I1 ⊗ ⊗ ⊗ × ⊗ ⊗ ×

I2 ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ × ⊗ ⊗ ⊗ ⊗ ⊗ ×

I3 ⊗ ⊗ ⊗ ⊗ × ⊗ ⊗ ⊗ ×

I4 ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ × ⊗ ⊗ ⊗ ⊗ ⊗ ×

I5 ⊗ × ⊗ ×

I6

I7
I8
I9
I10

add remove

a
d
d
(P

):
v
o
id

—
C

1

a
d
d
(A

B
):

v
o
id

—
C

2

a
d
d
(C

B
):

v
o
id

—
C

3

a
d
d
(E

B
):

v
o
id

—
C

4

a
d
d
(A

B
,E

B
):

v
o
id

—
C

5

re
m

o
v
e
(P

):
v
o
id

—
C

1

re
m

o
v
e
(A

B
):

v
o
id

—
C

2

re
m

o
v
e
(C

B
):

v
o
id

—
C

3

re
m

o
v
e
(E

B
):

v
o
id

—
C

4

re
m

o
v
e
(A

B
,E

B
):

v
o
id

—
C

5
I1
I2

I3
I4
I5

I6 × ×

I7 ⊗ × ×

I8 ⊗ × ⊗ ×

I9 ⊗ × ×

I10 ⊗ ⊗ × ⊗ ⊗ ×

I6. Still, required interface I10 (C10) can replace required interface I6 (C2) . We
see that a manual or automatic search of components is faster with this lattice that
defines a search index. We thus avoid looking at all components in the repository
since we only look for relevant branches. Let us imagine the case in our example
where component SilverAdultOrder searches, logically, to be connected to compo-
nent SilverAdultDB usually present in the system that is temporarily unavailable.
The relation in the lattice, starting from the expected required interface I9 (C5),
enables us to immediately find (just traversing the edge that goes from concept
C5 to concept C2, that possesses the I6 interface) that component GoldDB could
be used as a replacement. Temporarily the user will benefit of a higher service in
replacement of a missing service.

In the lattice, we also find new interfaces, obtained using the existing interface
generalization. Starting from functionalities discovered in the first lattice, the tech-
nique can then infer a new interface, including at least this shared functionality.
Here we see one of the main advantages of FCA-based techniques compared to
simple calculation of signature comparison: new signatures appear, and thus we
have new interfaces more abstract than existing ones. The following generalization
step is to use this lattice to build a component lattice. This latter lattice is more
interesting for designers who can be guided when creating more general new com-
ponents, as well as for assemblers who can consult an organized library rather than



just a flat set of artifacts.

Figure 8. Interface lattice LI using the functionality signature lattice.

5. Lattice of component types

In this section, we first propose a solution to build the lattice of component types.
The technique used to do so is the same as the one previously used for interfaces: the
interface lattice helps enrich the description of the formal context that will be used
to build the component type lattice. Then, the remainder of the section shows
possible uses of this lattice.

5.1 Definition of the lattice of component types

Component types are described by their required and provided interfaces. This
information can be organized by specialization, but, similarly to that done with
interfaces, component types can benefit from both the specialization relationships
between interfaces and the discovered interfaces obtained from the interface lattice.
We thus get an enrichment of the description of components and a more precise
classification, offering more abstractions.



The first phase of the building process entailed the introduction of the notion of
a “canonical interface” associated to an interface concept. This notion is similar
to the canonical functionality signature corresponding to a signature concept that
we defined above. Let us just mention that our analysis is still based on the case
of required interfaces.

Definition 5.1 Required canonical interface corresponding to an interface con-
cept: Let C be a concept in the interface lattice LI . The corresponding canonical
interface I(C) is defined as follows:

• If ReducedE(C) ⊇ {I}, then I(C) = I. We can choose any interface in the
reduced extent because they are all equivalent.

• If ReducedE(C) = ∅, then I(C) = min≤SigCar
{s ∈ Intent(C)}. The canon-

ical interface gathers more specialized signatures from the set of canonical sig-
natures that forms the intent. The order ≤SigCar between canonical signatures
is naturally inferred from the specialization relationship between concepts of
the lattice Lf : sson ≤SigCar sfather iff sson = σ(cson), sfather = σ(cfather) and
cson ≤Lf

cfather.

Canonical interfaces found in the lattice are all the original interfaces (I1 to I6,
I8 and I10, and a single interface corresponding to the {I7,I9} interface pair) to
which new abstract interfaces are added by the classification process. These new
abstract interfaces are described by their signature set (cf. Tab. 6).

Table 6. New canonical interfaces.
Int. name Signature set Concept

I11 {} C1

I12 {create(I) : GC; modify(I) : GC} C3

I13 {create(I, BI) : GC; modify(I) : GC} C4

I14 {create(I, BI) : SC; modify(I) : SC} C8

I15 {create(I, BI) : SC; modify(I) : C} C9

I16 {create(PI, BI) : GC; modify(PI) : GC} C11

I17 {create(PI, BI) : SC; modify(PI) : SC} C15

I18 {create(PI, BI, CCN) : GC; modify(PI, BI) : GC} C13

I19 {create(CI, BI, CCN, Co) : C; modify(CI, BI, CCN) : void; C18

add(AB, EB) : void; remove(AB, EB) : void}

We then set up a relation RCompCanInt between component types and canonical
interfaces including their orientation (required or provided) (cf. Tab. 7). The rows
represent components, the columns interfaces. Interface identification (in column
heads) combines the two interface orientations (noted req: and pro:) with each
canonical interface name and is followed by their concept number in the interface
lattice. For example, column 1 corresponds to the canonical required interface I1,
associated to concept C12 (as I1 is member of its reduced extent). Column 11
corresponds to the canonical required interface I12, associated to concept C3.

Definition 5.2 Component relation RCompCanInt:

Component types are the formal objects while canonical interfaces are the formal
attributes. Let C be a component and I an interface, (C, I) ∈ RCompCanInt iff one
of the following properties is true:

• I is declared by C,

• I ≥LI
J and J is declared by C.

Figure 9 shows lattice LC of component types. The following section will show
how it can be used.



Table 7. The component context RCompCanInt.
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GDB ⊗ ⊗ ⊗ × × ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗

5.2 Usage of the lattice of component types

While interfaces represent parts of collaborations, component types introduce con-
sistent units dedicated to the provision of a consistent set of services. As in the
previous lattices, but at a higher level in the structure of software artifacts, the
lattice of component types offers both a specialization relation between component
types and new abstract component types. This lattice has several applications in
component assembly and software application re-engineering.

5.2.1 Emergence of new component types

The concepts in the lattice of component types can be interpreted as component
types that we define as “canonical component types” to remain coherent with the
previous definitions. Some of these canonical component types correspond to the
original components: they are associated with concepts the reduced extent of which
contains an original component. When the reduced extent of a concept is empty, we
explore the intent of the concept to build the corresponding canonical component
type. Thus, we consider symmetrically the required and provided interfaces from
the intent. In the case of required interfaces, we consider those that have the small-
est (more specific) type as shown in the interface lattice. In the case of provided
interfaces, we consider those that have the largest (more general) type. These rules
are a transcription of the substitution rules for functionality signatures, extended
to interfaces.

Definition 5.3 Canonical component type corresponding to a component type
concept: Let C be a concept in the component type lattice LC . The canonical
component type Tc(C) is defined as follows:

• If ReducedE(C) ⊇ {T}, then Tc(C) = T . We can choose any component type
from the reduced extent because they are all equivalent.

• If ReducedE(C) = ∅, then Tc(C) = {pro : I, I ∈ max≤LI
{J |pro : J ∈

Intent(C)}} ∪ {req : I, I ∈ min≤LI
{J |req : J ∈ Intent(C)}}.

In the case where an original component type appears in the reduced extent, the
proposed construction finds an identical canonical component type. For example,
concept C15 of lattice LC has {pro:I5, pro:I6} as its canonical component type



Figure 9. Lattice LC of component types using the interface lattice.

because I5 and I6 are the maximum of Intent(C15) (we do not make a distinction
between required and provided interfaces because there are only provided interfaces
in this intent). The reader will also notice that {pro:I5, pro:I6} is exactly the
component type GDB that is found in the reduced extent of C15.

5.2.2 Substitution and connection

The specialization relation we have built between concepts is tailored for sub-
stitution. Component substitution can be necessary in the event an entirely con-
nected component fails. For example, let us suppose that an assembly is formed
by component CO of type {req:I8,req:I4} entirely connected to component GDB
of type {pro:I5,pro:I6}. Firstly, we can convince ourselves about the syntactical
validity of the assembly that is ensured by two properties: required I8 specializes
provided I6 and required I4 specializes provided I5 (as we generalize to inter-
faces the property described on Figure 5). Let us now imagine that component CO
fails. Specialization in the lattice enables us to efficiently find a potential replace-
ment. Component PO of type {req:I10, req:I4} will be a good candidate. The
assembly remains valid because required I10 specializes provided I6. The user will
have access to a partial service because it is now only possible, among child books
(ChildBook type), to ask for educational books (EducationalBook type), but the
service may also perform better because it specializes about educational books.

Let us now analyze the connection problem. We note that two complementary
components are not necessarily related to each other in the lattice: for example,
there is no link between the components AO2 of type {req:I1,req:I7} (concept
C9) and CDB of complementary type {pro:I1,pro:I7} (concept C3). Indeed req:I



and pro:I are considered independent attributes. Given a component (e.g., AO2 of
type {req:I1,req:I7}), it is nonetheless possible to find components that it can be
connected to. A solution firstly consists in classifying the type of its complementary
component (e.g., {pro:I1,pro:I7}) applying the inferences. In our example, we
obtain {pro:I1,pro:I7,pro:I19}. In this case, the classification enables us to
reach concept C3. C3 and all smaller (more specific) concepts define, by the mean
of their corresponding canonical component type, the types of components that
can entirely connect to AO2.

5.2.3 Reingeneering and building generic architectures

We have previously described how the lattice discovers new component types.
For example, concept C5 of canonical type {req:I14,req:I6} has an empty ex-
tent. It indicates that the concept does not precisely correspond to an original
component. However, it is an abstraction of all component types corresponding to
lower (more specific) concepts. This canonical type, {req:I14,req:I6}, abstracts
components relative to product orders in the example. It can be replaced by any of
the more specific components. If a component of this canonical type participates
in a component architecture, this architecture will have the capability of being
instantiated using an important variety of concrete components. The discovery of
such new abstract components into the classification can be interpreted as reengi-
neering the set of existing components, and can help the developer design more
generic architectures.

5.2.4 Architecture abstraction

The component lattice shows both specialization relationships among component
types and newly discovered abstract component types. This can serve as the basis
of whole architecture classification. This new objective is a little less direct to reach
than the other generalization steps we have described in the paper because, in an
architecture, components are not only described by binary attributes but also by
their interconnections. Several ideas can be explored to take into account these
connections such as Relational Concept Analysis (Huchard et al. 2007) or relations
in Logical Information Systems (Ferré et al. 2005).

6. Related work

Few of the related approaches use a syntactical type hierarchy to structure compo-
nent indexes and help component search. Zaremski and Wing (1995) suggest such
a mechanism but in the more general context of functionality signature matching.
The functionality hierarchy lies on the partial order relationship defined by the
signature matching operator used, whether it be exact or relaxed. Module match-
ing (component matching) is deduced from functionality matching: a component
is comparable with another if each of its functionalities match a functionality of
the other.

Existing yellow page-based service directories, also called service traders (Irib-
arne et al. 2004), such as Corba Trading Object Service (OMG 2000), conform
to the principles of the ODP standard (Information Technology Open Distributed
Processing 1998). A component exports an advertisement into the component
directory in order to be registered as the provider of some service. The service
advertisement conforms to an existing service type that lists the properties and
syntactical interfaces the components must have to provide the service. Service
types can be ordered in a specialization hierarchy which is static and manually
built. As opposed to our approach, these models use statically defined service



hierarchies (Marvie et al. 2001). This kind of indexing and the corresponding
directories are not adapted to dynamical, evolving and open environments.

Works based on FCA propose to semi-automatically index components (Lindig
1995) in order to be able to help the developer identify adequate components
from all the components stored in a component repository. Component search lies
on groups of names and keywords and on incremental queries that help focus the
search, diminishing the number of potential results as the search gets more precise.
Fischer (1998), Sigonneau and Ridoux (2004) both aim at building such browsable
functionality directories. Concepts are used to handle the iterative selection of
attributes that define the user request as a traversal of the concept hierarchy.
Thus, in these approaches, concept hierarchies do not directly reflect specialization
relations between the syntactical types of functionality signatures. Fischer (1998)
uses attributes which represent fragments of the formal specifications of func-
tionalities (elementary pre- and post- conditions). Sigonneau and Ridoux (2004)
use syntactical types of input and output parameters, along with covariant and
contravariant specialization rules. In the context of web service search, machine
learning techniques are used for service classification and annotation (Bruno et al.
2005, Corella and Castells 2006). Starting from textual documentation, services
are automatically clustered using support vector machines or ontologies. FCA is
then used in a second step to drive the matching between textual information and
searched services.

As compared to these proposals, the originality of our work is to study directo-
ries of components described by sets of required and provided interfaces. Different
specialization relations are defined to take into account not only parameter but
also functionality directions. Moreover, we propose an iterative process to build
lattices of component types which are composed of interfaces of both directions,
which are in turn composed of functionalities. This iterative nature strongly differs
from other works that use FCA which only build lattices of functionality types.

7. Conclusion and future work directions

In this article, we proposed to build component directories using FCA. The direc-
tory relies on the last built lattice that organizes components in order to speed
up their retrieval, for either assembly or substitution. This component lattice is
built upon some related lattices: an interface lattice which itself uses a classifica-
tion provided by a functionality signature lattice. Beyond its usefulness for com-
ponent assembly or component substitution, this classification also discovers new
abstractions (new functionality signatures, new interface types and new compo-
nent types), providing developers with valuable information about highly reusable
elements. The developer can use this information as a guide along the development
process or as re-engineering information.

The work presented in this article raises new research issues. Firstly, we want to
study how our system can be implemented and integrated into an IDE to assist the
management of component-oriented applications. This task comprises four steps:

• Extracting information about the component interfaces. We want to use the
introspection capabilities of components to extract and dynamically maintain
information on interfaces as the components enter or leave the system.

• Encoding the information in formal contexts, taking into account the identi-
fied inference rules and the type hierarchy of the system.



• Building lattices. Kuznetsov and Obiedkov (2002) present several incremental
algorithms that enable new concepts to be added to an existing lattice. Several
of these algorithms are implemented in GaLicia (Valtchev et al. 2003). These
algorithms could be used to calculate the different lattices and also maintain
them dynamically as components enter or leave the system.

• Using lattices. The obtained lattices can be used not only as a component
index to ease search, but also as a way of visualizing the content of compo-
nent libraries using the graphical interface of GaLicia or a similar FCA tool like
TOSCANA (Vogt and Wille 1994) or CONEXP (Yevtushenko 2000).

This will enable us to systematically experiment with our approach on large
component repositories, considering various component or interface granularity and
function signature complexity.

We also plan to study complementary features of components, interfaces and
signatures, such as ports, protocols or exceptions. For instance, ports (Desnos et al.
2006, 2007) would enable specifications of the dynamic behavior of components to
be considered, providing more accurate component indexing and retrieval.

Another extension is inspired by Web Services directories (Klusch 2008). Con-
trary to component directories, they mainly use semantic information (names, de-
scriptions) in their search mechanism. We can experiment with these techniques
to refine classification considering the name of the parameters in the functionality
signatures. Conversely, it is interesting to analyze how our approach could be used
to improve the calculation of syntactical compatibility in Web Services.
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