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Abstract— Motion databasing is an important topic in
robotics research. Humanoid robots have a large number of
degrees of freedom and their motions have to satisfy a set of
constraints (balance, maximal joint torque velocity and angle
values). Thus motion planning cannot efficiently be done on-
line. The computation of optimal motions is performed off-
line to create databases that transform the problem of large
computation time into a problem of large memory space.

Motion planning can be seen as a Semi-Infinite Programming
problem (SIP) since it involves a finite number of variables
over an infinite set of constraints. Most methods solve the
SIP problem by transforming it into a finite programming one
using a discretization over a prescribed grid. We show that
this approach is risky because it can lead to motions which
may violate one or several constraints. Then we introduce
our new method for planning safe motions. It uses Interval
Analysis techniques in order to achieve a safe discretization of
the constraints. We show how to implement this method and
use it with state-of-the-art constrained optimization packages.
Then, we illustrate its capabilities for planning safe motions
dedicated to the HOAP-3 humanoid robot.

Index Terms— Motion planning, Semi Infinite Programming,
Discretization, Interval Analysis, Constraints.

I. INTRODUCTION

Motion databasing is an important topic in robotics re-

search. Humanoid robots have a large number of degrees of

freedom and their motions have to satisfy a set of constraints

(balance, maximal joint torque velocity and angle values).

Thus, computing motions which are optimal, is time consum-

ing and is often done off-line to create a database. Databased

motions allow to realize global navigation: [1], [2], [3] start

from a set of possible step motions and plan a sequence

of steps to reach the goal thanks to algorithms such as

Rapidly-exploring randomized Trees (RRT) algorithms [4].

Motion planning also includes the problem of digital actors’

locomotion [5], kick motion generation on HRP-2 robot [6],

computing a manipulator robot’s trajectory [7] or smoothing

pre-calculated motions [8]. The motions of the database are

used as the joint angle reference trajectories. These motions

are supposed to minimize a cost function and validate sets of

equality and inequality continuous constraints. This problem

can be seen as Semi-Infinite Programming problems (SIP),

since it involves a finite number of variables which define

the motion, such as B-splines parameters, over an infinite

continuous set of inequality constraints. To solve a SIP prob-

lem, the set of continuous inequality constraints are usually

discretized by picking up several values over a given grid.

Therefore, the obtained motions will satisfy the constraints

only for the grid nodes. However, between two nodes the

retained motion may violate some constraints which may

have disastrous consequences on the integrity of the systems.

This paper presents a new method for planning safe

motions, i.e. motions which ensure that the inequality con-

straints remain satisfied all over the motion duration. Our

method uses the same optimization algorithms as classical

one but replace the point discretization by a safe dis-

cretization that computes the constraints over time-intervals

using Interval Analysis [9]. In this paper, we focus on the

time-discretization, but this method can be extend to other

variables discretization. Interval Analysis has already been

used in order to solve, in a guaranteed way, the problems

of self-collision avoidance and prevention for the arms of a

2-degrees of freedom robot [10] or to solve the problem of

finding collision-free paths [11].

A preliminary study of our work was tested successfully

on a two degrees of freedom pendulum where an optimal

one-step motion was generated [12] and validated on 6

degrees of freedom model of the HOAP-3 Humanoid robot in

the sagital plane [13]. This paper addresses motion planning

issues for a more complex 3-D system with twelve degrees

of freedom.

We describe how to generate motions to be added to a

database for 3D global navigation which ensures the balance

and the integrity of the robot over the whole duration. In

Section II we present the inverse dynamic model of a 3-

D humanoid robot and how to characterize the balance.

Section III presents the motion planning, considered as a

Semi-infinite Programming (SIP) problem, and show how

it is usual solved and how our new method uses Interval

Analysis to ensure the balance and the integrity of the robot.
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II. 3D HUMANOID MODEL

A. Inverse Dynamic Model

We model the humanoid robot as an arborescent chain

with the contact foot as the reference body (Fig II-A).

Starting from the external forces Fext and the joint position

q(t), velocity q̇(t) and acceleration q̈(t) the Inverse Dynamic

Model (IDM) computes the joint torques Γ(t) and the forces

applied by the reference body to the environment Fre f

[

Γ(t)
Fre f (t)

]

= IDM(q(t), q̇(t), q̈(t),Fext) (1)

We use the Newton-Euler algorithm described in [14]

which is composed of two recursions:

• The first recursion (Fig 1(a)) starts from the reference

body and computes, through the waist, the position, ve-

locity and acceleration of all the bodies in the Cartesian

space. That allows to compute the forces due to the

acceleration .

• the Second recursion starts from the extremity of the

limbs to go to the reference body through the waist. It

sends back the sum of the effects of the external forces

and the forces due to the acceleration through the joints.

These equations can be formulated thanks to Lie Groups

[15], [16] or using the notation of [14].

(a) First recursion (b) Second recursion

Fig. 1. Recursion for inverse dynamic model of a humanoid robot

B. Balance

The balance of humanoid robots can be defined thanks to

the Zero Moment Point (ZMP). The ZMP is defined in [17]

as a point, on the contact surface, where total inertia force is

equal to 0. If this point stays within the base of support, the

robot will keep its balance. The position of the ZMP depends

on the force of the reference body.

[

ZMPs(t)
ZMPf (t)

]

= f (Fre f (t)). (2)

ZMPs(t) and ZMPf (t) are the time history of the ZMP

projected in the sagital and frontal planes.

III. MOTION PLANNING

A. Semi-Infinite Programming (SIP) problem

The motion planning problem can be defined as a Semi-

Infinite Programming (SIP) problem [18]. A SIP problem is

an optimization problem with a finite number of variables to

optimize and an infinite number of constraints to satisfy[19].

It consists in finding the parameter vector X that:

minimizes F(X,t) (3)

subject to ∀i,∀t ∈ [0,T ] gi(X,t) ≤ 0 (4)

and ∀ j,∀τ ∈ {τ0, . . . ,τk} h j(X,τ) = 0 (5)

Where F denotes the cost (or objective) function, gi the

set of inequality constraint functions, h j the set of equality

constraint functions.

1) Cost function: The choice of the cost function F(X) for

motion planning must take into account the features of the

robot and the desired application. Some authors minimize

motion duration [20] or jerk [7] for robot manipulators.

In [6], the energy consumption taking into account the

parameters of the motors (friction, ...) is considered for

humanoid robots. Biological inspired cost function can also

be considered, for example the minimum torque change [21].

2) Equality constraint functions: The set of the equality

constraint functions h j(X) allows to define the motion. These

functions usually correspond to constraints on some system

state variables at given time instants τ ∈ {τ0, . . . ,τk} such as

the beginning or the end of a motion. For humanoid robots,

we consider equality constraints as the position of the flying

foot at the beginning and at the end of the motion.

3) Inequality constraint functions: The set of the inequal-

ity constraints gi(X) translates the physical limits of the

system. Hence the integrity and the balance of the robot rely

on the validity of these constraints.

These inequality constraints must be satisfied over the

whole motion duration: ∀t ∈ [0,T ].
However, classical optimization algorithms, such as

IPOPT [22] use a finite number of discrete constraints. Thus

the inequality constraints must be discretized.

We present the classical way of discretizing the inequality

constraints function in Section (III-B) and emphasize the fact

that some constraints can be violated. In Section (III-C) we

explain how our new method ensures the integrity and the

balance of the robot thanks to Interval Analysis.

B. Solving SIP

In the context of SIP problems, discretization usually

consists in picking up the functions value over several time

points in a grid [23], [19]. This leads to replace the inequality

constraints in Equation (5) by:

∀i,∀tk ∈ T gi(X,tk) ≤ 0 (6)

where T = {t0 = 0,t1, ...,tN−1,tN = T} (7)

Consequently, the continuous problem (5) ∀t ∈ [0,T ] be-

comes a discrete one: ∀tk ∈ T where the constraints are only

considered for discrete values over the time-grid T. There are

several methods which run several optimization processes
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and modify the grid T in order to get better results [19].

Therefore, the optimal value depends on the number of time-

point considered [24].

This way of discretization ensure the constraints satis-

faction only for the instant on the time-grid [25]. Further-

more, no information is given as regarding the constraint

satisfaction between two points of the time grid. Therefore

the constraints can be violated during the motion. So we

propose a new method for a safe constraint discretization

using Interval Analysis.

C. Solving SIP via Interval Analysis

1) Interval Analysis: Interval analysis was initially de-

veloped to account for the quantification errors introduced

by the floating point representation of real numbers with

computers and was extended to validated numerics [26],

[9], [27].

A real interval [a] = [a; ā] is a connected and closed subset

of R. With a = In f ([a]), ā = Sup([a]) and Mid([a]) = a+ā
2

.

The set of all real intervals of R is denoted by IR. Real

arithmetic operations are extended to intervals. Consider an

operator ◦∈ {+,−,∗,÷} and [a] and [b] two intervals. Then:

[a]◦ [b] = [in fu∈[a],v∈[b] u ◦ v, supu∈[a],v∈[b] u ◦ v] (8)

Consider a function m : R
n 7−→ R

m ; the range of this

function over an interval vector [a] is given by:

m([a]) = {m(u) | u ∈ [a]} (9)

The interval function [m] : IR
n 7−→ IR

m is an inclusion

function for m if

∀[a] ∈ IR
n, m([a]) ⊆ [m]([a]) (10)

An inclusion function of m can be obtained by replacing

each occurrence of a real variable by the corresponding in-

terval and each standard function by its interval counterpart.

The resulting function is called the natural inclusion function.

The performances of the inclusion function depend on the

formal expression of m.

SIP problems were solved with global optimization meth-

ods based on Interval Analysis [11], [28], [29]. The opti-

mization process starts with a large interval for parameters

value and reduces them until it finds intervals small enough

which satisfy the SIP problem (5).

2) Safe Discretization: In this paper we present our

method which uses Interval Analysis to ensure the inequality

constraints validity over the whole motion duration [12] by

computing the minimum and the maximum values for the

set of functions gi(t) when t is defined over a given interval

[t]. An upper bound for the maximum value maxt∈[t](gi(t))
is given by Sup[gi]([t]) and a lower bound for the minimum

value mint∈[t](gi(t)) is given by In f [gi]([t]).
Therefore the upper bound of gi(t): max gi are obtained in

an easy and practical way by computing the upper bound of

the inclusion function [gi] for a time interval [t]. Therefore,

the inequality constraints in (5) are replaced by:

∀i,∀[t] ∈ IT Sup[g]i(X, [t]) ≤ 0 (11)

In practice, the bounds thus derived may be too large

because of the wrapping and dependence effects. Still, there

are several techniques that can be used to obtain tighter

enclosures by using for instance Taylor series expansion or

some global optimization techniques [30].

Our method was tested with a 2-D model of the HOAP-3

humanoid robot in the sagital plane [13]. In this paper we

validate this new method for a more complex system such

as the 3-D model of the HOAP-3 humanoid robot.

D. Gradient computation

Some optimization algorithms allow to decrease the com-

putation time by using the gradient of the functions (for

both cost and constraints function)
∂g(X,t)

∂X
with respect to

the parameter vector.

With a grid discretization (Cf Section III-B) this gradient is

computed at the grid instant. and can be computed either via

formal methods [8], [16] or automatic differentiation [31].

Our method presented in section III-C.2 for solving equa-

tion (11) subdivides a given time interval [t]k into Nb subin-

tervals [t]k = ∪l=1,...,Nb
[t]k,l . Then there exists a subinterval

[t]k,lmax
which contains the maximum of gi(X,t) for t ∈ [t]k

(Cf Figure 2)

Fig. 2. Representation of the approximation of Sup[g]i([t]k) by
gi(Mid[t]k,lmax uses for the computation of the gradient

Since we do not know the instant when occurs the maxi-

mum within [t]k,lmax
, we choose to approximate the gradient

of the maximum of gi(X,t) by the value of the gradient

obtained at the middle of the subinterval [t]k,lmax
. This is

formulated in the following equation:

∂

∂X
Sup[g]i(X, [t]k) ≈

∂

∂X
gi(X,Mid[t]k,lmax

) (12)

We can infer from this that the size of [t]k,lmax
impacts the

accuracy of the computed gradient and hence the efficiency

of the optimization algorithm used. The smaller is the interval

[t]k,lmax
the better is the approximation of the gradient but the

longer is the computation time.

E. Guaranteed Discretization Library

For an easy implementation of the planning motion we de-

veloped the Guaranteed Discretization Library (GDL) avail-

able on http://www.lirmm.fr/˜lengagne/GDL.
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GDL allows to compute the constraint functions for time

instants or over time intervals and the gradient of these

functions with respect to the parameters by automatic dif-

ferentiation. All these abilities are based on a single model

file in C++.

IV. RESULTS

A. Global navigation

To illustrate our method with a simple example, we

propose to create a database that allows to walk straightaway

with a fix step length l (HOAP-3 experimentations require

l = 7cm ). In a future study, we will address the case of the

3D navigation. We need to compute three motions:

• a start motion: the flying foot starts next to the stance

foot to finish l cm ahead of the stance foot (position 1

to 2).

• a cycle motion: the flying foot starts l cm behind the

stance foot to finish l cm ahead of the stance foot

(position 3 to 2).

• an end motion: the flying foot starts l cm behind the

stance foot to finish next to the stance foot (position 3

to 1).

The three positions are presented in Figure 4.

We use these three motions to make the robot walks (Cf.

Figure 3)

Fig. 4. Representation of the possible foot position.

B. Motions

We want to plan step motions for the HOAP-3 humanoid

robot. We present only the single support phase motions

which allows us to emphasize the constraint violation that

appear with the usual way of discretization, especially the

balance constraint function (ZMP).

We can obtain the Double support motions using the same

method. In fact, the model have just to consider the force

applied to the right foot proportional to the distance between

the Center Of Mass (COM) projection and the foot [15].

We consider a model of the HOAP-3 humanoid taking

into account only the legs assuming the upper part as a single

body. This model contains 12 degrees of freedom. We assume

a motion without any impact, by setting the initial and final

velocity and acceleration equal to zero.

C. SIP problem

1) Parameters: We define a motion via the vector X =
[T,p1,p2, . . . ,p6] where T is the motion duration and pi the

coefficients of the weighted sum of B-spline functions which

model the ith joint position trajectory qi(t), as follows:

qi(t) =
Ns

∑
j=0

pi, j ×B j(t) (13)

The joint velocity and acceleration are obtained by differen-

tiating (13).

For each degree of freedom we use 5 coefficients. The

vector X is composed of 5×12 + 1 = 61 parameters.

2) Cost function: In this paper we choose to minimize the

motion duration:

F(X) =
∫ T

0
1dt = T (14)

We want to get fast motion to emphasize the constraints

violation for SIP problem solved with usual discretization

method [13].

3) Equality constraints: The equality constraints are used

to define the position and orientation of the flying foot at

the beginning and at the end of the motion. Therefore we

consider 2×6 = 12 equality constraints.

4) Inequality constraints: In these experiments we con-

sider limitations on the joint position, velocity and torque

values and also on the ZMP location in order to ensure the

robot balance. The set of inequality constraint functions is

as follows:






















q ≤ q(t) ≤ q

q̇ ≤ q̇(t) ≤ q̇

Γ ≤ Γ(t) ≤ Γ

ZMPs ≤ ZMPs(t) ≤ ZMPs

ZMPf ≤ ZMPf (t) ≤ ZMPf

(15)

Each of the constraints is decomposed as follow:

y ≤ y(t) ≤ y ≡

{

y− y(t)≤ 0

−y+ y(t) ≤ 0
(16)

Therefore we have to deal with (12+12+12+2)×2= 76

continuous constraint functions.

D. SIP solved via usual techniques

We use a time grid of 25 time instants and solve the

optimization problem (5) thanks to the IPOPT algorithm

[22]. We obtain the Figures 5, 6 and 7 which present the

evolution of the ZMP function for the optimal motion ob-

tained via usual discretization method. The crosses represent

the selected value sent to the algorithm.

On Figures 5 and 6, these values do not correspond to the

extrema of the function. Therefore the algorithm do not deal

with the real extrema of the constraint functions. Therefore

the optimal motion retained can violate the constraints.

This is highlighted in Figure 7 where the considered

point are within the contact surface whereas the continuous

function can be external to the contact surface. This will lead

to the fall of the robot.
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Fig. 3. Global navigation of the HOAP-3 Humanoid robot.

Fig. 5. Time history of the ZMP in the sagital plane.

Fig. 6. Time history of the ZMP in the frontal plane.

E. SIP solved via Interval Analysis

We compute the constraint functions over 6 time intervals

and solve the optimization problem (5) thanks to the IPOPT

algorithm [22]. We obtain the Figures 8, 9 and 10 which

present the evolution of the ZMP function for the optimal

motion obtained via safe discretization method.

The enclosures are the values returned to the algorithm. On

Figures 8 and 9, the enclosures give a conservative evaluation

of the extrema of the function. Therefore the algorithm is

aware of the extrema of the constraint functions. Thus the

produced solution satisfies the constraints.

This is highlighted in Figure 10 where the ZMP enclosures

and the continuous function stays within the contact surface.

This motion will not break nor make the robot fall.

Fig. 7. Representation of the evolution of the ZMP on the contact surface.

Fig. 8. Time history of the ZMP in the sagital plane.

V. CONCLUSIONS AND FUTURE WORKS

A. Conclusions

The creation of motion databases allows to perform on-line

optimal motions that are computed off-line. These motions

have to minimize a cost function and validate a set of equality

and continuous inequality constraints.

Motion planning is usually seen as Semi-Infinite Pro-

gramming problems (SIP) and is solved by transforming

it into a finite programming problem thanks to a time-grid

discretization. Unfortunately time-grid discretization can lead

to some constraint violations which may impact the integrity

and the balance of the robot. To the contrary, our new method

for safe motion planning uses Interval Analysis to compute

the maximum for constraint functions over time-intervals,

thus avoids any constraint violation.

We validated our method with a 12-dof model of the

HOAP-3 Humanoid robot in 3D, and show that safe dis-

cretization ensures the integrity and the balance of the robot.
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Fig. 9. Time history of the ZMP in the frontal plane.

Fig. 10. Representation of the evolution of the ZMP on the contact surface.

B. Future Works

Here we addressed a one-dimension time discretization

issue but the same approach can be used for other systems

which need a N-dimensions space discretization. We pre-

sented the motion planning for each motion of the database.

So we have optimal motions but we do not ensure an optimal

global navigation. The next step of our work will be to use

safe discretization to plan whole motions for the database

regarding that the link between two motions is also an

optimal motion.

REFERENCES

[1] J. J. J. Kuffner, K. Nishiwaki., S. Kagami., M. Inaba, and H. Inoue,
“Footstep planning among obstacles for biped robots,” in Intelligent

Robots and Systems, 2001. Proceedings. 2001 IEEE/RSJ International

Conference on, vol. 1, Maui, HI, USA, 2001, pp. 500–505.
[2] J. Kuffner, K. Nihiwaki, S. Kagami, M. Inaba, and H. Inoue, “Motion

planning for humanoid robots.” in 20th Int’l Symp. Robotics Research

(ISRR’03),, 2003.
[3] Z. Xia, Y. He, and K. Chen, “Modeling and motion planning of the

infant-size humanoid robot thbip-ii,” in IEEE-RAS 7th International
Conference on Humanoid Robots, 2007.

[4] S. M. LaValle and J. J. Kuffner, “Rapidly-exploring random trees :
Progress and prospects,” in 4th Int’l Workshop on the Algorithmic

Foundations of Robotics, 2000.
[5] E. Yoshida, I. Belousov, C. Esteves, and J.-P. Laumond, “Humanoid

motion planning for dynamic tasks,” in Humanoid Robots, 2005 5th

IEEE-RAS International Conference on, Dec. 2005, pp. 1–6.
[6] S. Miossec, K. Yokoi, and A. Kheddar, “Development of a software

for motion optimization of robots - application to the kick motion
of the hrp-2 robot,” in Proceedings of the 2006 IEEE International
Conference on Robotics and Biomimetics, 2006, pp. 299–304.

[7] A. Piazzi and A. Visioli, “Global minimum-jerk trajectory planning of
robot manipulators,” in IEEE Transactions on Industrial Electronics,
vol. 47, febru 2000, pp. 140–149.

[8] W. Suleiman, E. Yoshida, J.-P. Laumond, and A. Monink, “On
humanoid motion optimization,” in IEEE-RAS 7th International Con-

ference on Humanoid Robots, 2007.
[9] R. E. Moore and F. Bierbaum, Methods and Applications of Interval

Analysis (SIAM Studies in Applied and Numerical Mathematics) (Siam
Studies in Applied Mathematics, 2.). Soc for Industrial & Applied
Math, 1979.

[10] H. Fang and J. P. Merlet, “Dynamic interference avoidance of 2-DOF
robot arms using interval analysis,” in Intelligent Robots and Systems,

2005. (IROS 2005). 2005 IEEE/RSJ International Conference on, Aug.
2005, pp. 3809–3814.

[11] L. Jaulin, “path planning using intervals and graphs,” Reliable Com-
puting, vol. 7, no. 1, pp. 1–15, fevrier 2001.

[12] S. Lengagne, N. Ramdani, and P. Fraisse, “Guaranteed computation
of constraints for safe path planning,” in IEEE-RAS 7th International
Conference on Humanoid Robots, 2007.

[13] ——, “A new method for generating safe motions for humanoid
robots,” in submitted to EEE-RAS International Conference on Hu-

manoid Robots, 2008.
[14] W. Khalil and E. Dombre, Modeling, Identification & Control of

Robots, 3rd ed., E. B. Heinemann, Ed. Hermes Sciences Europe,
march 2002.

[15] W. Suleiman, E. Yoshida., J.-P. Laumond., and A. A. Monin, “Opti-
mizing humanoid motions using recursive dynamics and lie groups,”
in Information and Communication Technologies: From Theory to

Applications, 2008. ICTTA 2008. 3rd International Conference on,
Damascus,, Apr. 2008, pp. 1–6.

[16] S.-H. Lee, J. Kim, F. Park, M. Kim, and J. E. Bobrow, “Newtom-
type algorithms for dynamics-based robot movement optimization,” in
IEEE Transactions on robotics, vol. 21, 2005, pp. 657– 667.

[17] M. Vukobratovic and D. Juricic, “Contribution to the synthesis of
biped gait,” IEEE trans. Bio-Med Eng., vol. BME-16, pp. 1–6, 1969.

[18] A. I. F. Vaz, E. M. Fernandes, and M. P. S. Gomes, “Robot trajec-
tory planning with semi-infinite programming,” European Journal of

Operational Research., vol. 153, no. 3, pp. 607–617, 2004.
[19] R. Hettich and K. O. Kortanek, “Semi-infinite programming: theory,

methods, and applications,” SIAM Rev., vol. 35, no. 3, pp. 380–429,
1993.

[20] A. Piazzi and A. Visioli, “Global minimum-time trajectory planning
of mechanical manipulators using interval analysis,” International
Journal of Control, vol. 71, pp. 631–652(22), 10 November 1998.

[21] Y. Uno, M. Kawato, and R. Suzuki, “Formation and control of
optimal trajectory in human multijoint arm movement,” Biological

Cybernetics, vol. 6, no. 2, pp. 89–101, juin 1989.
[22] Introduction to IPOPT : a tutorial for downloading, installing and

using IPOPT, april 7th 2006.
[23] O. von Stryk, “Numerical solution of optimal control problems by

direct collocation,” 1993.
[24] R. Reemtsen, “Semi-infinite programming: discretization methods,”

1998.
[25] O. von Stryk and R. Bulirsch, “Direct and indirect methods for

trajectory optimization,” Ann. Oper. Res., vol. 37, no. 1-4, pp. 357–
373, 1992.

[26] T. Sunaga, “Theory of interval algebra and its application to numerical
analysis,” RAAG Memoirs, Ggujutsu Bunken Fukuy-kai, vol. 2, pp.
547–564, 1958.

[27] A. Neumaier, Interval methods for systems of equations. Cambridge:
Cambridge university press, 1990.
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