
HAL Id: lirmm-00386063
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00386063

Submitted on 26 May 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Inconsistencies Evaluation Mechanisms for an Hybrid
Control Architecture with Adaptive Autonomy

Bastien Durand, Karen Godary-Dejean, Lionel Lapierre, Didier Crestani

To cite this version:
Bastien Durand, Karen Godary-Dejean, Lionel Lapierre, Didier Crestani. Inconsistencies Evaluation
Mechanisms for an Hybrid Control Architecture with Adaptive Autonomy. CAR: Control Architec-
tures of Robots, Apr 2009, Toulouse, France. �lirmm-00386063�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00386063
https://hal.archives-ouvertes.fr

 4
th
 National Conference on “Control Architectures of Robots” Toulouse, April 23-24, 2009

Inconsistencies Evaluation Mechanisms for an

Hybrid Control Architecture with adaptive autonomy

B. Durand, K. Godary, L. Lapierre and D. Crestani

LIRMM

161 rue Ada

34392 Montpellier Cedex 5

Université Montpellier 2 – CNRS

Abstract

This paper presents a set of mechanisms allowing the detection of control architecture

inconsistencies, in the context of autonomous mobile robotics. This approach integrates an

observation level into the structure of the control architecture to monitor and analyze the

internal state of the robot and detect inconsistencies. These data are processed and the most

pertinent information are sent to the Human supervisor and/or to a decision level which can

adjust the robot autonomy according to the identified problem. These mechanisms have been

implemented using architectural concepts previously developed at LIRMM. Based on these

developments, adaptive hybrid control architecture is currently under development.

Keywords

Hybrid control architecture; mobile robot; inconsistency detection; adjustable/adaptive

autonomy.

1 INTRODUCTION

For mobile robots, autonomy is one of the main objectives that the control architecture has

to fulfill. However, autonomous robots cannot face all situations in an unknown and dynamic

world. Humans can help the robots using their cognitive and acting capabilities to take decision.

Human is an essential agent for complex robotic missions because he can overcome some of

the control architecture limitations. Then, autonomy becomes adaptive and the design of the

control architecture has to integrate the possibility of potential Human-Robot interactions, at

different levels.

The first part of this paper presents the context of this study and recalls the main classes of

control architectures. The concepts of autonomy, Human-Robot interaction and adjustable

autonomy are then explained, and previous results related to fault detection are presented.

During the execution of its mission, an autonomous robot has to face potential dysfunctions,

with different impacts on the system capabilities. These dysfunctions might not have any local

solution (i.e. problem of battery power). However the problems come often from hardware

failures (sensors, actuators, embedded electronic, etc.), software bugs or models limitations

(approximation error, etc.). Usually these dysfunctions are not considered into the control

architecture.

In the second part on this paper we detail a set of mechanisms allowing the detection of a

predefined set of dysfunctions. These mechanisms allow for anticipating, detecting and

processing a dysfunction. If the encountered problem cannot be solved autonomously by the

 4
th
 National Conference on “Control Architectures of Robots” Toulouse, April 23-24, 2009

robot, the Human supervisor can adjust the robot autonomy, and he takes the necessary

decisions in order to overcome the problem.

Then, we present how these observation mechanisms have been implemented using the

architectural concepts developed in the LIRMM laboratory.

Finally before concluding and presenting some future works, the actual control architecture

under development is exposed.

2 STATE OF ART

2.1 Classification of Control Architecture

2.1.1 Historical control architecture
Generally, the literature on control architecture proposes two types of control architecture.

Their conceptual representation is presented in Figure 1.

The first one, introduced by Brooks [1] with the subsumption architecture is qualified as

reactive architecture (Figure 1-a). This architecture is reactive to the environment stimuli but

the global behavior of the architecture is unrepeatable. Hence, the control, and the evaluation of

the system performances, in the context of complex missions is difficult. An arbiter [2] has

been implemented to increase management capability of basic behaviors, in order to produce a

coherent global behavior of the robot. However, global optimization is almost impossible.

To increase decision capabilities a second type of architecture called deliberative

architecture is proposed (figure 1-b). This architecture presents generally three independent

levels [3]. This decomposition of the architecture, and consequently of the abstraction level of

information facilitates considerably the development of each part of the architecture.

Nevertheless the data needs to go through all the layers of the architecture in order to reach the

end of the decision/action chain (i.e. the actuators) which induces very low reactive capabilities.

Fig. 1 – Historical control architecture

Those different types of architectures have opposite drawbacks. The principles exposed in

the sequel propose to integrate in single control architecture the advantages of both previous

types.

2.1.2 Hybrid control architecture
This type of control architecture is called hybrid or mixed. It is actually the most used type

of architecture. Within this class, architectures may be very different.

For example, the LAAS architecture proposed by Alami in [4] is built as a deliberative

architecture with three identified layers (figure 2-a). However the robot adaptation is made at

(a) Reactive control architecture (b) Deliberative control architecture

 4
th
 National Conference on “Control Architectures of Robots” Toulouse, April 23-24, 2009

the decisional level, but can also be made at the functional level. Moreover the decisional level

and the functional level are interconnected, while the executive control level manages the

execution of the functional one. On the other hand, the CLARATy architecture [5] is a two

layered architecture, where a reactive functional level and a deliberative level are

interconnected (figure 2-b)

FIG. 2 – LAAS and CLARATy hybrid control architecture

The mechanisms within these architectures are very specific to their architecture structure

and their application domains. However, they lead to an important improvement in reactivity

and decisional aspects.

2.2 Autonomy
Autonomy is one of the main objectives to achieve in mobile robotic. A lucid definition of

Autonomy for a robot is difficult to find in the literature. In [6] Chopinaud does not succeed to

provide a precise answer. But from a large study of the definitions used in robotics and multi-

agent systems, the following one seems to be acceptable: “A system (or agent) is autonomous if,

alone, it is able to define his decision”. However this definition remains wide, and needs to be

refined, from the point of view of applications focusing on autonomy evaluation.

The ALFUS group proposes in [7] a three-axis based evaluation: the operator independence,

the mission complexity and the environmental difficulty. The results of all these researches

remain either too general or too specific. In [8], Clough attempts to provide a generic tool to

evaluate the autonomy of intelligent UAV (Unmanned Aerial Vehicle). He establishes an

Autonomous Control Level (ACL) chart based on the degree of interaction between the robot

and the human operator.

Despite the diversity of the literature references dealing with autonomy in robotics

architectures, all the authors convey on the existence of several levels of autonomy. However,

the definition of these levels is dependent on the point of view, the evaluation parameters or the

application context. In [9], Goodrich et al. identify five different types of Human-Robot

interactions: teleoperation, adjustable autonomy, mixed initiatives, advanced interfaces,

autonomous robots. These types of interactions are similar with the ones which Dufour & al.

define in [10], which also identify the traded control and the shared control where a part of the

(b) LAAS architecture (a) CLARATy

 4
th
 National Conference on “Control Architectures of Robots” Toulouse, April 23-24, 2009

mission or a part of the system is controlled by the human whereas the rest is controlled

autonomously by the robot.

In these works, as proposed in [11], the autonomy levels of systems are related to the

Human-Robot interactions degree. We follow this evident correlation and define (Figure 3) the

autonomy levels we use in our context, based on the literature references and adapted for

mobile robotic architectures.

FIG. 3 – Autonomy mode classification

This classification is useful in our study related to adaptive autonomy. Indeed, it is well

known that full autonomy for mobile robotic system in dynamic environment is a complex

problem that is not yet solved. Then, occurrences of faults, as hardware failures, bad behaviors

of control algorithms, real time failures or environment obstructions, prevent a full and

complete autonomy.

This implies the dynamic management of different autonomy levels in single control

architecture, and the control of commutation between these levels.

2.3 Adaptive autonomy
The first question to be solved is the difference between adjustable and adaptive autonomy.

In [12] Goodrich distinguishes the adjustable autonomy, where the human can choose the

functioning mode of the robot, and the adaptive autonomy where the functioning mode is

chosen by the robot itself. Scerri et al. in [13] consider that adjustable autonomy refers to

entities, able to dynamically define their own autonomy level. We do not make this difference,

and the adaptive autonomy term in this paper means the modification of the functioning mode

both by the human operator or by the robot, or even by a discussion between them.

Adaptive autonomy in robotic control architecture is an active field of research, but a

complete and mature solution has not been yet proposed. Some partial solutions are proposed

applying multi-agent architecture concepts to the robotic domain. In [14], Mourioux et al.

present an architecture which allows for controlling a robot with various degrees of autonomy.

But there is no dynamical management of these autonomy modes, depending for example on

the context or the robot state. In [15], Stinckwich et al. propose the implementation of an

anticipatory agent to allow for the adaptation of the architecture to environment changes or

failures detection. But these works are still in progress and have not been implemented yet.

 4
th
 National Conference on “Control Architectures of Robots” Toulouse, April 23-24, 2009

Furthermore, as for many multi-agent systems, the detection is done by a very specific agent

dedicated to the targeted application. With the same idea, Dufour et al. in [16] propose an

attention manager agent to supervise the execution of the other agents' execution. This solution

is not described in details, particularly the supervision algorithms or the precise structural

development.

Other studies, as the one of Mercier et al. in [17], are focusing on the authority sharing to avoid

inconsistency due to conflict between the human and the robot decisions. But the first problem

to be solved, for the adaptive autonomy implementation in robotic architecture, is the

identification of the reasons why it is necessary to switch from an autonomy level to another. In

this context, fault detection and diagnosis techniques are important to study.

2.4 Fault detection and Diagnosis
Because software or hardware faults cannot totally be avoided, it is essential that mobile

robots are able to detect such faults. However fault detection, which uses observations and a

model of the system's behavior to detect deviation between them, is not enough. The faulty

hardware or software component must also be identified to solve the problem.

Many approaches for fault detection have been proposed and implemented. Model-based

reasoning proposed by Reiter in [18], using a logic-based formulation of the system model and

the observations, has been used for hardware fault detection by William et al. [19] and

Friedrich et al. [20]. Steinbauer et al. in [21] have also chosen the model-based paradigm to

detect and repair control software communication failure in runtime.

Some approaches take account of uncertainties of the robot and its environment to detect

faults. For example, Verma et al. propose the use of particle filter techniques in [22] to estimate

the most probable state of the robot and detect faults by comparison with the robot model.

However, these detections do not provide any suggestion related to corrective actions. In [23],

Brandstötter et al. propose an interesting approach where a probabilistic hybrid automaton

models the nominal operational mode, 3 failure modes, and the probabilistic transitions

between these modes, for an omnidirectional robot. But the detected fault remains limited

(wheel problems) and the approach is not generic.

Moreover, in [24] Murphy et al. propose rule-based approaches to detect and recover

failures in sensing. Kalman filters bank can also be used to detect specific failure mode, as

proposed in [25], by Roumeliotis et al.

2.5 Conclusion
As far as we know, few works have been developed to systematically detect hardware and

software faults and to propose relevant solutions during runtime. Moreover, these works focus

on some specific application or specialized control structure, and do not propose modular and

suitable control architecture to support their implementation. So they cannot be inserted into a

global and generic approach dealing with fault detection monitoring and management. The

proposed solutions are often locals, too specifics and difficult to use in others contexts.

This paper presents a generic and systematic solution to design efficient and robust control

architecture for mobile robots with adaptive autonomy. This architecture proposes solutions to

detect faults and solve the related problems in a systematic way. Our adaptive autonomy

concept is based on detection mechanisms of robot inconsistencies, management of these errors

detection, an adaptive strategy based on Human-Robot interaction, and a structural framework

to switch between autonomy modes. Thus, when a fault is detected during the robot mission

execution, either the robot can manage or it contacts the human operator who provides a

solution adapting the autonomy of the robot. This paper deals with the first problematic of this

adaptive architecture: the detection of faults.

 4
th
 National Conference on “Control Architectures of Robots” Toulouse, April 23-24, 2009

3 TOWARDS AN EVALUATION OF ROBOT CONSISTENCY

During the execution of an autonomous robotic mission, many dysfunctions may occur:

• the physical parts of the robot (sensors, actuators or electronic devices) can have

failures,

• internal algorithms dysfunctions or important computing load drift, can induce the

non satisfaction of the real time constraints,

• some limitations or approximations in the models, and corresponding algorithms

used to control or localize the robot can create erroneous internal data.

Some of these dysfunctions can induce the failure of some of the mission's objectives or the

mission itself. Others only create local disturbance inducing loss of efficiency, while others can

have minor impact and can be simply filtered.

These dysfunctions generally result in inconsistencies in the robot's state. We then can use

inconsistency detection to identify dysfunctions and try to correct the problem. In some

situations, the robot can manage itself or can call out to the Human supervisor which in turn

can adjust the robot's autonomy to help the robot to manage his mission.

3.1 Inconsistencies: classification
Four main classes of state inconsistencies can be identified:

• Application data inconsistency: this class concerns instantaneous erroneous data

produced by the robotic application.

• Global behavior inconsistency: the evolution of the robot over the time can produce

inconsistency.

• Architectural inconsistency: this class concerns errors which can be produced by the

architecture, as the non respect of real time constraints.

• External inconsistency: this class contains errors induced by the communication

between the robot and the human.

The identification of inconsistencies can be done by different algorithms and techniques

which are presented in Section 5.

3.2 Characterization of inconsistencies
To guide, assist and help the Human supervisor decision making, the robot sends

information on the detected inconsistencies. The inconsistencies must then be characterized by

a set of relevant data:

• Name: name of the detected inconsistency,

• Class: {hardware, software, models},

• Location: where, which sensor, actuator or algorithm,

• Criticality: level of criticality,

• Additional data: set of contextual relevant data including the ones that put in light the

inconsistency.

The proposed approach of inconsistency detection must be supported by an efficient control

architecture.

 4
th
 National Conference on “Control Architectures of Robots” Toulouse, April 23-24, 2009

4 INTEGRATION IN AN HYBRID CONTROL ARCHITECTURE

In [26], ElJalaoui proposes an hybrid control architecture, used in the LIRMM laboratory, to

control an autonomous underwater vehicle (AUV). This control architecture has been

developed to respect modularity, reusability and upgradeability. It is based on two different

levels: an executive and a decisional level. The executive level is supervised by a scheduler

activating the appropriate robotic tasks in time. The decisional level only reacts on events

coming from the executive level. The internal structure of the architecture is based on a generic

module paradigm, and is detailed in the following sections.

4.1 The decisional level
The decisional level is composed with three layers (Figure 4): a global supervisor, a set of

local supervisors (one for each autonomy level) and the scheduler.

The global supervisor controls the whole mission. From a given mission and events

produced by the architecture, it defines an objective and sends it to a local supervisor. The local

supervisor is in charge of the accomplishment of this objective. From the objective and from

events produced by the architecture, the local supervisor gives to the scheduler a sub-objective

to be executed.

The decisions taken by the supervisors and the scheduler are made regarding a database

called vocabulary. The vocabulary contains the decomposition of the mission into objectives

and of an objective into sub-objectives. It also contains relations of precedence between the

executive tasks which allow the scheduler to administrate the executive level.

FIG. 4 – The LIRMM architecture

4.2 The executive level
The executive layer is based on the concept of module. Each module represents an

independent task of the whole controlling software. To create a robotic task, modules have to

be recursively activated over the time in a specific order. Then each sub-objective will use

different modules with specific time constraints.

As an example a mobile system involved in a line following objective, only requires the

recursive activation of the modules: sensors acquisition, line detection in the sensors

 4
th
 National Conference on “Control Architectures of Robots” Toulouse, April 23-24, 2009

information, control law computation and actuators reference application. A more general

mission related to mobile robotics requires the recruitment of a complete sensors suite, through

the activation of the sensor modules, the execution of a path planning strategy and advanced

control of reactive obstacle avoidance.

The modules of the executive level create events which are used by the supervisors to

control the whole mission execution (Figure 4).

4.3 The infrastructure: a middleware
 The infrastructure is a middleware developed as a library including the generic description

of modules and the management of all the communications between them. A module is

composed by a “System part” given by the middleware, and a ‘User Part” in charge of the

control architecture developer.

The “System part” manages the communication between modules in terms of data and event

flow but also in term of process (activation, stop and configuration). The “User part” only

contains the associated algorithm. This structure is very interesting in terms of modularity,

reusability and upgradeability.

The communications between modules use intput/output communication ports. A generic

module contains 6 types of port (Figure 5): Input data, Output data, Input event, Output event,

Configuration Port and Request port (activation, stop, configuration, subscription and

cancelation to data or events). Data and events are sent and received with the 4 first ports. The

scheduler links producers and consumers with the configuration ports, and manages the

execution of these tasks with the Request port. All communications between the modules

respect the producer/consumer paradigm.

FIG. 5 – Generic representation of a module

The previous section presents the hybrid control architecture developed in LIRMM by

ElJalaoui. In the context of autonomous robots control, we want to adapt this architecture to

allow adaptive autonomy and Human-Robot interactions. The rest of the paper presents the

developed principles used to integrate the detection and the management of inconsistencies into

the LIRMM architecture.

 4
th
 National Conference on “Control Architectures of Robots” Toulouse, April 23-24, 2009

5 OBSERVATION APPROACH

The concept of observation modules has been largely used in various scientific domains. For

example in Microelectronic area observation modules are physically used on chips to capture

some internal data for logical testing [27]. In organic computing systems observer / controller

structure can be used to verify that an emergent behavior remains within predefined limits [28].

Model faults detection and isolation approaches can also be used to detect and isolate faults on

real systems from the discrepancies between system outputs and model outputs [29].

In the LIRMM architecture, some architectural modules have been specialized into

Observation Modules (OM) to detect the occurrence of the inconsistencies identified in Section

3. The systematical use of this type of module will create into the control architecture a new

executive level dedicated to observation (Figure 6).

The basic observation functionalities are implemented into the specific Observation

Modules which are connected to the robotic modules. The OM provides information about the

consistency state of the system: the Consistency Indicators (CI). A specific observation module

is the Global Evaluation Module (GEM). It evaluates the CI and returns relevant information to

the higher levels (decisional level or human). The observation modules can be dynamically

managed to respect real time constraints and to adapt the execution load on the system

hardware.

FIG. 6 – Integration of the observation level

The rest of this section presents in details the structural mechanisms for the implementation

of this observation level. An applicative example is given in Section 6 to illustrate these

principles.

5.1 Typology of the Observation Modules
The systematic use of Observation Modules implies the definition of design rules. This

section defines the internal structure of the Observation Modules, their connection typology,

and observation methods for the Consistency Indicators evaluation.

 4
th
 National Conference on “Control Architectures of Robots” Toulouse, April 23-24, 2009

5.1.1 Internal structure
Basically, an observation module needs to consume relevant data to detect inconsistencies. It

has, at least, one input port (Figure 7-a). Moreover it produces a data representing the

evaluation of the Consistency Indicator (C.I.) of the observed functionality. It has one output

port. To minimize the number of observation modules, it is possible to aggregate several basic

observation modules sharing different input data (Figure 7-b). However, this aggregation

process reduces the flexibility, the modularity and the readability of the proposed control

architecture.

FIG. 7 – Internal structure of observation modules

5.1.2 Connection typology
The integration of the Observation Modules in the architecture can be classified according to

their connection into the architecture. We define 3 types of connections, illustrated in Figure 8

on an architecture having typical control modules for the "path following" robotic task.

• Data Evaluation (D.E.): concerns the evaluation of data produced or consumed by only

one single control module.

• Module Evaluation (M.E.): concerns the evaluation of data produced and consumed by

one control module.

• Multiple Module Evaluation (M.M.E.): concerns the evaluation of data produced and/or

consumed by different control modules.

The Consistency Indicators are produced by the Observation Modules according to the

evaluation of the observed modules.

FIG. 8– Observation Module connection typology

(a) basic structure (b) aggregated structure

 4
th
 National Conference on “Control Architectures of Robots” Toulouse, April 23-24, 2009

5.1.3 Consistency Indicator evaluation
 The evaluation of a Consistency Indicator is realized by integrating into the executing code

of the Observation Module, a chosen algorithm corresponding to the detection of a given

inconsistency. The proposed connection typology also defines a typology of the detection

algorithms.

Data Evaluation (DE) modules contain typically threshold verification. They can be used to

observe the respect of real time constraints, to evaluate the communication quality or to detect

outranged control data. Threshold verification can be done in a static way, i.e. the data is

compared with a threshold value, or in a dynamic way, i.e. the observed data is recorded and

the observation is done over a given elapsed-time horizon. For example, in Figure 8, the DE

module can detect if the reference produced by the Guidance module is out of the robot action

capabilities.

Module Evaluation (ME) modules typically use model-based diagnosis algorithms applied

to one specific elementary task. The ME and its observed module must produce the same data,

within a given range. These data are then compared to detect inconsistencies. For example in

Figure 8, the ME and the Navigation modules can use different localization methods.

Navigation based on particle filter, produces a precise estimation of the system position. Since

this estimation is based on a stochastic process, failure might happen. Then, the ME dedicated

to the monitoring of the Navigation system, can embed a basic and imprecise, dead reckoning

navigation strategy able to detect irregular jumps in the estimation provided by the Navigation

system.

Multiple Module Evaluation (MME) modules can also use model-based diagnosis but in a

most global point of view, comparing the behavioral evolution of the robot. For example on

Figure 8 the MME could implement Multiple Models Kalman Filters (MMKF) [31] to monitor

the physical part of the robot using Actuators input data and Sensors output data. The MMKF

allows for detecting and identifying faults on wheeled mobile robot, as described in [25].

Another type of evaluation algorithm can be implemented to observe the group Navigation–

Guidance–Control (NGC) and monitor the realization of the entire robotic task.

5.2 Global Evaluation Module
The Consistency Indicators produced by the Observation Modules are centralized in a

dedicated Global Evaluation Module (GEM). The GEM aggregates the Consistency Indicators

of the current active Observation Modules, and extract relevant information to be sent to the

decisional level of the robot architecture. The aggregation of the Consistency Indicators is

made using several criteria:

• the type of the inconsistency,

• the criticality of the inconsistency,

• the frequency of the inconsistency,

• the value of the Consistency Indicator.

In [23], Brandstötter et al. define three criticality levels: adjustable minor fault, important

fault and critical fault. For an important fault, the robot can manage its mission with an

adaptation. For a critical fault the robot is not able to manage its mission, and may need help

from human operator.

Other important criteria for the evaluation of the criticality of inconsistencies are parameters

related to the operator, like his actual role in the accomplishment of the mission. In context of

multi-operator supervising a fleet of robots, the operator himself is source of many criteria as

competence, experience and current workload.

Regarding the result of aggregation, the GEM can trigger different actions:

• No action. For example the first occurrence of a minor error.

 4
th
 National Conference on “Control Architectures of Robots” Toulouse, April 23-24, 2009

• A feedback control on the control sequence (modules activated to control the robot).

This concerns recursive minor behavioral inconsistencies with well-known solutions.

• A feedback control on the evaluation sequence. The evaluation sequence refers to the

set of Observation Modules used to observe the control sequence. This can concern

recursive minor real time inconsistencies.

• A report to the operator with the different Consistency Indicators involved in the

fault and their corresponding information which characterize the consistency loss.

5.3 Real Time management / scheduling

5.3.1 Basic Scheduling
Figure 9 shows the normal activation (i.e. without observation) over the time of the control

sequence of the “Path Following” robotic task. This sequence is recursively activated by the

scheduler until an event changes the current sub-objective via a supervisor.

FIG. 9 – Modules scheduling for the “Path Following” robotic task

According to the observation approach proposed in this paper, many Observation Modules

and a Global Evaluation Module are added within the previous modules activation sequence

(Figure 10). Clearly, the position of the observation modules in the scheduling depends on the

availability of their input data, and the Global Evaluation Module is executed at the end of the

sequence.

FIG. 10 – Modules scheduling integrating control and evaluation sequence

The comparison between Figure 9 and Figure 10 puts in light that the use of the proposed

observation approach can add a large amount of new modules. This induces an important

computational burden which has to be managed to satisfy the real time constraints.

5.3.2 Dynamical management
For a given robotic task and its corresponding control and evaluation sequence we propose

two solutions to manage the activation of Observation Modules to respect real time constraints.

These solutions are in accordance to the software mechanisms proposed by the LIRMM

architecture. In the first proposition, the periodicity of activation of the Observation Modules is

adjusted in order to respect real time constraint. Thus the OMs are not executed in each control

sequence of the robotic task. The second proposition is to manage the number of active

modules in the whole sequence: some OMs are suppressed of the evaluation sequence.

 4
th
 National Conference on “Control Architectures of Robots” Toulouse, April 23-24, 2009

� Periodic activation adjustment
The first solution does not change the number of Observation Modules. It only adjusts their

periodic activation according to the verification of real time constraints and to their criticality.

The Global Evaluation Module dynamically modifies the periodic parameters of the OMs

(Figure 11). The periodicity of the OMs activation is a parameter used by the scheduler to

generate the modules scheduling.

FIG. 11 – Periodic activation adjustment of the OMs

As an example the Module Evaluation and the Multiple Module Evaluation in Figure 11 are

activated only once while the control sequence is activated twice, and the Data Evaluation

module is activated each three periods of control sequence.

� Activation management
The second solution (Figure 12) is to "physically" eliminate (or add) some Observation

Modules from the scheduling sequence, if necessary. If the Global Evaluation Module detects a

problematic situation, it can generate a specific event to the local supervisor. Then this

supervisor proposes a new sub-objective to the scheduler integrating less (or more) Observation

Modules upon the same robotic task (and then within the same control sequence).

FIG. 12 – Activation management using a new sub-objective

6 EXPERIMENTAL PROPOSITION

The proposed approach and mechanisms are currently used to integrate adaptive autonomy

for mobile robots in the hybrid control architecture based on the LIRMM architectural concepts.

The goal of the project is to develop a fleet of wheeled autonomous robots running into the

laboratory to realize an office point to point delivery task from a sender to a receiver. First, the

hardware characteristics of the robot are detailed. Then a global overview of the architecture

under development is presented. Finally an example of mission is explained in detail to put in

light the expected adjustable behavior.

6.1 Hardware characteristics
The project uses two robots Pioneer-3DX from MobileRobots inc

©
. This robot has a balance

drive system (two-wheel differential with caster), reversible DC motors, motor-control and

drive electronics, high-resolution motion encoders and battery power. It supports two sonar

arrays, each with eight transducers that provide proximity information over 360 degrees.

Bumpers provide contact detection.

 4
th
 National Conference on “Control Architectures of Robots” Toulouse, April 23-24, 2009

A microcontroller manages sensors and actuators. In the present project an embedded PC is

connected to the robot microcontroller for low-level robot control. The robot-control software

proposed by MobileRobots inc
©
 is not used. The connection between the on-board PC, where

the proposed control architecture is running, and the microcontroller is implemented using a

client-server communication.

The embedded PC Dual-Core works at 2 GHz and supports Wifi or Bluetooth

communication facilities. The real-time control architecture implementation uses Linux RTAI

operating system. The control software architecture development is realized in C language and

uses the development facilities available from the LIRMM architecture middleware.

6.2 Architecture overview
A simplified description of the global architecture organization planned for the project is

proposed in Figure 13. This architecture is currently under development. The different

mechanisms described in this paper (fault detection and dynamic management) have been

validated on simple examples. Just the basic control architecture has been implemented on the

on-board PC. So unfortunately the Human-Robot interaction is not yet available.

FIG. 13 – Simplified architecture organization

For the planned architecture three main parts can be distinguished:

• The lower part concerns the robots and their dedicated control architecture

(including OM and GEM) implemented on embedded PC.

• The middle part corresponds to the supervisory part of the control. It concerns the

global management of the office delivery task, and the Human-Robot interaction

including inconsistency and generic data management.

• The higher part concerns the Human-Robot interface where visualization facilities

and joystick control are available for teleoperation.

The delivery task management defines the mission attribution in function of the current

missions, robots workload and their position. These criteria can be enriched in future

development.

In order to be able to address adaptive autonomy the following autonomy modes will be

implemented on the robots:

 4
th
 National Conference on “Control Architectures of Robots” Toulouse, April 23-24, 2009

• Autonomous: dynamic mission planning and path following with obstacle avoidance.

• Path following with obstacle avoidance.

• Cartesian teleoperation with local autonomous obstacle avoidance

• Joint space teleoperation

In autonomous mode, from a mission given by a user via the delivery task manager the

autonomous robot has to plan its mission, find the sender and then deliver the packet to the

receiver in a full autonomous way. In path following mode, the robot follows a path defined by

the operator onto the laboratory map shared with the robot. In Cartesian teleoperation the

operator sends references to the robot, in terms of desired heading and speed, while the robot

autonomously modifies the received references in order to avoid obstacles. In joint space

teleoperation, the operator acts directly on the speed of each wheel of the robot without any

closed loop controller executed by the architecture.

6.3 Example of an experimental mission
In the following example, the delivery office mission is made by two autonomous Pioneer-

3DX robots carrying the same architecture, without collaborative mode. This mission assumes

that all the location of the laboratory members is known, and that a distant operator can interact

with the robots in case of inconsistency detection.

All the laboratory member(s) can post requests to send an object to some other laboratory

member(s). When a request is detected, one of the robots comes to deliver the object according

to its workload and its current position.

Figure 14 describes a realistic scenario which can be imagined within a mission. This puts in

light how the detection of inconsistency, the autonomy adaptability and the Human-Robot

interactions are connected.

Fig. 14 – Scenario example: Autonomy mode activation

At the beginning this scenario considers that both robots receive their own delivery mission

(autonomy level: 6, cf. Fig. 14), posted by 2 senders. Robot 1 plans autonomously the path

from its current position to Sender 1 and reaches autonomously his location. Concurrently,

Robot 2 returns to the operator the following information: detection of real-time

inconsistencies and failure of the path planning module in the autonomous generation of the

 4
th
 National Conference on “Control Architectures of Robots” Toulouse, April 23-24, 2009

path. Then, to overcome the detected problem, the operator defines a path for Robot 2 from its

current position to Sender 2. The autonomy level of Robot 2 is decreased to 4.

After the reception of its packet, Robot 1 computes a path to reach the location of Receiver 1.

On its way, an inconsistency in the Navigation process has been detected (one could imagine

that the Navigation module, embedding a localization algorithm based on particle filter,

resulted in an unreachable position estimation - in comparison with the result of a classic and

imprecise dead reckoning algorithm run by the related Observation Module.) This fact is

confirmed by the localization data sent to the Operator. To handle this situation the operator

decides to drive Robot 1 to Receiver 1 using Cartesian Teleoperation (including autonomous

obstacle avoidance, autonomy level: 3) and visual feedback. While being teleoperated, Robot 1

detects a sensor dysfunction on one of its ultrasonic proximeters (one can also imagine that this

was the cause of the jump in the erroneous result of the navigation algorithm). Consequently,

the Operator disables the automatic obstacle avoidance, decreasing the autonomy level to 1,

and drives Robot 1 to Sender 1, or removes Robot 1 from the set of available resources – in this

situation the mission of Sender 1 is transferred to Robot 2 agenda.

While navigating into a corridor, Robot 2 emits an inconsistency alarm to the Operator,

triggered by an MME module which detected a problem in the realization of the path following

objective of Robot 2: uncharted obstacles appeared and the nominal path is no more achievable.

Since the level of autonomy of Robot 2 is 4, the autonomous path re-planning capability is

disabled – a full autonomy (level 6) could handle this situation. To understand the situation, the

operator can use other sensors, like camera, to find the cause of this problem. He can for

example observe that the weekly meeting is over, and a lot of laboratory members are walking

through the corridor. The operator then reduces the autonomy level of Robot 2 to 1 and

carefully drives the robot out of the corridor. Then Robot 2 can return in the path following

mode (level 4).

The above scenario illustrates how the robot control architecture can ask the operator to

modify its current autonomy level. But furthermore the embedded architecture can also propose

to terminate the teleoperation if the consistency evaluation process is able to detect that the

inconsistency disappears.

7 CONCLUSION

This paper presents a generic and systematic observation approach included into a hybrid

control architecture with adaptive autonomy for mobile robots. This approach adds an

observation level to the architecture to detect and evaluate robot's state inconsistencies. This

level is composed of specific Observation Modules (OM) and a Global Evaluation Module

(GEM). These modules are a specialization of the conceptual module proposed in [9]. The

Observation Modules are in charge of detecting the occurrence of inconsistencies.

Inconsistencies have been distinguished (data, behavior, architectural or external) and

characterized (relevant information). The OMs' role is to monitor and analyze internal data of

the control sequence, in order to evaluate the Consistency Level of the robot. The analysis can

be done using dedicated simple or sophisticated evaluation algorithms. Then the OMs send the

Consistency Indicators to the Global Evaluation Module. The GEM is in charge to aggregate

these Consistency Indicators and to manage the reaction strategies for the detected

inconsistencies. It also identifies the most relevant information which must be sent to the

Human supervisor. The supervisor can then adjust the robot autonomy according to the

encountered problems.

The proposed approach increases significantly the number of modules embedded into the

scheduling sequence. Then, to optimize the observation process according to the real time

constraints, two dynamical management techniques are proposed: the periodic activation

 4
th
 National Conference on “Control Architectures of Robots” Toulouse, April 23-24, 2009

adjustment of the Observation Modules using GEM control and the reconfiguration of the

evaluation sequence.

These mechanisms are implemented in an hybrid control architecture developed to manage

several autonomous mobile robots realizing an office delivery task. Two robots with 4

autonomy levels are available. To increase the global system efficiency, a distant Human

supervisor can adjust the robots' autonomy in case of inconsistencies detection. Two different

scenarios are described to illustrate the possible working of the control architecture with the

proposed inconsistencies evaluation mechanisms.

To complete the works presented in this paper, the proposed dynamical management

techniques has to be implemented. Then a rigorous evaluation of these techniques must be done

to evaluate their relevance according to the impact on real time constraints. Furthermore,

scheduling modifications and Human interventions are not the only possible reaction strategies

to detected problems. Others strategies can be used to modify the robot control and to strongly

enhance its autonomous behavior robustness.

Finally the definition of a generic framework would be helpful to guide the developer

reasoning for the identification and the characterization of inconsistencies. This framework

would facilitate the identification of pertinent architecture variables, connection typology and

evaluation algorithms to easily design the Observation Level.

References

[1] R. A., Brooks "A Robust Layered Control System for a Mobile Robot", IEEE Journal of

Robotics and Automation, 2 (1), pp 14-23, 1986.

[2] J. K Rozenblatt., "DAMN: “A Distributed Architecture for Mobile Navigation"”, Ph. D

thesis, 1997.

[3] R. P. Bonasso, R.J. Firby, E. Gat, D Kortenkamp., D.P. Miller, and M. G. Slack,

"Experiences with an Architecture for Intelligent, Reactive Agents", Journal of

Experimental and Theoretical Artificial Intelligence 9(2): 237-256, 1997.

[4] R. Alami, R. Chatila, S. Fleury, M. Ghallab, and F. Ingrand, "An architecture for

Autonomy", International Journal of Robotics Research, 1998.

[5] R. Volpe, I. Nesnas, T. Estlin, D. Mutz, R. Petras, and H. Das, “CLARATy: Coupled layer

architecture for robotic autonomy”, Technical report, Jet Propulsion Laboratory, 2000.

[6] C. Chopinaud, “Contrôle de l’émergence de comportements dans les systèmes d’agents

cognitifs autonomes”, Thèse de doctorat de l’université Pierre et Marie Curie, 2007.

[7] H-M, Huang, K. Pavek, B. Novak, J. Albus, and E. Messina, "A Framework For Autonomy

Levels For Unmanned Systems (ALFUS)," Proceedings of the AUVSI's Unmanned

Systems North America 2005, June 2005, Baltimore, Maryland.

[8] B. T. Clough, “Metrics, Schmetrics! How The Heck Do You Determine a UAV’s Autonomy

Anyway?”, Performance Metrics for Intelligent Systems Workshop, Gaithersburg, MA,

USA, 2002.

[9] M. Goodrich, D. Olsen, J. Crandall, and T. Palmer, “Experiments in adjustable autonomy”,

In Proceedings of IJCAI Workshop on Autonomy, Delegation and Control: Interacting

with Intelligent Agents, 2001.

[10] D. Dufourd, and A. Dalgalarrondo, “Integrating human / robot interaction into robot

control architectures for defense applications”, CAR 2006.

[11] T. B. Sheridan, and R. Parasuraman, “Human-Automation Interaction”, in book Reviews

of Human Factors and Ergonomics, Volume 1, Edited by Raymond S. Nickerson.

[12] M. Goodrich, T. W. McLain, J. D. Anderson, J. Sun, J. W. Crandall, “Managing autonomy

in robot teams: observations from four experiments”, HRI 07, pp 25-32, 2007.

 4
th
 National Conference on “Control Architectures of Robots” Toulouse, April 23-24, 2009

[13] P. Scerri, D. V. Pynadath and M. Tambe, “Towards Adjustable Autonomy for the Real

World”, Journal of Artificial Intelligence Research - JAIR, vol 17, pp 171-228, 2002

[14] G. Mourioux, C. Novales and G. Poisson, “Control robot by a generic control

architecture”, proceedings of IROS, 2007.

[15] S. Stinckwich, and N. Bouraqadi, “Towards an Adaptive Robot Control Architecture”,

CAR 2007, AROUND Project.

[16] D. Dufourd, and A. Dalgalarrondo, “Integrating human / robot interaction into robot

control architectures for defense applications”, CAR 2006.

[17] S. Mercier, F. Dehais, C. Lesire, and C. Tessier, “Resources as basic concepts for

authority sharing”, HUMOUS, 2008.

[18] R. Reiter, "A theory of diagnosis from first principle", Artificial Intelligence, 32(1), pp. 57-

95, 1987.

[19] B. C. William, P. Nayak, and N. Muscetolla, "Remote agent: To bodly go where no AI

agent has gone before", Artificial Intelligence, 103(1-2), pp. 5-48, 1998.

[20] G. Friedrich, M. Stumptner, F. Wotawa, "Model-based dignosis of harware designs",

Artificial Intelligence, 111(2), pp. 3-39, 1999.

[21] G. Steinbauer, M. Mörth, and F. Wotawa, "Real time diagnosis and repair of faults of

robot control software", Robocup Intenational Symposium, pp. 13-23, 2005.

[22] V. Verma, G. Gordon, R. Simmons, and S. Thrun, "Real-time fault diagnosis", IEEE

Robotics and Automation Magazine, 11(2), pp. 56-66, 2004.

[23] M. Brandstötter, M. W. Hofbaur, G. Steinbauer, and F. Wotawa, "Model-Based Fault

Diagnosis and Reconfiguration of robot drives", IROS, in proc. pp. 1203-1209, 2007.

[24] R. R. Murphy, and D. Hershberger, “Classifying and recovering from sensing failure in

autonomous mobile robot”, AAAI/IAAI, vol. 2, pp. 922-929, 1996.

[25] S. I. Roumeliotis, G. S. Sukhatime, and G. A. Bekey, “Fault Detection and Identification

in a Mobile Robot using Multiple-Model Estimation”, Proc. of 1998 IEEE Int. Conf. on

Robotics and Automation (ICRA), pp. 2223-2228, 1998.

[26] A. ElJalaoui, "Gestion Contextuelle de tâches pour le Contrôle d'in véhicule sous-marin

Autonome", Thèse de doctorat de l'université Montpellier 2, 2007.

[27] W. Laung-Terng, W. Cheng-Wen, and W. Xiaoqing, “VLSI Test Principles and

Architectures: Design for Testability”, Elsevier, 2006.

[28] T. Schöler, and C. Müller-Schloer, ”An Observer/Controller Architecture for Adaptive

Reconfigurable Stacks”, pp139-153, ARCS 2005.

[29] L.F. Mendonça, J.M. Sousa, and J.M. Sá da Costa, "An architecture for fault detection and

isolation based on fuzzy methods”, Expert Systems with Applications: An International

Journal 36(2): 1092-1104, 2009.

[30] C. Plagemann, C. Stachniss, and W. Burgard, ”Efficient Failure Detection for Mobile

Robots Using Mixed Abstraction Particle Filters”, EUROS, Palermo, Italy, 2006.

[31] R. Dearden, F. Hutter, R. Simmons, S. Thrun ,V. Verma, and T. Willeke.: “Real-time fault

detection and situational awareness for rovers: Report on the Mars Technology Program

Task”, Proc. of IEEE Aerospace Conf., vol. 2, pp. 826–840. IEEE Computer Society Press,

Los Alamitos, 2004.

