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Abstract. This paper presents the first study of pairing computation on curves with embedding
degree 15. We show that pairing computation on these curves has loop length r1/8 and we use a
twist of degree 3 to perform most of the operations in Fp or Fp5 . Furthermore, we present an original
arithmetic for extension fields of degree 5.
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1 Introduction

Pairings on elliptic curves were introduced by André Weil in 1948 in mathematics [17], but their utilization
in cryptography is actually quite recent. They were first used for cryptanalytic purposes, i.e. attacking
the discrete logarithm problem on the elliptic curve [1], but nowadays they are also used as bricks for
building new cryptographic protocols such as the tripartite Diffie-Hellman protocol [10], identity-based
encryption [3], short signatures [4], and others..

A pairing is a bilinear map e : G1 ×G2 → G3, where G1, G2 and G3 are groups of large prime order
r. Known pairings on elliptic curves, i.e. the Weil, Tate, Eta and Ate pairings map to the multiplicative
group of the minimal extension of the ground field Fp which contains the rth roots of unity. The degree
of this extension is called the embedding degree with respect to r. The most efficient known method used
for pairing computation is Miller’s algorithm, whose performance heavily relies on efficient arithmetic
of this extension field. It follows that for efficient pairing computation we need curves with embedding
degree rather small.

On the other hand, latest research in efficient computation of pairings focused on the reduction of the
loop length in Miller’s algorithm. It was proved in [16] that on most existing constructions of ordinary
curve families, the complexity of Miller’s algorithm is O(r1/ϕ(k)), where k is the embedding degree and ϕ
the Euler function. Consequently, for a fixed level of security and therefore a fixed bit length of r, pairing
computation might turn out to be faster on curves with embedding degrees such that the integer ϕ(k) is
large.

Moreover, in practice we are looking for curves for which the following value ρ = log p
log r is as small as

possible, in order to save bandwidth during the calculation.
According to [7] curves of embedding degree k = 15 achieve a security level of 256 bits for curves

with ρ ≈ 2, and a security level of 112 and 128 bits for ρ ≈ 1. Consequently, for the future security level,
pairing computations on curves with embedding degree 15 must be taken into consideration.

In this paper, we give the first efficient pairing computation for curves of embedding degree 15. We
show that existing constructions of families of curves of degree 15 and j-invariant 0 present multiple
advantages. First of all, we show that pairing computation on these curves has loop length r1/8, which
is an important gain when compared to r1/4, which is the loop length of Miller’s algorithm for curves of
embedding degree 12. Secondly, we show that by using twists of degree 3 we manage to perform most of
the operations in Fp or Fp5 . By making use of an interpolation technique, we also improve the arithmetic
of Fp5 in order to get better results. Moreover, denominator computation and the final inversion can be



avoided by making use of the twist. Our results show that by choosing the optimal arithmetic on Fp5
and Fp15 , curves of embedding degree 15 are competitive when compared to Barreto-Naehrig curves of
embedding degree 12 and should thus be considered for cryptographic use.

The remainder of this paper is organized as follows: Section 2 gives the definition and important
properties of pairings. In Section 3 we establish the optimal computation of the pairing on curves with
embedding degree 15. In Section 4 we describe an efficient multiplication based on the interpolation for
the field Fp5 . Finally, we conclude in Section 5 by giving a global evaluation of the number of operations
needed to compute the pairing and by comparing our results to performances obtained on Barreto-Naehrig
curves, which are considered as standard at the time this paper was written.

2 Background on pairings

In this section we give a brief overview of the definitions of pairings on elliptic curves and of Miller’s
algorithm [14] used in pairing computation. Let E be an elliptic curve defined by the Weierstrass equation
y2 = x3 +ax+ b and r a prime factor of #(E). Suppose r2 does not divide #(E) and k be the embedding
degree with respect to r, i.e. the smallest integer such that r divides pk − 1.

Definition 1. A pairing is a bilinear and non degenerate function:

e : G1 ×G2 → G3

(P,Q)→ e(P,Q)

where G1 and G2 are subgroups of order r on the elliptic curve and G3 is generally µr, the subgroup of
the rth roots of the unity in Fpk . In general we take G1 = E(Fp)[r] and G2 ⊂ E(Fpk)[r], where we denote
by E(K)[r] the subgroup of points of order r of the elliptic curve E over the field K. We also denote E[r]
the subgroup of points of order r defined over the algebraic closure of Fp.

Let P ∈ G1, Q ∈ G2. The goal of Miller’s algorithm is to first construct a rational function fs,P
associated to the point P and to some integer s and to secondly evaluate this function at point Q (in fact
at a divisor associated to this point). The function fs,P is such that the divisor associated to it is:

div(fs,P ) = s(P )− (sP )− (s− 1)(P∞).

Suppose we want to compute the sum of iP and jP . Take h1 the line going through iP and jP and h2

the vertical line through (i+ j)P . Miller’s idea was to make use of the following relation

fi+j,P = fi,P fj,P
h1

h2
, (1)

in order to compute fs,P iteratively. Moreover, Miller’s algorithm uses the double-and-add method to
compute fs,P in log2(s) operations.

The Tate pairing , denoted eTate, is defined by:

G1 ×G2 7→ G3

(P,Q) 7→ eTate(P,Q) = fr,P (Q).

Here, the function fr,P is normalized, i.e. (ur0fr,P )(P∞) = 1 for ur0 some Fp-rational uniformizer at
P∞. This pairing is only defined up to a representative of (Fpk)r. In order to obtain a unique value we

raise it to the power pk−1
r , obtaining an r-th root of unity that we call the reduced Tate pairing

êTate(P,Q) = fr,P (Q)
pk−1

r .



Twisted Ate pairing We begin with the following definition.

Definition 2. Let E,E′ be elliptic curves over Fp. Then E′ is called a twist of degree d if there exists
an isomorphism φd : E′ → E defined over Fpd and d is minimal.

Suppose now that E admits a twist E′ defined over Fpk/d of degree d, with d|k. We set m = gcd(k, d) and
e = k/m. We denote by πp be the Frobenius map over E: πp : E → E : (x, y) → (xp, yp). We consider
G1 := E[r] ∩Ker(πp − [1]) and G2 := E[r] ∩Ker(πp − [p]). Let t be the trace of the Frobenius map and
T = t− 1. Then for P ∈ G1, Q ∈ G2 we get the following relation [9]:

eTate(P,Q)L = fT e,P (Q)c(p
k−1)/N ,

where N = gcd(T k − 1, pk − 1), T k − 1 = LN, c =
∑m−1
i=0 T e(m−1−i)pei ≡ mpe(m−1) mod r.

So for T k − 1 6= 0, we have r - L and we can define a non-degenerate, bilinear pairing that we call the
reduced twisted Ate pairing as fT e,P (Q)(p

k−1)/r. For curves with small trace of the Frobenius, it is clear
that this pairing should be preferred to the Tate pairing, as the loop in Miller’s algorithm will be shorter.

Other variants of twisted Ate pairing were obtained in [13] replacing T e with T ie respectively, for any
i ∈ Z. All these variants were given in order to find the smallest possible λ determining the length of the
loop in Miller’s algorithm.

Optimal pairing Vercauteren exploits all these ideas in [16] and introduces the concept of optimal
pairing. The basic idea is to look for a multiple λ = mr such that λ =

∑l
i=0 ciT

ie with small coefficients.
The following result is a slightly modified variant of a theorem from [16].

Theorem 1. Let λ = mr with r - m and write λ =
∑l
i=0 cip

ie then

a[c0,...,cl] : G1 ×G2 → µr

(P,Q)→

(
l∏
i=0

fp
ie

ci,P
(Q)

l−1∏
i=0

l[si+1]P,[cipie]P (Q)
v[si]P (Q)

)
(2)

with si =
∑l
j=i cjp

je, defines a bilinear pairing. Furthermore, if

mkpe(k−1) 6= (pk − 1)/r ·
l∑
i=0

icip
e(i−1) mod r,

then the pairing is non-degenerate.

The proof of this theorem is similar to the one of Theorem 1 in [16].

Security aspect The security of a pairing based cryptosystem relies on two parameters: the bit length
of r, log2 r and the bit size of the extension field klog2 p. These parameters have to be chosen high enough
to ensure that the discrete logarithm problem will be hard in both the subgroup of points of order r of the
curve and the finite field Fpk . Considering the complexity of index calculus attacks (O(e

√
log(p)log(log(p))))

against the discrete logarithm problem in finite fields ( O(
√
r) ), while the security level will increase, the

bound on klog2 p is expected to grow faster than the bound on log2 r. On the other hand, in practice we
are looking for curves for which the following value

ρ =
log p
log r

is as small as possible, in order to save bandwith during the calculation. This is due to the fact that for
a fixed level of security (i. e. fixed size of r), efficient implementation of the pairing depends on the size
of the ground field, i.e. on the size of p. So taking greater k is a better solution than increasing the bit
length of p.



3 Optimal pairing for k = 15

A first method that could be used in order to build curves with k = 15 is the Cocks-Pinch method [5].
This method generates curves with arbitrary r and ρ ≈ 2. Duan and all. [6] showed that by using the
Brezing-Weng method we can actually do better. They generated a family of curves with j-invariant 0
and embedding degree 15 and ρ ≈ 1, 5. This family is given by the following polynomials:

p = 1/3 ∗ x12 − 2/3 ∗ x11 + 1/3 ∗ x10 + 1/3 ∗ x7 − 2/3 ∗ x6 + 1/3 ∗ x5 + 1/3 ∗ x2 + 1/3 ∗ x+ 1/3
r = x8 − x7 + x5 − x4 + x3 − x+ 1
t = x+ 1.

The remainder of this paper will present efficient computation of pairings on this family of curves.
To emphasize the performance of our suggestion, we compare our results to those resulting from efficient
implementation of pairings on Barreto-Naehrig curves [2]. We briefly remind that these are curves of
embedding degree 12 and j-invariant 0, given by the following parametrization:

p = 36x4 + 36x3 + 24x2 + 6x+ 1
r = 36x4 + 36x3 + 18x2 + 6x+ 1
t = 6x2 + 1.

These curves are preferred in cryptographic applications because they have the ρ ∼ 1 and most
operations during the pairing computation are done in Fp or Fp2 , thanks to the existence of a twist of
degree 6. The complexity of Miller iteration as taken from [8] is 5Sp + 18Mp + Sp12 +Mp12 .

Twists of degree 3 Let E be an elliptic curve of j-invariant 0, defined over Fp. Suppose its equation is
y2 = x3 + b, with b ∈ Fp. Consider E over the extension field Fpk/3 . Then it admits a cubic twist E′ of
equation y2 = x3 + b

D , with D not a cubic residue D ∈ Fqk/3 . The morphism

Φ3 : E′ → E : Φ3(x, y) = (xD1/3, yD1/2)

maps points in E′(Fpk/3) to points in E(Fpk). In particular, as r|#E′, we may choose Q, the generator
of G2, as the image of an r order point under this morphism : Q = Φ3(Q′), with Q′ ∈ E′(Fpk/3). So
Q = (D1/3x,D1/2y), with x, y ∈ Fpk/3 . As we will see later, for k = 15 this will imply that most
operations in pairing computation on G1 ×G2 (or G2 ×G1) are to be done in Fp or Fp5 .

Optimal pairing for k = 15 We can easily see that for the family of curves with k = 15 described
above, the length of the Miller’s loop is 3

8 log2r. We will show that the optimal pairing for this family
has Miller’s loop length log2 r

8 . Indeed, we look for a combination mr =
∑l
i=0 ciT

ie. Since T ≡ p mod r
and the powers of pe are related modulo r via Φk(pe) ≡ 0 mod r, it follows that we can consider only
the powers T ie, for i = 0, ..., φ(k) − 1 in Theorem 1. A similar result can be obtained on G1 × G2 by
considering combinations of the twisted Ate pairing and its variants λ =

∑l
i=0 ciT

ei, for i = 0, ..., φ(k)−1.
Small coefficients ci will be obtained by looking for short vectors in the following lattice for the Twisted
Ate: 

r 0 0 ... 0
−T e 1 0 ... 0
. . . .

−T e(φ(k)−1) 0 ... 0 1





This matrix is of volume r, so by Minkowski ( [15]) there exists a short vector V in the lattice with
||V ||∞ ≤ r1/φ(15), where ||V ||∞ = maxi|vi|. So the shortest vector in this lattice gives the optimal
pairing, defined by Equation 2. Our computations produced the following short vector with only one
coefficient of size x:

V (x) = [2187,−2187, 0, 81,−27, 9, 0, x− 1].

While the Tate and twisted Ate pairings have loop length log r for Barreto-Naehrig curves, a search
for the optimal vector on these curves gives, for example, [1, x − 1,−(x − 1), x]. So the loop length of
Miller’s algorithm is log2r

4 .

Denominator elimination in pairing computation We use an idea given in [12]. We observe that
the expression of line h2 in Equation ( 1) can be written as:

xT − xQ =
x3
T − x3

Q

x2
T + xTxQ + x2

Q

=
y2
P − y2

Q

x2
T + xTxQ + x2

Q

.

The element (y2
Q − y2

T ) is in Fp5 and can be forgotten during the computation of the pairing, because

of the final exponentiation. Indeed, p5 − 1 is a divisor of p15−1
r so multiplication by this term can be

omitted. So at each iteration in Miller’s algorithm loop it suffices to multiply by x2
P +xPxQ+x2

Q, instead
of dividing by h2. This saves operations, as we no longer need to compute denominators at each step and
also avoids the final inversion, which is important on restricted devices.

Operation count Suppose we want to compute fT e,P (Q), with P ∈ G1 and Q = (xQ, yQ) ∈ G2

Then one of the most efficient known ways of computing the pairing is to use Jacobian coordinates,
as stated in [11] and [8]. The point iP = (X,Y, Z) in Jacobian coordinates represents the affine point
(X/Z2, Y/Z3) on the elliptic curve. Due to the denominator elimination, the doubling step of the Miller
loop using Equation (1) becomes:

(2i)P ← 2 · (iP )
f2i,P ← f2

i,Ph1(Q)ST (Q)

where h1 = Z3Z
2yQ − 3X2(Z2xQ − X) − 2Y 2 and ST (Q) = Z4x2

Q + XZ2xQ + X2 and We compute
(2i)P = (X3, Y3, Z3) as

X3 = 9X4 − 8XY 2,

Y3 = 3X2(4X1Y
2
1 −X3)− 8Y 4,

Z3 = 2Y Z.

We perform the operations in the following order:

A = Y 2

B = 4X ·A
C = X2

X3 = −2B + 3C2

Y3 = −8A2 + 3C(B −X3)
D = Z2

Z3 = (Y + Z)2 −A−D

F = Z3 ·D
E = CD

h1 = 2F · yQ −A− 3ExQ − 3b
F = D2

G = (X + Z2)2 −X2 − F
ST = C +XxQ + Fx2

Q



The square x2
Q can be precomputed, as coordinates of point Q do not change during the pairing

computations. A count of the operations for the entire doubling step gives 8Sp + 24Mp + Sp15 + 2Mp15 ,
where Sp (resp. Mp) represents a square (resp. multiplication) in Fp and Sp15 (resp. Mp15) represents a
square (resp. multiplication) in Fp15 .

3.1 First comparison

We compare the complexity of computing the Twisted Ate pairing for embedding degree 12 and 15, using
the multiplication of Karatsuba and Toom Cook in the extension fields. The cost of a multiplication in
an extension field are given in Table 1. We denote Mpe a multiplication in the extension field Fpe and we
give its complexity in number of multiplications (Mp) and additions (Ap) in Fp using the Karatsuba and
Toom Cook method. The resulting comparison for the Miller loop are given in Table 2. We give just the
number of multiplications in Fp needed for a Miller loop.

Table 1. A performance evaluation: arithmetic of Fp15 versus arithmetic of Fp12

Mp2 Mp3 Mp5 Mp12 Mp15

3Mp + 4Ap 5Mp + 20Ap 13Mp + 58Ap 45Mp + 180Ap 65Mp + 390Ap

Table 2. A performance evaluation: curves with embedding degree 15 versus Barreto-Naehrig curves

AES security bit length of r twisted Ate
k=15 k=12

80 160 4 175 4 020
128 256 6 680 6 432
192 384 10 020 9 648
256 512 13 360 12 864

Using the multiplication of Karatsuba and Toom Cook, pairing computation on curves with embed-
ding degree 15 is less efficient than computation of pairing over Barreto-Naehrig curves. The pairing
computation for k = 15 is 4% more expensive than computation for k = 12. This difference comes from
the arithmetic in intermediate fields. For curves of embedding degree 12, major computations are done in
Fp2 , while for curves with k = 15 the computations are essentially done in Fp5 . As Karatsuba is optimal
for extension of degree 2, it seems quite natural to obtain this result. We propose in the next Section an
improvement of the arithmetic on Fp5 using the Newton interpolation method to compute a multiplication
between two elements of Fp5 .

4 Finite field arithmetic

In cryptography, and more generally in arithmetic, we need an efficient polynomial multiplication. The
optimization can be in time or elementary operations. Pairing Based Cryptography (PBC) follows the
same rules as PBC involves polynomial computations. Indeed A and B ∈ Fpk are represented as poly-
nomial of degree (k − 1) in γ, with γ a root in Fpk of a polynomial of degree k irreducible in Fp. So far
as the irreducible polynomial is Xk − β, with β ∈ Fp. Considering k = 5, this condition is true for every
prime p such that p ≡ 1 mod(5).

In extension of degree 2 or 3 the Karatsuba and Toom Cook multiplications are the more efficient. For
higher degree extension, one can use tower field extensions [11] and apply Karatsuba and Toom Cook [18],



or multiplication by interpolation [18]. Generally, interpolation method have the drawback to increase
the number of additions during a multiplication. We present a multiplication by Newton interpolation
such that the additional additions improve the total complexity of the multiplication in Fp5 compared to
the Karatsuba multiplication.

4.1 Interpolation

We denote A(X) = a0 + a1X + . . . + ak−1X
k−1, B(X) = b0 + b1X + . . . + bk−1X

k−1, the polynomial
obtained by substituting γ by X in the expressions of A and B in Fpk . Multiplications by interpolation
follow this step:

– Find 2k − 1 different values in Fp
– α0, α1, . . . , α2k−2.

– Evaluate the polynomials A(X) and B(X) at this 2k − 1 values.
– Stock A(α0), . . . , A(α2k−2), B(α0), . . . , B(α0).

– Compute C(X) = A(X)×B(X) at this 2k − 1 values
– C(αi) = A(αi)B(αi).

– Interpolate C(X) polynomial of degree 2k − 2
– either with Lagrange or Newton interpolation.

We describe out method of multiplication using the Newton interpolation, which is more efficient for
our purpose than Lagrange interpolation [18]. The use of FFT [18] is not interesting in our case. Indeed,
during a FFT multiplication, we have to multiply by roots of unity, as we do not have any control on
the characteristic p we work with, the roots of unity do not necessarily have a sparse representation,
even after recoding, and then multiplications by this roots are expensive. Furthermore, the choice of
value of interpolation in Section 4.3 is not interesting for a FFT method. Last but not least, FFT is very
interesting for extensions of large even degree, which is not the case for the finite field Fp5 . Consequently,
we focused on the Newton interpolation.

4.2 Newton interpolation

Newton interpolation construct the polynomial C(X) by the following way:



c′0 = C(α0)
c′1 = (C(α1)− c′0) 1

(α1−α0)

c′2 =
(

(C(α2)− c′0) 1
(α2−α0)

− c′1
)

1
(α2−α1

... =
...

C(X)=c′0 + c′1(X − α0) + c′2(X − α0)(X − α1) + . . .+ c′2k−2(X − α0)(X − α1) . . . (X − α2k−2)

The last line, corresponding to the interpolation, can be computed using the Horner scheme:

C(X) = c′0 + (X − α0) [c′1 + (X − α1) (c′2 + (X − α2) 〈. . .〉)]

So, complexity in term of operation of Newton interpolation is the sum of the complexity of this
different operations:

1. the evaluations in αi of A(X) et B(X)
2. the 2k − 1 multiplications in Fp ( A(αi)×B(αi) )
3. computation of the c′i
4. the Horner scheme to find the expression of C(X) = A(X)×B(X) of degree 2k − 1.



4.3 Simplifying operations in Newton interpolation for k = 5

We consider that k = 5, the 2k − 1 = 9 chosen values for the interpolation are:

α0 = 0, α1 = 1, α2 = −1, α3 = 2, α4 = −2, α5 = 4, α6 = −4, α7 = 3, α8 =∞.

We choose this value in order to minimize the number of additions and divisions by the differences of the
αi during the interpolation.

In the following section, we denote Ap an addition, Mp a multiplication, and Sp a square in Fp.

Complexity of the evaluations in αi of A and B First step, we have to evaluate A(X) and B(X)
in the αi’s. With the chosen values, evaluations of A(X) and B(X) are done using only additions and
shifts in Fp. Indeed, a product by a power of 2 is composed of shifts in binary base, so to evaluate A(X)
in 2j , we compute the products ai × (2j)i which are shifts, and then the additions

∑ k−1
i=0 ai(2

j)i.
Writing down 3 = 2 + 1, the evaluation in 3 is only composed of shifts and additions too. Indeed,

powers of 3 can be decomposed as sum of powers of 2: 32 = 23 + 1, 33 = 25 − 22 − 1 et 34 = 26 + 24 + 1.
Adding the different costs, evaluations of A(X) and B(X) have a complexity of 74Ap.
Once we have the evaluations, we have to compute the multiplications A(αi)×B(αi) which are obtain

with 9Mp.

The complexity of the step 1 and 2 is then 74Ap + 9Mp.

Complexity of the computations of c′
j In order to compute the coefficients c′j during a Newton

interpolation, one has to compute exact divisions by the difference of the αi ∈ Fp. We call an exact
division a division where the dividend is a multiple of the divisor. Among all the differences of the αi we
choose, eleven are not a power of 2. They are described in Table 3. In a binary basis, exact divisions by
power of 2 are very simple, they are only shift on the right of the bits. We have to analyze the complexity
of this division by 3, 5 and 7. A precise analysis of these divisions gives the result that an exact division
by 3, 5 or 7 can be computed in only one subtraction.

Table 3. The problematic differences

e3 − e2 = 3 e4 − e1 = −3 e5 − e1 = 3 e5 − e2 = 5
e5 − e4 = 6 e6 − e1 = −5 e6 − e2 = −3 e6 − e3 = −6
e7 − e0 = 3 e7 − e4 = 5 e7 − e6 = 7

So we want to divide δ a multiple of 3 by 3, i.e. δ verifies that δ = 3× σ and we want to find σ. This
equality can be rewritten as σ = δ − 2 × σ. If δ =

∑
iδi2i and σ =

∑
iσi2i we can find σ bit after bit

beginning with the less significant bit. Indeed, σ = δ − 2 × σ gives σ0 = δ0. Thus we can find σ1 as the
result of the subtraction: δ1δ0 − σ00 = σ1σ0. By extrapolation we find σ1, and then σ2 and the following
as explained in Figure 4.3.

Consequently, an exact division by 3 is done with exactly one subtraction in Fp. The same scheme can
be applied to an exact division by 5. Indeed, for χ = 5 × κ (i. e. knowing χ we want to find κ), we just
have to consider that κ = χ− 4× κ. Then the exact division by 5 has the complexity of a subtraction.

The complexity of an exact division by 7 is an addition in Fp, provided that we find first the opposite
of the result. We know µ = 7 × ν, and we want to find ν. We transform the equation: −ν = µ − 8 × ν.
So first we find −ν with an addition in Fp, and then it is quite easy to find ν.
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Fig. 1. Scheme for the division by 3 in one addition

We consider that the complexity of a subtraction is equivalent to the complexity of an addition, which
is an upper bound for a subtraction. As a consequence, the exact divisions by 3, 5 and 7 can be computed
with only an addition. The eleven divisions by these values have a complexity of 11Ap.

In order to have the complexity of the computation of the c′j , we must take in consideration the
subtractions. There are 29 subtractions in the formulas of the c′j .

Thus, the complexity of computing the c′j is 40Ap.

Complexity of the polynomial interpolation We use the Horner scheme to find the expression of
the product polynomial C = A×B. The Horner scheme consists in writing and computing:

C(X) = ((((c′8(X − α7) + c′7)(X − α6) + c′6)(X − α5) + c′5) . . .+ c′1)(X − α1) + c′0

We begin to compute from the inside (the parenthesis (c′8(X − α7) + c′7)) to the outside, i.e. we
compute ((c′8(X − α7) + c′7)(X − α6) + c′6), and we continue until we arrive at the coefficient c′0. Thus
the construction of the polynomial using the Horner scheme is composed of multiplications of the ith

parenthesis by α7−i and additions. With the chosen values of αi the Horner scheme is composed only of
additions.

So the complexity of the polynomial expression with the Horner scheme is 29Ap.

4.4 Results

We describe the multiplication by interpolation for an extension of degree 5 of a finite field. The Table 4
gives the complexity of a multiplication with several methods: the classical Karatsuba and Toom Cook
multiplication (KTC), the interpolation multiplication, and the third line of Table 4 (Mix) gives the cost
of a multiplication in Fp15 using an extension tower of field, we use our Newton multiplication in Fp5
and the Toom Cook multiplication in Fp15 . We use interpolation for the intermediate field, and the Toom
Cook multiplication for the final extension field.

Table 4. Complexity of different method of multiplication

XXXXXXXXXMethod
Extension

Mp2 Mp5 Mp12 Mp15

KTC 3Mp + 4Ap 13Mp + 58Ap 45Mp + 180Ap 65Mp + 390Ap

Interpolation −− 9Mp + 145Ap 23Mp + 2070Ap 29Mp + 2136Ap

Mix −− −− 45Mp + 180Ap 45Mp + 880Ap



Using this result, for e = 5, it seems quite fair to use a multiplication by interpolation instead of a
multiplication using Karatsuba Toom Cook. We save 4 multiplications in Fp using interpolation whereas
we add 87 additions. The extra cost due to these additions is not as important as the cost to compute 4
multiplications in Fp. Indeed, the complexity of a Karatsuba multiplication in Fp is

5N log2(3)A32 +N log2(3)M32,

where N is the number of bytes in the considered integers, and where A32 and M32 represent an addition
and a multiplication of two words of size 32 bits. Considering an integer multiplication on a pentium 4,
M32 ≈ 10A32

1. Consequently Karatsuba multiplication of 20 bytes word has a complexity equivalent to
86Ap, which is a lower bound of the complexity of a multiplication Mp in terms of additions Ap, because
in this approximation we do not consider the reduction. Indeed, for a smart card, we have to take in
consideration the reduction modulo p which adds additions in Fp.

On the contrary, for extensions of degree 12 and 15, using an interpolation to compute a multipli-
cation is not so interesting. The additional cost of the additions is huge in comparison to the saved
multiplications. The interpolation method is very interesting for an extension of degree 5, because we can
choose the value of interpolation such that the number of additions does not increase too much in relation
with the saved multiplications. Table 5 gives the comparison of a pairing computation considering the
number of multiplications and additions, at different security levels. The two last columns use the fact
that for a pentium 4 Mp ≈ 86Ap using the Karatsuba multiplication. Comparing the equivalent number
of multiplications for the pairing computation on curves with k = 15 and k = 12, we can conclude that
our arithmetic gives better performances, we save at least 13% operations with our arithmetic. Indeed
Mp ≈ 86Ap is a lower bound of the numbers of additions in Fp needed for a multiplication in Fp.

Table 5. A performance evaluation: curves with embedding degree 15 versus Barreto-Naehrig curves

twisted Ate Pentium 4 equivalence in number of Mp

AES security bit length of r k=15 k=12 k=15 k=12

80 160 3075Mp + 48760Ap 4020Mp + 12960Ap 4170 4641
128 256 4920Mp + 78016Ap 6432Mp + 20736Ap 5827 6673
192 384 7380Mp + 117024Ap 9648Mp + 31104Ap 8740 10009
256 512 9840Mp + 156032Ap 12864Mp + 41472Ap 11654 13346

The Table 6 gives our final comparison. We used our improved arithmetic for an extension of degree
5 with the Toom Cook method to compute a multiplication in Fp5 . We compare our result with the
complexity of the pairing on the Barreto-Naehrig curves. As we made an approximation for the number
of addition, we compare the results using only the number of multiplications in Fp needed for a Miller
loop. Moreover, in literature, only the number of multiplicatoin are considered. Our results show that we
save 24% multiplications in Fp during the Miller algorithm for k = 15 compared to k = 12. We do not
count the final exponentiation. The cost of the final exponentiation is obviously more expensive for the
case k = 15 because it depends on the value of ρ ≈ 1, 5 and further work has to be done to find families
of curves with a better ρ value.

1 http://www.x86-secret.com/articles/cpu/p4/p4-6.htm



Table 6. A performance evaluation: overs curves with embedding degree 15 versus Barreto-Naehrig curves

AES security bit length of r twisted Ate

k=15 k=12

80 160 3075Mp 4020Mp

128 256 4920Mp 6432Mp

192 384 7380Mp 9648Mp

256 512 9840Mp 12864Mp

5 Conclusion

In this paper, we give efficient pairing computation for curves of embedding degree 15. We show that
existing constructions of families of curves of degree 15 and j-invariant 0 present multiple advantages. First
of all, we show that pairing computation on these curves has loop length r1/8, which is an important
gain when compared to r1/4, which is the loop length of Miller’s algorithm for curves of embedding
degree 12. Secondly, we show that by using twists of degree 3 we manage to perform most of operations
in Fp or Fp5 . Moreover, denominator computation and the final inversion can be avoided by making
use of the twist. The application of the notion of optimal pairings to the Twisted Ate pairing is a real
improvement. And thirdly, we present an efficient arithmetic in the finite field Fp5 . Our results show that
we save 24% multiplication for curves of embedding degree 15. Therefore curves of embedding degree 15
are competitive when compared to Barreto-Naehrig curves of embedding degree 12 and should thus be
considered for cryptographic use. Moreover if we take in consideration the fact that the security level
is going to increase, curves with higher embedding degree should be considered, even though at present
for known families of such curves the ρ value is greater than the ideal value ρ = 1. Further research on
building such curves might also improve this value.
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