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a b s t r a c t

We prove that there exist infinitely many infinite overlap-free binary partial words
containing at least one hole. Moreover, we show that these words cannot contain more
than one hole and the only hole must occur either in the first or in the second position. We
define that a partial word is k-overlap-free if it does not contain a factor of the form xyxyx
where the length of x is at least k. We prove that there exist infinitely many 2-overlap-free
binary partial words containing an infinite number of holes.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Repetitions, i.e., consecutive occurrences of words within a word and especially repetition-freeness have been
fundamental research subjects in combinatorics on words since the seminal papers of Thue [21,22] in the beginning of the
20th century; see [4] to learn what Thue exactly proved. In particular, Thue showed that there exists an infinite wordw over
a three-letter alphabet, which does not contain any nonempty squares xx. Moreover, he constructed an infinite binary word
t which does not contain any overlaps xyxyx for anywords x and ywith x nonempty. This celebratedword is nowadays called
the Thue–Morseword,which hasmany surprising and remarkable properties; see [2]. As an example, wemention applying t
for designing an unending play of chess [8,15] and for solving the Burnside problem for groups [1] and semigroups [16,17].
In [14] Manea and Mercaş considered repetition-freeness of partial words. Partial words are words with ‘‘do not know’’-

symbols called holes and they were first introduced by Berstel and Boasson in [5]. Motivation for the study of partial words
comes from applications in word algorithms and molecular biology, in particular; see [6] for using partial words in DNA
sequencing and DNA comparison. The theory of partial words has developed rapidly in the recent years and many classical
topics in combinatorics on words have been revisited. Topics such as periodicity, primitivity, unbordered word, codes and
equations have been considered in the first book on partial words authored by Blanchet-Sadri in 2007 [7]. See also related
works by Shur and Gamzova [20], Leupold [11] and Lischke [12]. As another approach for modeling missing or uncertain
information in words we want to mention word relations, a generalization of the compatibility of partial words introduced
in [9].
It was shown in [14] that there exist infinitely many cube-free binary partial words containing an infinite number of

holes. In this paper we give short and simple proofs that this result can be improved. The key notion is the restricted square
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property of infinitewords over a three-letter alphabet introduced in Section 3. Using itwe easily prove in Section 5 that there
exist infinitely many binary partial words with an infinite number of holes which do not contain 2-overlaps, i.e., factors of
the form xyxyx where the length of x is at least two. We also prove that there exist infinitely many infinite overlap-free
binary partial words with one hole but none with two or more holes, and that the single hole can only be either in the first
or in the second position of the word.

2. Words, morphisms, and powers

Let A be a finite alphabet. The elements of A are called letters. A word w = a1a2 · · · an of length n over the alphabet A is
a mappingw : {1, 2, . . . , n} → A such thatw(i) = ai. The length of a wordw is denoted by |w|, and ε is the empty word of
length zero. By a (right) infinite wordw = a1a2a3 · · · wemean amappingw from the positive integersN+ to the alphabetA
such thatw(i) = ai. The set of all finite words is denoted byA∗ and infinite words are denoted byAω . Also letA+ = A∗ \{ε}.
A finite word v is a factor of w ∈ A∗ ∪ Aω if w = xvy, where x ∈ A∗ and y ∈ A∗ ∪ Aω . If x = ε, then v is a prefix of w. If
v ∈ A∗ ∪ Aω andw = xv, then v is called a suffix ofw.
A morphism on A∗ is a mapping ϕ : A∗ → A∗ satisfying ϕ(xy) = ϕ(x)ϕ(y) for all x, y ∈ A∗. Note that ϕ is completely

defined by the values ϕ(a) for every letter a on A. A morphism is called prolongable on a letter a if ϕ(a) = aw for some
word w ∈ A+ such that ϕn(w) 6= ε for all integers n ≥ 1. By definition, ϕn(a) is a prefix of ϕn+1(a) for all integers n ≥ 0
and the sequence (ϕn(a))n≥0 converges to the unique infinite word generated by ϕ,

ϕω(a) := lim
n→∞

ϕn(a) = awϕ(w)ϕ2(w) · · · ,

which is a fixed point of ϕ.
A kth power of a word u 6= ε is the word uk. It is the prefix of length k · |u| of uω , where uω denotes the infinite catenation

of theword u and k is a rational number such that k · |u| is an integer. A wordw is called k-free if there does not exist a word x
such that xk is a factor ofw. If k = 2 or k = 3, then we talk about square-free or cube-freewords, respectively. An overlap is a
word of the form xyxyxwhere x ∈ A+ and y ∈ A∗. A word is called overlap-free or 2+-free if it does not contain overlaps or,
equivalently, if it does not contain kth powers for any k > 2. Hence, it can contain squares but it cannot contain any longer
repetitions such as overlaps or cubes. For example, over the alphabet {a, b} the word abbabaa is overlap-free but it contains
squares bb, aa and baba. It is easy to verify that there does not exist an infinite square-free word over a binary alphabet but,
as we will see in the next section, there exist infinite overlap-free binary words.
We generalize the notion of an overlap as follows.

Definition 1. A k-overlap is a word of the form xyxyxwhere x and y are two words with |x| = k. A word is k-overlap-free1if
it does not contain k-overlaps.
For example, the word baabaab is not overlap-free but it is 2-overlap-free while the word baabaaba is not. By definition,

it is evident that any k-overlap-free word is also k′-overlap-free for k′ ≥ k. Note that a word is 1-overlap-free if and only if
it is overlap-free.
Remark 2. Another possible definition for k-overlap-freeness is to require that a k-overlap-free word must also be cube-
free. In the case of 2-overlap-free words, this new definition just means that in addition to 2-overlaps a word cannot contain
short cubes aaa, where a is a letter. We want to stress that all the results in this paper are also valid for this alternative
definition of 2-overlap-freeness.

3. Preliminary results

Let us consider two alphabets A = {a, b} and B = {0, 1, 2}.

3.1. Overlap-free binary words

In [22] Thue introduced the following morphism µ : A∗ → A∗,

a 7→ ab, b 7→ ba.
The Thue–Morse word is the infinite overlap-free binary word

t := lim
n→∞

µn(a) = abbabaabbaababbaba · · ·

generated by µ; see, e.g., [2] for other definitions and properties.
Proposition 5 below gives a useful property of the Thue–Morse word t . Its proof uses two already known lemmata.
The first lemma is due to Thue [22] himself; see [13] for a proof.

Lemma 3. Let X = {ab, ba}. If x ∈ X∗, then axa /∈ X∗ and bxb /∈ X∗. �

The second lemma is a part of Proposition 1.7.5 in [3]; see also [18].
Lemma 4. If x is an infinite overlap-free binary word over A, then there exist v ∈ {ε, a, b, aa, bb} and an infinite overlap-free
binary word y such that x = uµ(y). �

1 While it is not exactly the same, this notion of k-overlap-freeness resembles that of k-bounded overlaps introduced by Thue in [22].
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Proposition 5. Let t ′ be a suffix of the Thue–Morse word t beginning with µ(abaabb). Then the word bbt ′ is overlap-free.
Proof. The word t ′ is overlap-free since t is overlap-free. Let us first prove that bt ′ is also overlap-free. Suppose that bt ′
contains an overlap. Since t ′ is overlap-free and begins with the letter a, this means that bt ′ begins with bubub for a word
u ∈ A+. By definition of t ′, we must have v = ε in Lemma 4 and t ′ = µ(t ′′) for some infinite word t ′′. This implies that t ′
decomposes over {ab, ba}. Thus, if |u| is even, then u and bub are images of words by µ, which contradicts Lemma 3.
Consequently, |u| is odd. Thus, ub = µ(u′a) for some word u′ ∈ A∗ and t ′ begins with µ(u′au′a) which implies that t

contains u′au′a as a factor. From the definition of t ′ one has that |u′| ≥ 6 and u′ begins with abaa. So u′ = abaau′′ for some
word u′′ ∈ A+ and u′au′a = abaau′′aabaau′′a. If u′′ begins or ends with a then u′au′a contains aaa as a factor. Otherwise u′′
begins and ends with b and u′au′a contains the factor baabaab. In both cases this contradicts the overlap-freeness of t .
Now we prove that bbt ′ is overlap-free. Suppose that bbt ′ contains an overlap. Since bt ′ is overlap-free, this means that

bbt ′ beginswith bubub for aword u ∈ A+, and ubub is overlap-free. Suppose that |u| is odd. Since t ′ = µ(t ′′) for some infinite
word t ′′, we have u = bµ(u′) for some word u′ ∈ A+. But in this case bt ′, which begins with ubu, has the prefix bµ(u′)bb.
This means that t ′ begins with µ(u′)bb, which contradicts t ′ = µ(t ′′).
Thus, |u| is even. Let u′ ∈ A+ be such that u = bu′. Now bbt ′ begins with bbu′bbu′b. Since t ′ = µ(t ′′), there

exist two words u1 and u2 in A+ such that u′b = µ(u1) and bu′ = µ(u2). Since u′bbu′b is overlap-free, the word
u′ begins and ends with a. This implies that u1 = au′1a and u2 = bu′2b for some words u

′

1, u
′

2 over A. Consequently,
bbu′bbu′b = bbµ(u1)µ(u2)b = bbabµ(u′1)abbaµ(u

′

2)bab, which implies that u
′

1 begins with b and u
′

2 ends with a. But in this
case ubub = bu′bbu′b = µ(u2)bbµ(u1) contains µ(ab)bbµ(ab) = abbabbabba, which contradicts the overlap-freeness of
ubub. �

3.2. The restricted square property

In order to prove the existence of infinite cube-free words over a two-letter alphabet from the existence of square-free
words over three letters, Thue used in [21] the following morphism δ : B∗ → A∗,

0 7→ a, 1 7→ ab, 2 7→ abb.

Six years later he proved the following

Proposition 6 ([22]). Let u ∈ Aω and v ∈ Bω be such that δ(v) = u. The word u is overlap-free if and only if v is square-free
and does not contain 010 nor 212 as a factor. �

Herewewill use themorphism δ to prove the existence of infinite 2-overlap-free binarywords that are not overlap-free.2
We need the following new notion introduced in [19].

Definition 7. An infinite word v over B has the restricted square property if, for every nonempty factor rr of v, the word r
does not begin nor end with the letter 0 and the factor rr is preceded and followed by the letter 0.

Notice that if a word v ∈ Bω has the restricted square property then v does not begin with a square, v is overlap-free,
and v does not contain 00 as a factor.
The following result is a useful analogue of Proposition 6.

Theorem 8. Let v be an infinite word over B such that it does not begin with a square and the infinite word u = δ(v) over A

does not contain the factor aaa. Then the word u is 2-overlap-free if and only if v has the restricted square property.

Note that here the word u is also cube-free.

Proof. Let u and v be as in the statement. Since u does not contain the factor aaa, v does not contain the factor 00. Let rr be
a factor of v with r 6= ε. By hypothesis, rr is not at the beginning of v. This means that in v the factor rr is preceded (and
followed) by at least one letter.
If r begins with the letter 0, then it does not endwith 0 (because 00 is not a factor of v) and it is preceded by the letter 1 or

the letter 2. Consequently, δ(r) = asb and δ(rr) is necessarily preceded by b and followed by a. This means that u contains
the factor bδ(rr)a = basbasba, which implies that u is not 2-overlap-free. The argument is the same if r ends with the
letter 0.
Now if r begins with 1 or 2, ends with 1 or 2, and rr is not followed by 0, then δ(r) begins with ab and δ(rr) is followed

by ab. Hence, u is not 2-overlap-free.
To end, if r ends with 1 or 2 and is not preceded by 0, then δ(r) begins with a and ends with b, and δ(rr) is preceded by

b. Since δ(rr) is followed by a, this implies that u is not 2-overlap-free.
Consequently, if u is 2-overlap-free, then v has the restricted square property.
Conversely, suppose that u is not 2-overlap-free. There are four possible cases:

(1) If u contains a factor aaxaaxaa, then the word v contains a square beginning with 0;
(2) If u contains a factor abxabxab, then there exists necessarily y ∈ B+ such that abx = δ(y). Thus, v contains a square yy
followed by a letter 1 or 2;

2 Thue [22] already remarked that a word δ(w), wherew is square-free, may have overlaps, but if xyxyx is an overlap, then x is a letter.
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(3) If u contains a factor baxbaxba, then there exists necessarily y ∈ B+ such that axb = δ(y). Thus, v contains a square yy
preceded by a letter 1 or 2;

(4) If u contains a factor bbxbbxbb, then there exists necessarily y ∈ B+ such that xbb = δ(y). Thus, v contains a square yy
preceded by a letter 2.

In the four cases v does not have the restricted square property. �

3.3. 2-overlap-free binary words

We consider another morphism introduced by Thue [22]: τ : B∗ → B∗,
0 7→ 01201, 1 7→ 020121, 2 7→ 0212021.

Proposition 9 ([22]). The infinite word τω(0) is square-free. �

Since τ(2) = 0212021, the infinite word τω(0) contains the factor 212. Hence, by Proposition 6, the word δ(τω(0)) is not
overlap-free. However, by Proposition 9, τω(0) has the restricted square property. Now, by construction, the word τω(0)
contains an infinite number of occurrences of τ(01):

τω(0) = u1τ(01)u2τ(01) · · · ukτ(01) · · · , ui ∈ B
+

=

∞∏
k=1

ukτ(01)

=

∞∏
k=1

uk01201020121.

Let n ∈ N and let us denote by Yn the word obtained from τω(0) by replacing 102 by 22 in n (not necessarily consecutive)
occurrences of τ(01).
Proposition 10. For every n ∈ N, the word Yn has the restricted square property.
Proof. We will prove that the occurrences of 22 are the only squares in the word Yn.3
Suppose that Yn contains another square rr 6= 22. Since the only difference between τω(0) and Yn comes from the

occurrences of 10 replaced by the letter 2 and since τω(0) is square-free, the square rr must have a common factor with at
least one factor 22.
If r contains some full occurrences of 22, then replacing each of these occurrences by 102 does not change the fact that

rr is a square. Hence, if there are no other occurrences of 22 intersecting with rr , then this square is a factor of τω(0), which
is impossible.
Thus, we have r = 2u2 for some u ∈ B+. By construction, u ends with 0120. Since 01202 is not a factor of τω(0), the

only solution is that the factor rr is followed in Yn by the letter 2. Then u22u22 is a factor of Yn and the corresponding factor
of τω(0) (which, by construction, is obtained by replacing in u22u22 all the occurrences of 22 by 102) is also a square; a
contradiction.
Consequently, Yn contains no squares but those 22 obtained from τω(0) by replacing the factor 102 by 22 in n occurrences

of τ(01). Since, by construction of τω(0), each of these 22 is preceded and followed by the letter 0, the word Yn has the
restricted square property. �

Theorem 8 implies the following useful corollary.
Corollary 11. The words δ(τω(0)) and δ(Yn) for every n ∈ N are 2-overlap-free.
Proof. We have seen that the words τω(0) and Yn have the restricted square property. Since τω(0) is square-free, it does
not begin with a square. By the proof of Proposition 10, the only squares in Yn are occurrences of 22. Thus, Yn does not begin
with a square. To end, since τω(0) and Yn do not contain 00 as a factor, the words δ(τω(0)) and δ(Yn) do not contain the
factor aaa. Thus, Theorem 8 implies that the words δ(τω(0)) and δ(Yn) are 2-overlap-free. �

4. Partial words

A partial word u of length n over an alphabet A is a partial function u : {1, 2, . . . , n} → A. This means that in some
positions the word u contains holes, i.e., ‘‘do not know’’-letters. The holes are represented by �, a symbol that does not
belong to A. Classical words (called fullwords) are only partial words without holes.
Similarly to finitewords, we define that infinite partial words are partial functions fromN+ toA. We denote byA∗

�
andAω

�

the sets of finite and infinite partial words, respectively.
A partial word u ∈ A∗

�
is a factor of a partial word v ∈ A∗

�
∪ Aω
�
if there exist words x, u′ ∈ A∗

�
and y ∈ A∗

�
∪ Aω
�
such that

v = xu′ywith u′(i) = u(i)whenever neither u(i) nor u′(i) is a hole �. Prefixes and suffixes are defined in the same way.

3 In [10] the same technique was used to prove that there exist uncountably many almost square-free partial words over a ternary alphabet with an
infinite number of holes.
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For example, let u = ab�bba�a. The length of u is |u| = 8, and u contains two holes in positions 3 and 7. Let
v = aa�bb�ba�abbaa�. The word v contains the word u as a factor in positions 3 and 8. The word u is a suffix of the
word v.
Note that a partial word is a factor of all the (full) words of the same length in which each � is replaced by any letter of

A.We call these (full) words the completions of the partial word. In the previous example, if A = {a, b}, the partial word u
has four completions: ababbaaa, ababbaba, abbbbaaa, and abbbbaba.
Let k be a rational number. A partialword u is k-free if all its completions are k-free. Overlaps, k-overlaps, overlap-freeness,

and k-overlap-freeness of partial words are defined in the same manner.

5. The overlap-freeness of binary partial words

In this section we again have A = {a, b}.
In [14] Manea and Mercaş proved that there exist infinitely many cube-free binary partial words containing infinitely

many holes. Here we prove a stronger result about 2-overlap-free binary partial words.

Theorem 12. There exist infinitely many 2-overlap-free binary partial words containing infinitely many holes.

Proof. Let n ∈ N. We have seen in Corollary 11 that δ(τω(0)) and δ(Yn) are 2-overlap-free (but they are not overlap-free).
Since Yn is obtained from τω(0) by replacing n factors 102 by 22, the only difference between δ(τω(0)) and δ(Yn) is that n
factors δ(102) = abaabb in δ(τω(0)) are replaced by the factors δ(22) = abbabb in δ(Yn). Let us consider theword Xn, which
is obtained from δ(Yn) by replacing δ(22) by ab�abb. Since both δ(τω(0)) and δ(Yn) are 2-overlap-free, also the word Xn is
2-overlap-free and contains exactly n holes.
In particular, denote by Y the word which is obtained from τω(0) by replacing 102 with 22 in every occurrence of τ(01).

Let us now consider the word X where every δ(22) in δ(Y ) is replaced by ab�abb. Assume that the word X is not 2-overlap-
free. Then a finite prefix of X contains a 2-overlap. This implies that, for some n, there exists a word Xn which has the same
finite prefix as X . By the above, this Xn is 2-overlap-free; a contradiction.
Since τω(0) contains infinitely many occurrences of τ(01), the word X contains infinitely many holes and it is 2-overlap-

free. Clearly, the word X remains 2-overlap-free if we replaced any hole by either a or b. Hence, there exists infinitely many
2-overlap-free words containing infinitely many holes. �

By replacing holes with letters in 2-overlap-free binary partial words containing infinitely many holes we obtain the
following corollary.

Corollary 13. For every non-negative integer n, there exist infinitely many 2-overlap-free binary partial words containing n
holes. �

In the case of (1-)overlap-free binary partialwords, the situation is different, because it is not possible to construct infinite
overlap-free binary partial words with more than one hole. More precisely, we prove the following theorem.

Theorem 14. An infinite overlap-free binary partial word is either full or of the form �w or x�w, wherew is an infinite full word
and x is a letter. There are infinitely many overlap-free words of each type.

Proof. The case of full words follows from the existence of the Thue–Morse infinite overlap-free word t .
Now, let x, y be the two different letters of the alphabet A and letw be an infinite partial word over A containing a factor

u which begins with x�. If u begins with x�x or x�yy, then u contains a cube. Thus, u begins with x�yx. If u begins with
x�yxyyy, x�yxyyx, x�yxyx, or x�yxxx, then it is not overlap-free. Hence, u begins with x�yxxy. If u begins with x�yxxyyy or
x�yxxyx, it is not overlap-free. Therefore, the only remaining case is that u begins with x�yxxyyx. But then yu and xu are not
overlap-free, which implies that, if the wordw is overlap-free, then the factor u can only be at the beginning ofw. Moreover,
this also implies that w cannot contain more than one hole. To conclude the first claim, note that removing the first letter
of a word keeps the word overlap-free.
To complete the proof, it remains to show that there exist an infinite number of overlap-free binary partial words

beginning with such a word u. Consider any suffix of the Thue–Morse word t beginning with µ(babaabb) = baµ(abaabb).
By the overlap-freeness of t , this suffix is overlap-free. On the other hand, if we replace the second letter of the suffix by
b, we get a word of the form bbt ′, where t ′ is a suffix of t beginning with µ(abaabb). By Proposition 5, this word is also
overlap-free. Hence, we conclude that the word b�t ′ is an infinite overlap-free binary partial word.
Since the Thue–Morse word t is recurrent, i.e., each factor appears infinitely often in t , it contains an infinite number

of suffixes beginning with µ(babaabb). Thus, there exist an infinite number of infinite overlap-free binary partial words
beginning with b�abbaab. We note that, by the above, the word abbaab is the only possibility that may occur after b� in an
overlap-free word. �

This theorem has the following corollary, which improves Proposition 5 of Manea and Mercaş [14] that there exist
infinitely many cube-free binary partial words containing exactly one hole.

Corollary 15. There exist infinitely many infinite overlap-free binary partial words containing exactly one hole. �
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6. Conclusion

In this paper we have considered k-overlap-freeness and overlap-freeness of binary partial words. In Theorem 8we have
proven a connection between 2-overlap-free words and the restricted square property. Using this result we have shown in
Corollary 11 that certain binary words are 2-overlap-free. These words enable us to prove in Theorem 12 that there exist
infinitely many 2-overlap-free binary partial words containing infinitely many holes. Finally, we have shown in Theorem 14
that an infinite overlap-free binary partial word is either full or of the form �w or x�w, wherew is an infinite full word and
x is a letter. Moreover, there are infinitely many overlap-free words of each type.
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