
HAL Id: lirmm-00382609
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00382609v1

Submitted on 14 Feb 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Making Bound Consistency as Effective as Arc
Consistency

Christian Bessiere, Thierry Petit, Bruno Zanuttini

To cite this version:
Christian Bessiere, Thierry Petit, Bruno Zanuttini. Making Bound Consistency as Effective as Arc
Consistency. IJCAI’09: 21st International Joint Conference on Artificial Intelligence, Jul 2009,
Pasadena, CA, United States. pp.425-430. �lirmm-00382609�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00382609v1
https://hal.archives-ouvertes.fr


Making Bound Consistency as Effective as Arc Consistency∗

Christian Bessiere

LIRMM-CNRS

U. Montpellier, France

bessiere@lirmm.fr

Thierry Petit

LINA-CNRS

Ecole des Mines de Nantes, France

thierry.petit@emn.fr

Bruno Zanuttini

GREYC-CNRS

U. Caen, France

zanutti@info.unicaen.fr

Abstract

We study under what conditions bound consistency
(BC) and arc consistency (AC), two forms of prop-
agation used in constraint solvers, are equivalent to
each other. We show that they prune exactly the
same values when the propagated constraint is con-
nected row convex / closed under median and its
complement is row convex. This characterization
is exact for binary constraints. Since row convexity
depends on the order of the values in the domains,
we give polynomial algorithms for computing or-
ders under which BC and AC are equivalent, if any.

1 Introduction

Constraint solvers work by interleaving branching with con-
straint propagation. Arc consistency (AC) and bound consis-
tency (BC) are the most common kinds of constraint propaga-
tion that solvers enforce. BC is used on a constraint when AC
is too expensive. This happens when domains are too large,
or when AC is too hard to enforce on the constraint. For in-
stance, given n variables and d values per domain, the alldiff
constraint can be made BC in O(n · log(n)) time ([Puget,
1998]) whereas O(n1.5d) time is required for AC ([Régin,
1994]). BC is polynomial on the Nvalue constraint whereas
AC is NP-hard ([Bessiere et al., 2006]). The negative coun-
terpart of BC is that BC generally prunes less values than AC.

Our main contribution is to characterize the unique max-
imal class of binary constraints on which AC and BC are
equivalent however the initial domain is pruned. We give an
easy test for membership of a constraint to that class.

Since BC is defined according to a total ordering of the do-
mains, so is the case for the class of constraints on which BC
is equivalent to AC. Our second contribution is to give a poly-
nomial algorithm for reordering the domains so that a given
constraint becomes a member of that class. Consider the
constraint alldiff (x1, x2, x3), where x1, x2 ∈ {b, c}, x3 ∈
{a, b, c, d}. BC does not remove any value because every
bound belongs to a satisfying tuple. By reordering the do-
main of x3 with b < c < a < d, BC removes b and c from
x3 and becomes equivalent to AC. A (cheaper) BC propaga-

∗Supported by the project CANAR (ANR-06-BLAN-0383-02).

tion can be applied to the constraint instead of AC. As a third
contribution, we extend our results to non-binary constraints.

Our results give the theoretical basis for several directions
of research such as incrementally detecting during search
constraints for which BC becomes equivalent to AC, or de-
signing efficient specialized reordering algorithms for global
constraints. In the short run, our algorithms can be used in
a preprocessing phase to detect on which constraints to use
the BC propagator instead of the AC propagator. This will
particularly pay off when a CSP defines a generic problem,
solved repeatedly with the same kernel of constraints plus a
few additional ones (e.g., a time tabling problem solved every
month with different requirements). The preprocessing cost
will be amortized on the several runs.

2 Background

A constraint network N consists of a sequence of vari-
ables X = (x1, . . . , xn), a sequence of domains D =
{D1, . . . , Dn}, where the domain Di is the finite set of at
most d values that variable xi can take, and a set C of e con-
straints that specify the allowed combinations of values for
given subsets of variables. A relation R of arity k is any set
of tuples of the form (a1, a2, . . . , ak), where all aj’s are val-
ues from the given universe U . A constraint of arity k is a
pair C = (X, R), where X is a sequence of k variables and
R is a relation of arity k. We use notation DX for the Carte-
sian product of domains Πxi∈XDi, and R[DX ] for R ∩ DX ,
that is, the relation restricted to tuples over the Di’s. The
negation C¬ of C = (X, R) is the constraint (X, R¬), where
R¬ = UX \ R is the complement of R.

An assignment t to a set of variables X is a function
from X to the universe of values U . t[x] is the value of
x in t. An assignment t to a sequence X = (x1, . . . , xk)
of variables, or to a superset of X , satisfies C = (X, R)
iff (t[x1], . . . , t[xk]) ∈ R. t[xi/b] is the assignment ob-
tained from t when replacing t[xi] by b. A solution of
N = (X , D, C) is an assignment t to X such that t[xi] ∈ Di

for all xi ∈ X , and t satisfies all the constraints in C.

Orderings An ordered signature is a triple Σ = (X,D, <),
where X = (x1, . . . , xk) is a sequence of variables, D =
(D1, . . . , Dk) is a sequence of domains for them, and < is a
sequence (<1, . . . , <k), where <i is a total order on Di. We



consider that Σ is also an ordered signature for any Y ⊆ X .
min<i

Di (resp. max<i
Di) is the minimum (resp. maxi-

mum) element in Di according to <i. Given a, b, c ∈ Di,
med<i

(a, b, c) is the median value of a, b, c according to <i.
When the ordering is clear, we will write minDi, max Di,
med(a, b, c). We write [a..c] for the set of values b with

a ≤ b ≤ c, S for [minS.. max S], and a − 1 (a + 1) for
the immediate predecessor (successor) of value a. We write
D′

i < Di as a shorthand for ∀b ∈ Di, ∀b′ ∈ D′
i, b

′ < b and we
write D′ ⊆ D for ∀i, D′

i ⊆ Di. For instance, given a < b < c
we have min(c, a) = a, med(a, c, b) = b, med(a, c, c) = c,
[a..c] = {a, b, c}, c − 1 = b, {a, b} < {c}.

Consistencies Constraint solvers maintain a local consis-
tency during search. The most usual ones are defined below.

Definition 1 (local consistencies) Let Σ = (X, D, <) be an
ordered signature and C = (X, R) be a constraint. A support
for bi ∈ Di is a tuple t ∈ R[DX ] such that t[xi] = bi. A

bound support for bi ∈ Di is a tuple t ∈ R[Πxj∈XDj ] such
that t[xi] = bi. The domain Di is AC (resp. RC) on C if
any bi ∈ Di has a support (resp. a bound support), and it is
BC on C if minDi and max Di have a bound support. The
constraint C is BC (resp. RC, AC) if for all xi ∈ X , Di is BC
(resp. RC, AC) on C.

Our BC is the most common version of bound consistency,
called BC(Z) in [Bessiere, 2006]. Slightly abusing words,
for a binary constraint ((x1, x2), R) we say that value a2 is a
(bound) support for value a1, instead of the tuple (a1, a2).

Let (X , D, C) be a constraint network, (X , D, <) an or-
dered signature, and Φ a local consistency. Φ(D, C) is the
closure of D for Φ on C, that is, the sequence of domains
obtained from D once for every i we have removed every
value bi ∈ Di that is not Φ-consistent on a constraint in C.
AC(D, C) is also denoted by D∗.

Two local consistencies may behave the same. Our defini-
tion of equivalence requires stability under domain reductions
(due to instantiations and propagation of other constraints).

Definition 2 (equivalence of local consistencies) Given an
ordered signature Σ = (X, D, <) and a constraint C, two
local consistencies Φ1 and Φ2 are called equivalent on C for
Σ if for any domain D′ ⊆ D, Φ1(D

′, C) = Φ2(D
′, C).

Classes of constraints Monotone constraints have been in-
troduced by Montanari [Montanari, 1974] in the binary case.
We give a definition for any arity.

Definition 3 (in/decreasing,monotone) Let Σ = (X, D, <)
be an ordered signature and C = (X, R) a constraint. A
variable xi ∈ X is said to be increasing (resp. decreasing)
for Σ on C iff for any tuple t ∈ R and any value a ∈ Di such
that a > t[xi] (resp. a < t[xi]), the tuple t[xi/a] is in R. A
constraint in which every variable is decreasing or increasing
is said to be monotone.

Definition 4 (row convex [van Beek and Dechter, 1995])
Let Σ = (X, D, <) be an ordered signature. A constraint
C = (X, R) is row convex for Σ iff for every xi ∈ X and

any instantiation t−i in DX\{xi}, the set of values in Di that
extend t−i to a tuple in R[DX ] is an interval in Di.

Connected row convex constraints have been introduced
in [Deville et al., 1999] only for binary constraints, but [Jeav-
ons et al., 1998] defined med-closed constraints and showed
that the constraints that are binary and med-closed are ex-
actly the connected row convex constraints [Jeavons et al.,
1998, example 4.7]. We thus give the most general definition.

Definition 5 (med-closed constraint) Let Σ = (X, D, <)
be an ordered signature. C = (X, R) is med-closed for Σ if
for any three tuples t, t′, t′′ in R[DX ], the tuple tm defined by
∀x ∈ X, tm[x] = med<x

(t[x], t′[x], t′′[x]) is in R.

Example 1 Let D1 = D2 = D3 = {0, 1, 2} with the natural
order on each domain. C = ((x1, x2, x3), {000, 010, 101,
222}) is not med-closed because the median of 010, 101, 222
is the forbidden tuple 111. By reordering D2 such that 1 <2

0 <2 2, we obtain a med-closed constraint: for any three
tuples the median tuple is 000 or 101, which satisfy C. ♣

3 Equivalent Consistencies in the Binary Case

Enforcing BC on a constraint generally prunes less values
than enforcing AC. However, in some particular cases, BC
and AC can be equivalent. This is the case, e.g., for the con-
straint x < y, whatever the domains of x and y.

In this section, we analyze the properties that make BC and
RC equivalent on binary constraints. We do the same for RC
and AC, and then we derive a necessary and sufficient condi-
tion for having BC equivalent to AC on a binary constraint.

Our characterization is for convex initial domains (of the
form D), that is, it characterizes the cases when BC is equiv-
alent to AC on every subdomain D′ ⊆ D. We will see in
Section 5 why this is not a restriction. We also restrict our
analysis to domains (D)∗, that is, the subdomain of an initial

(convex) domain D where all values have a support. This is
a reasonable restriction because a single preprocessing phase
of AC is enough. It discards dummy values that prevent from
finding any nice characterization.

Lemma 1 Let X = (x1, x2), Σ = (X, D, <), and C =
(X, R). BC and RC are equivalent on (X, (D)∗) for C iff C
is connected row convex for Σ∗ = (X, (D)∗, <).

Proof. (⇐) Assume C is connected row convex for Σ∗ and
let D′ ⊆ (D)∗. By definition, if D′ is RC, it is also BC for
the same ordering. Conversely, assume D′ is BC for C. Let
a = min1D

′
1 and c = max1D

′
1. By definition of BC, a and c

have bound supports ta and tc wrt D′ on C. Take any b ∈ D′
1.

b has a support tb in (D)∗ because b ∈ D′
1 ⊆ (D)∗1. Let tm

be the tuple med(ta, tb, tc). Since by construction ta, tb, and

tc are in (D)∗ and satisfy C, and since C is connected row
convex for Σ∗, tm is a satisfying tuple for C. By definition

of median, tm[x2] ∈ {ta[x2], tc[x2]} ⊆ D′
2. In addition,

tm[x1] = b because a < b < c. Therefore, tm is a bound
support for b in D′, and b is RC. The same reasoning applies
for values in D′

2. As a result, D′ is RC.
(⇒) Assume now that C is not connected row convex for

Σ∗. We show that there exists D′ ⊆ (D)∗ that is BC but
not RC for C. Since C is not connected row convex, there
exist a1a2, b1b2, c1c2 ∈ (D)∗ with a1a2, b1b2, c1c2 ∈ R but
tm = med(a1a2, b1b2, c1c2) /∈ R. Without loss of generality,



assume a1 ≤ b1 ≤ c1. We have tm 6= b1b2 because b1b2 ∈ R.
Hence, b2 6= tm[x2] = med(a2, b2, c2) because tm[x1] = b1.
Assume b2 < a2 < c2 (the other cases are similar).

If b1 has no support in [a2..c2]∩(D)∗2, consider the domain

D′ = ([a1..c1] ∩ (D)∗1, {a2, c2}). Then, a1, a2, c1, c2 have a
bound support in D′, and so D′ is BC, but b1 ∈ D′

1 has no
bound support in D′. Conversely, if b1 has a support b1b

′
2 in

[a2..c2] ∩ (D)∗2, consider D′ = ({b1}, [b2..b
′
2] ∩ (D)∗2). By

construction, b2 < a2 ≤ b′2 ≤ c2 and thus b1a2 = tm /∈ R.
So, b1, b2, b

′
2 have a bound support in D′, and so D′ is BC,

but a2 has no bound support in D′. ✷

Lemma 2 Let X = (x1, x2), Σ = (X,D, <), and C =
(X, R). RC and AC are equivalent on (X, (D)∗) for C iff C¬

is row convex for Σ∗ = (X, (D)∗, <).

Proof. (⇐) Suppose C¬ is row convex for Σ∗ and let D′ ⊆
(D)∗. By definition, if D′ is AC, it is also RC. Conversely,

assume D′ is RC for C. Let b1 ∈ D′
1 and tb ∈ (D′)∗ ⊆ (D)∗

be a bound support for b1 in D′. We write ai = minD′
i, bi =

tb[xi], ci = maxD′
i. We have tb ∈ R, so tb /∈ R¬. Hence,

b1a2 /∈ R¬ or b1c2 /∈ R¬ because C¬ is row convex for Σ∗

and a2 ≤ b2 ≤ c2. Thus, at least one tuple among b1a2 and
b1c2 is in R and b1 has a support in D′. Therefore, D′ is AC.

(⇒) Assume now that C¬ is not row convex for Σ∗.
Without loss of generality, let b1 ∈ (D)∗1, a2, b2, c2 ∈ (D)∗2
with a2 < b2 < c2 such that b1a2, b1c2 ∈ R¬ and
b1b2 /∈ R¬. We thus have b1a2, b1c2 /∈ R and b1b2 ∈ R. Let
a1, c1 ∈ (D)∗1 be supports of a2 and c2, respectively, and let
D′ = ({a1, b1, c1}, {a2, c2}). Then b1 has a bound support
but no support in D′. Therefore, D′ is RC but not AC. ✷

From the results above, we derive the following characteri-
zation of binary constraints for which BC is equivalent to AC.
Call Crow+row¬ for a binary constraint which is connected
row convex and whose negation is row convex.

Theorem 1 (BC vs AC) Let X = (x1, x2), Σ = (X,D, <),
and C = (X, R). BC and AC are equivalent on (X, (D)∗)
for C iff C is Crow+row¬ for Σ∗ = (X, (D)∗, <).

4 Membership to Crow+row¬

We give a characterization of Crow+row¬ constraints given a
signature. It will be used to recognize such constraints. Intu-
itively, if we represent a Crow+row¬ constraint as a Boolean
matrix, all 0 entries are located in two opposite corners, form-
ing two “monotone regions” which do not share any line or
column (see Example 2). The various regions in the matrix
are captured by the following definition (monotonicity of the
regions containing zeroes is captured by Proposition 1).

Definition 6 (Crow+row¬-partition) Let X = (x1, x2),
Σ = (X, D, <), and C = (X, R). A Crow+row¬-partition

of D for C and Σ is a partition of Di in (D−
i , D=

i , D+

i ) (for
i ∈ 1, 2) such that:

1. D=
1 = {a1 ∈ D1 | ∀a2 ∈ D2, a1a2 ∈ R} and D=

2 =
{a2 ∈ D2 | ∀a1 ∈ D1, a1a2 ∈ R},

2. D−
1 < D=

1 < D+

1 and D−
2 < D=

2 < D+

2 ,

3. either (i) R[D+

1 ×D−
2 ] = D+

1 ×D−
2 and R[D−

1 ×D+

2 ] =
D−

1 ×D+

2 , or (ii) R[D−
1 × D−

2 ] = D−
1 × D−

2 and

R[D+

1 × D+

2 ] = D+

1 × D+

2 .

Observe that independently of Σ, such a partition, if any, is
unique up to the order of values inside some part Dr

i and the
symmetry between < and >.

Example 2 Let Σ = ((x1, x2), (D1, D2), (<1, <2)) with
D1 = {a1, . . . , d1}, D2 = {a2, . . . , f2}, a1 < · · · < d1

and a2 < · · · < f2. Let C = ((x1, x2), R) be a constraint,
with R defined by the Boolean matrix below.

a2 b2 c2 d2 e2 f2

a1

b1

c1

d1







0 0 0 1 1 1

0 1 1 1 1 1

1 1 1 1 1 0

1 1 1 1 1 0







We get a Crow+row¬-partition of (D1, D2) for C with D−
1 =

{a1, b1}, D=
1 = ∅, D+

1 = {c1, d1}, D−
2 = {a2, b2, c2},

D=
2 = {d2, e2}, D+

2 = {f2}. ♣

The following result captures the fact that Crow+row¬ con-
straints are exactly those with the form as in Example 2.
Cases (i) and (ii) are symmetric to each other, depending on
the corners where zeroes lie (upper left and lower right in
Case (i), opposite in Case (ii)).

Proposition 1 Let X = (x1, x2), Σ = (X, D, <), and
C = (X, R). C is Crow+row¬ on (X, D∗, <) iff there is

a Crow+row¬-partition (D−
i , D=

i , D+

i ), i = 1, 2 of D∗ such
that one of the following holds

(i) x1 (resp. x2) is increasing in the constraint (X, R[D−
1 ×

D2]) (resp. (X, R[D1 × D−
2 ])), and decreasing in

(X, R[D+

1 × D2]) (resp. (X, R[D1 × D+

2 ])), or

(ii) x1 (resp. x2) is decreasing in the constraint

(X, R[D−
1 × D2]) (resp. (X, R[D1 × D−

2 ])), and in-

creasing in (X, R[D+

1 ×D2]) (resp. (X, R[D1×D+

2 ])).

Proof. (Sketch.) The “if” direction is easy. For the “only if”
direction, we know from [Cohen et al., 2000, Example 12]

that, as a connected row convex constraint, C is equivalent to
a conjunction C of constraints each of the form (ℓi) or (ℓ1 ∨
ℓ2), where ℓi is either xi ≥ ai or xi ≤ ai for some ai ∈
D∗

i . Moreover, since all values in D∗ have a support, there
is no nontrivial unary constraint in C (since, e.g., the unary
constraint x1 ≥ 2 eliminates any support for 1).

By symmetry, let C = (x1 ≥ a1∨x2 ≥ a2) be a constraint
in C (case (i); case (ii) is symmetric with a clause (x1 ≥
a1 ∨ x2 ≤ a2)). We claim that any other constraint in C is
of the form (x1 ≥ a′

1 ∨ x2 ≥ a′
2) or (x1 ≤ a′

1 ∨ x2 ≤ a′
2).

Indeed, if there was a constraint, say, (x1 ≥ a′
1 ∨x2 ≤ a′

2) in
C, then for any value b1 ∈ D∗

1 , b1 < a1, a
′
1, either b1 would

have no support (case a2 > a′
2), contradicting the definition

of D∗, or its non-supports would form a non-convex interval
D∗

2 \ [a2..a
′
2] of D∗

2 , contradicting the row convexity of C¬.
So C contains only (≤,≤) and (≥,≥)-constraints. Now we

claim that every two constraints (x1 ≥ a1 ∨ x2 ≥ a2), (x1 ≤
a′
1∨x2 ≤ a′

2) are such that a1−1 < a′
1+1 and a2−1 < a′

2+
1. Indeed, if a1 − 1 ≥ a′

1 + 1, then either value a′
1 + 1 ∈ D∗

1



has no support (case a2 > a′
2), or its non-supports form a

non-convex interval of D∗
2 , a contradiction in each case.

To sum up, we have that values ruled out by ≥-literals are
all less than values ruled out by ≤-literals.

Let D+

1 = {b1 ∈ D∗
1 | ∃a1, a2, b1 > a1, (x1 ≤

a1 ∨ x2 ≤ a2) ∈ C}, that is, values for D∗
1 ruled out by

≤-literals, and similarly for D−
1 , D+

2 , D−
2 . Moreover, let

D=
1 = {a1 ∈ D∗

1 | ∀a2 ∈ D∗
2 , a1a2 ∈ R}, and similarly for

D=
2 . As we can see, these collect all the remaining values.

By construction and by the second claim above, we have that
(D−

i , D=
i , D+

i ) is a partition of Di and D−
i < D=

i < D+

i .
Finally, by construction, only ≤-literals constrain values in
D+

1 , so x1 is decreasing in (X, R[D+

1 × D2]), and similarly
for the other cases. Finally, by construction again all other
restrictions of R are satisfied by all tuples. ✷

5 Binary Constraints Renamability

Membership to the Crow+row¬ class of constraints is defined
according to an ordered signature. In this section, we are in-
terested in Crow+row¬-renamability, that is, finding whether
there exists an ordering on the domains of the variables of a
constraint that makes the constraint Crow+row¬.

We first give an easy result about the corresponding prob-
lem for monotone constraints. Observe that monotone binary
constraints are a special case of Crow+row¬ constraints.

Proposition 2 Let X = (x1, x2), C = (X,R), and a couple
of domains D for X . One can compute an ordered signature
Σ = (X, D, <) such that C is monotone for Σ, or assert that
there is none, in time O(d3).

Proof. (Sketch.) Without loss of generality, we look for a
signature according to which every variable is increasing.
For each variable xi, we build a directed graph Gi as follows.
Consider x1 (the case of x2 is analogous). The vertices of G1

are the values in D1, and there is an edge (b1, a1) if and only
if there is (a1, a2) ∈ R such that (b1, a2) is not in R. Clearly,
the topological orders on Gi’s, if any, are exactly those for
which C is increasing. Time complexity is straightforward. ✷

We give an efficient algorithm for reordering domains so
that a constraint becomes Crow+row¬, using Proposition 1.
We first try to find a Crow+row¬-partition of the domains. We
use an undirected graph to do so. If the partition exists, we try
to reorder D−

i and D+

i so as to satisfy the in/decreasingness
constraints in the characterization of Proposition 1. By sym-
metry, we look for reorderings such that R[D−

1 × D−
2 ] is in-

creasing, and R[D+

1 × D+

2 ] is decreasing, that is, letting ze-
roes in the upper left and lower right corners of the matrix.

Definition 7 (Crow+row¬-graph) Let X = (x1, x2), C =
(X, R), and a couple D of domains for X . The Crow+row¬-
graph of C on D, written G(C), is the undirected graph
(V,E) with V = (D1×D2)\R and for all a1a2, b1b2 ∈ R¬,
{a1a2, b1b2} ∈ E ⇐⇒ a1 = b1 or a2 = b2.

Intuitively, the Crow+row¬-graph is the graph of zeroes in
the matrix representation, where two zeroes are connected if
they are on the same line or column. So the following lemma

is a direct consequence of Proposition 1 (with the intuition
coming from the matrix representation).

Lemma 3 Let X = (x1, x2), Σ = (X,D, <), and C =
(X, R). The following are equivalent:

1. there is a Crow+row¬-partition (D−
1 , D=

1 , D+

1 ,
D−

2 , D=
2 , D+

2 ) of D∗ such that R[D+

1 × D−
2 ] =

D+

1 × D−
2 , R[D−

1 × D+

2 ] = D−
1 × D+

2 , R[D−
1 × D−

2 ]
is increasing, and R[D+

1 × D+

2 ] is decreasing for
Σ∗ = (X, D∗, <),

2. the graph G(C) has exactly two connected components

C−, C+ (possibly empty), so that D−
1 = {a1 | a1a2 ∈

C−} and similarly for D+

1 , D−
2 , D+

2 , R[D−
1 × D−

2 ] is

increasing, and R[D+

1 × D+

2 ] is decreasing for Σ∗.

Before we state the results about computing renamings, we
show that, though our characterization concerns only the con-
vex hull of domains, we can search reorderings of only the
values in the domain (ignoring values in U \ D). The proof
is straightforward since row and connected row convexity are
defined according to actual domains (not ranges).

Proposition 3 Let X = (x1, x2), C = (X, R), and
domains D for X . There is an ordered signature
ΣU = (X, (D)∗, <U ), where <U is over the universe of val-
ues U , such that C is Crow+row¬ for ΣU , iff there is such a
signature Σ′

U = (X, (D)∗, <′
U ) for which (Di)

∗ is convex in
U wrt <′

U , i = 1, 2. Moreover, the ordering over U \ (Di)
∗

does not matter.

Hence, in the remainder of the paper we assume that only
the values in the initial domain D∗ are reordered, instead of
all the values in (D)∗. Equivalently, we assume U = D∗.

Proposition 4 Let X = (x1, x2), C = (X,R), and a couple
of domains D for X . One can compute an ordered signature
Σ∗ = (X, D∗, <) such that C is Crow+row¬ for Σ∗ or assert
that there is none in time O(d3).

Proof. The algorithm builds the graph G(C) in time and
space O(d3) because there are O(d2) vertices (one for each
pair (a1, a2) of values) and each vertex (a1, a2) can be con-
nected to at most 2d other vertices (those of the form (a1, b2)
or (b1, a2)). Then it computes the connected components of
G(C) in time linear in G(C), i.e., O(d3). If there are at least
three components, then it stops on failure (Lemma 3).

Otherwise, it computes D+

i and D−
i for i = 1, 2 by

projecting the components, in time O(d2). Finally, it

looks for ordered signatures Σ− = (X, (D−
1 , D−

2 ), <−)
and Σ+ = (X, (D+

1 , D+

2 ), <+) so that R[D−
1 × D−

2 ] is

increasing for Σ− and R[D+

1 ×D+

2 ] is decreasing for Σ+, in
time O(d3) using Proposition 2. If there are none, then again
it stops on failure (Lemma 3). Otherwise, it computes an
ordered signature compatible with both Σ− and Σ+, which
can be done by stacking the ordered subdomains over each
other, in time O(d). The overall time complexity is O(d3). ✷

6 Renamability of Sets of Binary Constraints

In general, renaming several constraints that have variables
in common can be done by storing for each variable on each



constraint a permutation function that links the original order-
ing with the ordering that makes that constraint Crow+row¬.
However, in Section 7, when decomposing a non-binary con-
straint into binary ones, the variables inside the non-binary
constraint must be reordered the same way for each binary
constraint, making all of them Crow+row¬ simultaneously.
Call a set of constraints C (on X, D) Crow+row¬-renamable
if there exists Σ = (X, D, <) such that ∀C ∈ C, C is
Crow+row¬ for Σ. We show that deciding Crow+row¬-
renamability of a set of binary constraints is tractable.1

Lemma 4 says that, up to symmetries, there is essentially one
signature making a constraint Crow+row¬ (if any).

Lemma 4 Let X = (x1, x2), C = (X, R), and D a cou-
ple of domains for X . If C is Crow+row¬-renamable, then

there are partitions {D1
i , . . . , Dki

i } of Di, i = 1, 2, such
that the ordered signatures (X, D, (<1, <2)) for which C
is Crow+row¬ are exactly those satisfying the partial order

D1
i < i · · · <i Dki

i or D1
i > i · · · > iD

ki

i for each i = 1, 2.

Proof. The symmetry between < and > is obvious. The
partitions are built by grouping together values substitutable
to each other (i.e., equal rows or columns in the matrix repre-
sentation). As is clear on the matrix representation, any other
partial order violates the characterization of Proposition 1. ✷

The algorithm which we propose for renaming sets of con-
straints proceeds inductively using the algorithm for an iso-
lated constraint. Given {C1, . . . , Ce}, it looks for the partial
orders wrt which C1 is Crow+row¬. If none it stops, and
otherwise it looks for such orders for C2. Again, if none it
stops, and otherwise it looks for orders compatible with both.
If none it stops, and otherwise it goes on with C3, etc.

Example 3 Given D1 = {a1, b1, c1}, D2 = {a2, . . . , e2},
D3 = {a3, b3, c3} and the constraints on x1, x2 and x2, x3:

a2 b2 c2 d2 e2 a2 b2 c2 d2 e2

a1

b1

c1

(

0 0 1 1 1

1 1 1 0 0

1 1 1 0 0

)

a3

b3

c3

(

1 1 1 0 0

0 1 1 1 1

0 0 0 1 1

)

By Proposition 1, the first one is Crow+row¬ wrt exactly
those orders < 1, < 2 such that {a1} < {b1, c1} or {a1} >
{b1, c1}, and {a2, b2} < {c2} < {d2, e2} or {a2, b2} >
{c2} > {d2, e2}. Now the second one is Crow+row¬ iff
{a3} < {b3} < {c3} or {a3} > {b3} > {c3}, and
{a2} < {b2, c2} < {d2, e2} or {a2} > {b2, c2} >
{d2, e2}. Thus the set of both constraints is Crow+row¬

wrt ρ1, ρ2, ρ3 iff {a1} ρ1 {b1, c1}, {a3} ρ3 {b3} ρ3 {c3}, and
{a2} ρ2 {b2} ρ2 {c2} ρ2 {d2, e2}, ρ1, ρ2, ρ3 ∈ {<, >}. ♣

Proposition 5 Deciding whether a set of binary constraints
N is Crow+row¬-renamable can be done in time O(ed3).

Proof. We show by induction that the algorithm sketched
above is correct. The base case with no constraints is ob-
vious, with the empty order for all xi. Now assume that
(X , D, {C1, . . . , Ck}) is Crow+row¬ wrt exactly the orders

1This is somehow unexpected as connected row convex renam-
ability of sets of binary constraints is NP-hard [Green and Cohen,
2008].

<i such that D1
i < D2

i < · · · < Dki

i or D1
i > D2

i >

· · · > Dki

i . Assume w.l.o.g., using Lemma 4, that Ck+1 =

((xp, xq), R) is Crow+row¬ iff E1
i <′

i E2
i <′

i · · · <′
i Eki

i or

E1
i >′

i E2
i >′

i · · · >′
i Eki

i , i = p, q. If there are orders ex-
tending both <i’s and <′

i’s, then clearly {C1, . . . , Ck, Ck+1}
is Crow+row¬ for them. Otherwise, by construction there is
no order making both {C1, . . . , Ck} and Ck+1 Crow+row¬.

Now to the time complexity. Renaming each constraint
requires O(d3) (see Proposition 4). For each variable in the
new constraint, two partial orders must be extended into a
common one, which can be done by merging them in time
O(d). Now there are e inductive steps, which concludes. ✷

7 Non-binary Crow+row¬ Constraints

So far we have considered only binary constraints. Recall that
med-closed constraints give a generalization of connected
row convex constraints to an arbitrary arity. Though we lose
equivalence, Theorem 2 gives an interesting parallel to The-
orem 1. The proof is a straightforward generalization of the
(⇐) direction in Lemmas 1 and 2.

Theorem 2 (BC vs AC, n-ary) Let Σ = (X, D, <) and
C = (X,R). If C is med-closed and C¬ is row convex

for Σ∗ = (X, (D)∗, <), then BC and AC are equivalent on

(X, (D)∗) for C.

The reverse does not hold, as can be seen with the ternary
relation R = {1, 2, 3}3\{332, 333}, which is not med-closed
but for which BC and AC are equivalent.

Call med+row¬ for a med-closed constraint with row con-
vex complement. Proposition 6 shows that such a constraint
can be recognized via its projections over pairs of variables,
that are all Crow+row¬. Proposition 7 shows the existence of
a polynomial algorithm for med+row¬-renamability for con-
straints given in extension. The question remains open for
constraints defined by an arbitrary predicate.

A constraint is binary decomposable if it is equivalent to
the conjunction of its projections onto all pairs of variables.

Proposition 6 If C is (n-ary) med+row¬ wrt some ordered
signature Σ, then it is binary decomposable, and each pro-
jection is Crow+row¬ (wrt Σ).

Proof. Because C is med-closed wrt Σ, it is binary decom-
posable [Gil et al., 2008]. By definition of med-closure, each
projection is med-closed / connected row convex wrt Σ.

Now assume towards a contradiction that the projection
((xi, xj), Ri,j) of C has a non row convex complement.
There is a value ai for xi and three values aj < bj < cj for
xj (< is according to Σ) such that aiaj , aicj /∈ Ri,j (∈ R¬

i,j)
but aibj ∈ Ri,j . By definition of projection there is a support
for aibj in R, that is, a tuple tait

′bjt
′′ ∈ R, but no support for

aiaj , aicj . So, tait
′ajt

′′, tait
′cjt

′′ /∈ R. Thus the instantia-
tion tait

′t′′ of all variables but xj has a non convex support
in R¬. This violates the assumption that R¬ is row convex. ✷

Note that the binary decomposition of R may be
Crow+row¬ and R be non med+row¬. This is the case, for
instance, for the join of the two constraints in Example 3 with
the tuple b1b2b3 removed.



Proposition 7 Given an n-ary constraint C = (X, R) given
in extension and a sequence of domains D for X , one can de-
cide in polynomial time whether C is med+row¬-renamable.

Proof. First project R onto every pair of variables, yielding a
set of binary constraints C, and decide whether (X,D, C) is
Crow+row¬-renamable with Proposition 5. If it is not, then
by Proposition 6 R is not med+row¬-renamable.

Otherwise, by the construction in Section 6, for all i we
get a partial order <p

i on the domain of xi, so that total or-
ders according to which C is Crow+row¬ are exactly those
extending <p

i or >p
i for all i. Given a set of (arbitrary) such

total orders <= (<1, . . . , <n), one for each xi, we claim that
R is med+row¬-renamable iff it is med+row¬ for <.

The “if” direction is obvious, so assume that R is
med+row¬-renamable wrt some collection of total orders <′.
By Proposition 6 it is binary decomposable, so logically
equivalent to C. Especially, any two values substitutable to
each other in C are so in R as well. So R is med+row¬ wrt
any order obtained from <′ by permuting two values sub-
stitutable to each other in C (as in the proof of Lemma 4).
Moreover, by symmetry of med-closure and row convexity, it
is also med+row¬ wrt any order obtained from <′ by revers-
ing the order over any domain. Since by Proposition 6 and the
construction, both < and <′ extend the partial order <p

i or >p
i

for each i, < can be obtained from <′ by permuting substi-
tutable values and reversing orders, so by symmetry again R
is also med+row¬ wrt <, which ends to show the claim.

To conclude, one can decide whether R is med+row¬-
renamable by considering only one (arbitrary) total extension
of the <i’s. Since R is given in extension, this can be done
in polynomial time by testing the definitions of med-closure
and row-convexity directly on the tuples in R. ✷

8 Related Work

Several classes of constraints have been identified for which
the CSP is tractable, e.g., monotone constraints [Montanari,
1974; Woeginger, 2002] and row convex constraints [van
Beek and Dechter, 1995; Deville et al., 1999]. Domain
reordering techniques have been proposed to make a con-
straint member of the class [van Beek and Dechter, 1995;
Green and Cohen, 2008]. However, it is seldom the case that
a CSP only contains constraints of one class or allows a re-
ordering leading all constraints to this class. Therefore, those
theoretical results are not used in constraint solvers.

BC and AC have been proved to be equivalent on linear in-
equalities [Zhang and Yap, 2000] or on some arithmetic con-
straints, given some conditions on the type of domain reduc-
tions [Schulte and Stuckey, 2005]. In comparison, our work
gives an exact characterization of the unique maximal class of
binary constraints on which AC and BC are equivalent what-
ever the domain reductions that will appear during search. We
insist on the importance of stability of equivalence under do-
main reductions. It allows a solver to use a BC propagator
on that constraint without any risk to hinder AC propagation
deeper in the search tree when domains have been modified.

9 Summary and Perspectives

We have characterized the constraints for which bound con-
sistency prunes as many values as arc consistency, and we
have proposed efficient algorithms for recognizing such con-
straints or sets of constraints, possibly by reordering the do-
mains. Since bound consistency is usually cheaper to enforce
than arc consistency, recognizing such constraints can save
some pruning effort during search. The tractability of re-
naming non-binary constraints in intension being unknown,
a promising direction for future research is to design efficient
specialized algorithms for renaming global constraints so that
a cheap BC propagator can be applied for enforcing AC. This
can be seen as a new algorithmic perspective for designing
efficient AC propagators.

References
[Bessiere et al., 2006] C. Bessiere, E. Hebrard, B. Hnich,

Z. Kiziltan, and T. Walsh. Filtering algorithms for the
Nvalue constraint. Constraints, 11(4):271–293, 2006.

[Bessiere, 2006] C. Bessiere. Constraint propagation. In
F. Rossi, P. van Beek, and T. Walsh, editors, Handbook
of Constraint Programming, chapter 3. Elsevier, 2006.

[Cohen et al., 2000] D. Cohen, P. G. Jeavons, P. Jonsson, and
M. Koubarakis. Building tractable disjunctive constraints.
J. ACM, 47(5):826–853, 2000.

[Deville et al., 1999] Y. Deville, O. Barette, and P. Van Hen-
tenryck. Constraint satisfaction over connected row con-
vex constraints. Artif. Intel., 109:243–271, 1999.

[Gil et al., 2008] Á. J. Gil, M. Hermann, G. Salzer, and
B. Zanuttini. Efficient algorithms for description problems
over finite totally ordered domains. SIAM J. Computing,
38(3):922–945, 2008.

[Green and Cohen, 2008] M. J. Green and D. A. Cohen.
Domain permutation reduction for constraint satisfaction
problems. Artif. Intel., 172:1094–1118, 2008.

[Jeavons et al., 1998] P. G. Jeavons, D. Cohen, and M. C.
Cooper. Constraints, consistency and closure. Artif. In-
tel., 101:251–265, 1998.

[Montanari, 1974] U. Montanari. Networks of constraints:
Fundamental properties and applications to picture pro-
cessing. Information Science, 7:95–132, 1974.

[Puget, 1998] J.-F. Puget. A fast algorithm for the bound
consistency of alldiff constraints. In Proc. AAAI’98.

[Régin, 1994] J.-C. Régin. A filtering algorithm for con-
straints of difference in CSPs. In Proc. AAAI’94.

[Schulte and Stuckey, 2005] C. Schulte and P. J. Stuckey.
When do bounds and domain propagation lead to the
same search space? ACM Trans. Program. Lang. Syst.,
27(3):388–425, 2005.

[van Beek and Dechter, 1995] P. van Beek and R. Dechter.
On the minimality and global consistency of row-convex
constraint networks. J. ACM, 42:543–561, 1995.

[Woeginger, 2002] G. J. Woeginger. An efficient algorithm
for a class of constraint satisfaction problems. Operations
Research Letters, 30:9–16, 2002.

[Zhang and Yap, 2000] Y. Zhang and R. Yap. Arc consis-
tency on n-ary monotonic and linear constraints. In Proc.
CP’00.


