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Abstract 

This paper presents a set of mechanisms allowing the detection of control architecture 

inconsistencies, in the context of autonomous mobile robotics. This approach integrates an 

observation level into the structure of the control architecture to monitor and analyze the 

internal state of the robot and detect inconsistencies. These data are processed and the most 

pertinent information are sent to the Human supervisor and/or to a decision level which can 

adjust the robot autonomy according to the identified problem. These mechanisms have been 

implemented using architectural concepts previously developed at LIRMM. Based on these 

developments, adaptive hybrid control architecture is currently under development. 
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1 INTRODUCTION 

 

For mobile robots, autonomy is one of the main objectives that the control architecture has 

to fulfill. However, autonomous robots cannot face all situations in an unknown and dynamic 

world. Humans can help the robots using their cognitive and acting capabilities to take decision. 

Human is an essential agent for complex robotic missions because he can overcome some of 

the control architecture limitations. Then, autonomy becomes adaptive and the design of the 

control architecture has to integrate the possibility of potential Human-Robot interactions, at 

different levels. 

The first part of this paper presents the context of this study and recalls the main classes of 

control architectures. The concepts of autonomy, Human-Robot interaction and adjustable 

autonomy are then explained, and previous results related to fault detection are presented. 

During the execution of its mission, an autonomous robot has to face potential dysfunctions, 

with different impacts on the system capabilities. These dysfunctions might not have any local 

solution (i.e. problem of battery power). However the problems come often from hardware 

failures (sensors, actuators, embedded electronic, etc.), software bugs or models limitations 

(approximation error, etc.). Usually these dysfunctions are not considered into the control 

architecture. 

In the second part on this paper we detail a set of mechanisms allowing the detection of a 

predefined set of dysfunctions. These mechanisms allow for anticipating, detecting and 

processing a dysfunction. If the encountered problem cannot be solved autonomously by the 
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robot, the Human supervisor can adjust the robot autonomy, and he takes the necessary 

decisions in order to overcome the problem. 

Then, we present how these observation mechanisms have been implemented using the 

architectural concepts developed in the LIRMM laboratory. 

Finally before concluding and presenting some future works, the actual control architecture 

under development is exposed. 

 

2 STATE OF ART 

2.1 Classification of Control Architecture 

2.1.1 Historical control architecture 
Generally, the literature on control architecture proposes two types of control architecture. 

Their conceptual representation is presented in Figure 1. 

The first one, introduced by Brooks [1] with the subsumption architecture is qualified as 

reactive architecture (Figure 1-a). This architecture is reactive to the environment stimuli but 

the global behavior of the architecture is unrepeatable. Hence, the control, and the evaluation of 

the system performances, in the context of complex missions is difficult. An arbiter [2] has 

been implemented to increase management capability of basic behaviors, in order to produce a 

coherent global behavior of the robot. However, global optimization is almost impossible. 

To increase decision capabilities a second type of architecture called deliberative 

architecture is proposed (figure 1-b). This architecture presents generally three independent 

levels [3]. This decomposition of the architecture, and consequently of the abstraction level of 

information facilitates considerably the development of each part of the architecture. 

Nevertheless the data needs to go through all the layers of the architecture in order to reach the 

end of the decision/action chain (i.e. the actuators) which induces very low reactive capabilities.  

Fig. 1 – Historical control architecture 

Those different types of architectures have opposite drawbacks. The principles exposed in 

the sequel propose to integrate in single control architecture the advantages of both previous 

types. 

2.1.2 Hybrid control architecture 
This type of control architecture is called hybrid or mixed. It is actually the most used type 

of architecture. Within this class, architectures may be very different. 

For example, the LAAS architecture proposed by Alami in [4] is built as a deliberative 

architecture with three identified layers (figure 2-a). However the robot adaptation is made at 

 
 

(a)  Reactive control architecture (b)  Deliberative control architecture 
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the decisional level, but can also be made at the functional level. Moreover the decisional level 

and the functional level are interconnected, while the executive control level manages the 

execution of the functional one. On the other hand, the CLARATy architecture [5] is a two 

layered architecture, where a reactive functional level and a deliberative level are 

interconnected (figure 2-b) 

     

FIG. 2 – LAAS and CLARATy hybrid control architecture 

The mechanisms within these architectures are very specific to their architecture structure 

and their application domains. However, they lead to an important improvement in reactivity 

and decisional aspects. 

2.2 Autonomy 
Autonomy is one of the main objectives to achieve in mobile robotic. A lucid definition of 

Autonomy for a robot is difficult to find in the literature. In [6] Chopinaud does not succeed to 

provide a precise answer. But from a large study of the definitions used in robotics and multi-

agent systems, the following one seems to be acceptable: “A system (or agent) is autonomous if, 

alone, it is able to define his decision”. However this definition remains wide, and needs to be 

refined, from the point of view of applications focusing on autonomy evaluation.  

The ALFUS group proposes in [7] a three-axis based evaluation: the operator independence, 

the mission complexity and the environmental difficulty. The results of all these researches 

remain either too general or too specific. In [8], Clough attempts to provide a generic tool to 

evaluate the autonomy of intelligent UAV (Unmanned Aerial Vehicle). He establishes an 

Autonomous Control Level (ACL) chart based on the degree of interaction between the robot 

and the human operator. 

Despite the diversity of the literature references dealing with autonomy in robotics 

architectures, all the authors convey on the existence of several levels of autonomy. However, 

the definition of these levels is dependent on the point of view, the evaluation parameters or the 

application context. In [9], Goodrich et al. identify five different types of Human-Robot 

interactions: teleoperation, adjustable autonomy, mixed initiatives, advanced interfaces, 

autonomous robots. These types of interactions are similar with the ones which Dufour & al. 

define in [10], which also identify the traded control and the shared control where a part of the 

 
(b) LAAS architecture  (a) CLARATy 
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mission or a part of the system is controlled by the human whereas the rest is controlled 

autonomously by the robot. 

In these works, as proposed in [11], the autonomy levels of systems are related to the 

Human-Robot interactions degree. We follow this evident correlation and define (Figure 3) the 

autonomy levels we use in our context, based on the literature references and adapted for 

mobile robotic architectures. 

 
FIG. 3 – Autonomy mode classification 

This classification is useful in our study related to adaptive autonomy. Indeed, it is well 

known that full autonomy for mobile robotic system in dynamic environment is a complex 

problem that is not yet solved. Then, occurrences of faults, as hardware failures, bad behaviors 

of control algorithms, real time failures or environment obstructions, prevent a full and 

complete autonomy. 

This implies the dynamic management of different autonomy levels in single control 

architecture, and the control of commutation between these levels. 

2.3 Adaptive autonomy 
The first question to be solved is the difference between adjustable and adaptive autonomy. 

In [12] Goodrich distinguishes the adjustable autonomy, where the human can choose the 

functioning mode of the robot, and the adaptive autonomy where the functioning mode is 

chosen by the robot itself. Scerri et al. in [13] consider that adjustable autonomy refers to 

entities, able to dynamically define their own autonomy level. We do not make this difference, 

and the adaptive autonomy term in this paper means the modification of the functioning mode 

both by the human operator or by the robot, or even by a discussion between them. 

Adaptive autonomy in robotic control architecture is an active field of research, but a 

complete and mature solution has not been yet proposed. Some partial solutions are proposed 

applying multi-agent architecture concepts to the robotic domain. In [14], Mourioux et al. 

present an architecture which allows for controlling a robot with various degrees of autonomy. 

But there is no dynamical management of these autonomy modes, depending for example on 

the context or the robot state. In [15], Stinckwich et al. propose the implementation of an 

anticipatory agent to allow for the adaptation of the architecture to environment changes or 

failures detection. But these works are still in progress and have not been implemented yet. 
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Furthermore, as for many multi-agent systems, the detection is done by a very specific agent 

dedicated to the targeted application. With the same idea, Dufour et al. in [16] propose an 

attention manager agent to supervise the execution of the other agents' execution. This solution 

is not described in details, particularly the supervision algorithms or the precise structural 

development. 

Other studies, as the one of Mercier et al. in [17], are focusing on the authority sharing to avoid 

inconsistency due to conflict between the human and the robot decisions. But the first problem 

to be solved, for the adaptive autonomy implementation in robotic architecture, is the 

identification of the reasons why it is necessary to switch from an autonomy level to another. In 

this context, fault detection and diagnosis techniques are important to study. 

2.4 Fault detection and Diagnosis 
Because software or hardware faults cannot totally be avoided, it is essential that mobile 

robots are able to detect such faults. However fault detection, which uses observations and a 

model of the system's behavior to detect deviation between them, is not enough. The faulty 

hardware or software component must also be identified to solve the problem. 

Many approaches for fault detection have been proposed and implemented. Model-based 

reasoning proposed by Reiter in [18], using a logic-based formulation of the system model and 

the observations, has been used for hardware fault detection by William et al. [19] and 

Friedrich et al. [20]. Steinbauer et al. in [21] have also chosen the model-based paradigm to 

detect and repair control software communication failure in runtime. 

Some approaches take account of uncertainties of the robot and its environment to detect 

faults. For example, Verma et al. propose the use of particle filter techniques in [22] to estimate 

the most probable state of the robot and detect faults by comparison with the robot model. 

However, these detections do not provide any suggestion related to corrective actions. In [23], 

Brandstötter et al. propose an interesting approach where a probabilistic hybrid automaton 

models the nominal operational mode, 3 failure modes, and the probabilistic transitions 

between these modes, for an omnidirectional robot. But the detected fault remains limited 

(wheel problems) and the approach is not generic. 

Moreover, in [24] Murphy et al. propose rule-based approaches to detect and recover 

failures in sensing. Kalman filters bank can also be used to detect specific failure mode, as 

proposed in [25], by Roumeliotis et al. 

2.5 Conclusion 
As far as we know, few works have been developed to systematically detect hardware and 

software faults and to propose relevant solutions during runtime. Moreover, these works focus 

on some specific application or specialized control structure, and do not propose modular and 

suitable control architecture to support their implementation. So they cannot be inserted into a 

global and generic approach dealing with fault detection monitoring and management. The 

proposed solutions are often locals, too specifics and difficult to use in others contexts. 

This paper presents a generic and systematic solution to design efficient and robust control 

architecture for mobile robots with adaptive autonomy. This architecture proposes solutions to 

detect faults and solve the related problems in a systematic way. Our adaptive autonomy 

concept is based on detection mechanisms of robot inconsistencies, management of these errors 

detection, an adaptive strategy based on Human-Robot interaction, and a structural framework 

to switch between autonomy modes. Thus, when a fault is detected during the robot mission 

execution, either the robot can manage or it contacts the human operator who provides a 

solution adapting the autonomy of the robot. This paper deals with the first problematic of this 

adaptive architecture: the detection of faults. 
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3 TOWARDS AN EVALUATION OF ROBOT CONSISTENCY 

 

During the execution of an autonomous robotic mission, many dysfunctions may occur:  

• the physical parts of the robot (sensors, actuators or electronic devices) can have 

failures, 

• internal algorithms dysfunctions or important computing load drift, can induce the 

non satisfaction of the real time constraints, 

• some limitations or approximations in the models, and corresponding algorithms 

used to control or localize the robot can create erroneous internal data. 

Some of these dysfunctions can induce the failure of some of the mission's objectives or the 

mission itself. Others only create local disturbance inducing loss of efficiency, while others can 

have minor impact and can be simply filtered. 

These dysfunctions generally result in inconsistencies in the robot's state. We then can use 

inconsistency detection to identify dysfunctions and try to correct the problem. In some 

situations, the robot can manage itself or can call out to the Human supervisor which in turn 

can adjust the robot's autonomy to help the robot to manage his mission. 

3.1 Inconsistencies: classification 
Four main classes of state inconsistencies can be identified: 

• Application data inconsistency: this class concerns instantaneous erroneous data 

produced by the robotic application. 

• Global behavior inconsistency: the evolution of the robot over the time can produce 

inconsistency. 

• Architectural inconsistency: this class concerns errors which can be produced by the 

architecture, as the non respect of real time constraints. 

• External inconsistency: this class contains errors induced by the communication 

between the robot and the human.  

The identification of inconsistencies can be done by different algorithms and techniques 

which are presented in Section 5. 

3.2 Characterization of inconsistencies 
To guide, assist and help the Human supervisor decision making, the robot sends 

information on the detected inconsistencies. The inconsistencies must then be characterized by 

a set of relevant data: 

• Name: name of the detected inconsistency, 

• Class: {hardware, software, models}, 

• Location: where, which sensor, actuator or algorithm, 

• Criticality: level of criticality, 

• Additional data: set of contextual relevant data including the ones that put in light the 

inconsistency.  

The proposed approach of inconsistency detection must be supported by an efficient control 

architecture. 
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4 INTEGRATION IN AN HYBRID CONTROL ARCHITECTURE 

 

In [26], ElJalaoui proposes an hybrid control architecture, used in the LIRMM laboratory, to 

control an autonomous underwater vehicle (AUV). This control architecture has been 

developed to respect modularity, reusability and upgradeability. It is based on two different 

levels: an executive and a decisional level. The executive level is supervised by a scheduler 

activating the appropriate robotic tasks in time. The decisional level only reacts on events 

coming from the executive level. The internal structure of the architecture is based on a generic 

module paradigm, and is detailed in the following sections.  

4.1 The decisional level 
The decisional level is composed with three layers (Figure 4): a global supervisor, a set of 

local supervisors (one for each autonomy level) and the scheduler. 

The global supervisor controls the whole mission. From a given mission and events 

produced by the architecture, it defines an objective and sends it to a local supervisor. The local 

supervisor is in charge of the accomplishment of this objective. From the objective and from 

events produced by the architecture, the local supervisor gives to the scheduler a sub-objective 

to be executed.  

The decisions taken by the supervisors and the scheduler are made regarding a database 

called vocabulary. The vocabulary contains the decomposition of the mission into objectives 

and of an objective into sub-objectives. It also contains relations of precedence between the 

executive tasks which allow the scheduler to administrate the executive level. 

 
FIG. 4 – The LIRMM architecture  

4.2 The executive level 
The executive layer is based on the concept of module. Each module represents an 

independent task of the whole controlling software. To create a robotic task, modules have to 

be recursively activated over the time in a specific order. Then each sub-objective will use 

different modules with specific time constraints.  

As an example a mobile system involved in a line following objective, only requires the 

recursive activation of the modules: sensors acquisition, line detection in the sensors 
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information, control law computation and actuators reference application. A more general 

mission related to mobile robotics requires the recruitment of a complete sensors suite, through 

the activation of the sensor modules, the execution of a path planning strategy and advanced 

control of reactive obstacle avoidance.  

The modules of the executive level create events which are used by the supervisors to 

control the whole mission execution (Figure 4).  

4.3 The infrastructure: a middleware 
 The infrastructure is a middleware developed as a library including the generic description 

of modules and the management of all the communications between them. A module is 

composed by a “System part” given by the middleware, and a ‘User Part” in charge of the 

control architecture developer.  

The “System part” manages the communication between modules in terms of data and event 

flow but also in term of process (activation, stop and configuration). The “User part” only 

contains the associated algorithm. This structure is very interesting in terms of modularity, 

reusability and upgradeability. 

The communications between modules use intput/output communication ports. A generic 

module contains 6 types of port (Figure 5): Input data, Output data, Input event, Output event, 

Configuration Port and Request port (activation, stop, configuration, subscription and 

cancelation to data or events). Data and events are sent and received with the 4 first ports. The 

scheduler links producers and consumers with the configuration ports, and manages the 

execution of these tasks with the Request port. All communications between the modules 

respect the producer/consumer paradigm. 

 
FIG. 5 – Generic representation of a module 

The previous section presents the hybrid control architecture developed in LIRMM by 

ElJalaoui. In the context of autonomous robots control, we want to adapt this architecture to 

allow adaptive autonomy and Human-Robot interactions. The rest of the paper presents the 

developed principles used to integrate the detection and the management of inconsistencies into 

the LIRMM architecture. 
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5 OBSERVATION APPROACH 

 

The concept of observation modules has been largely used in various scientific domains. For 

example in Microelectronic area observation modules are physically used on chips to capture 

some internal data for logical testing [27]. In organic computing systems observer / controller 

structure can be used to verify that an emergent behavior remains within predefined limits [28]. 

Model faults detection and isolation approaches can also be used to detect and isolate faults on 

real systems from the discrepancies between system outputs and model outputs [29]. 

In the LIRMM architecture, some architectural modules have been specialized into 

Observation Modules (OM) to detect the occurrence of the inconsistencies identified in Section 

3. The systematical use of this type of module will create into the control architecture a new 

executive level dedicated to observation (Figure 6).  

The basic observation functionalities are implemented into the specific Observation 

Modules which are connected to the robotic modules. The OM provides information about the 

consistency state of the system: the Consistency Indicators (CI). A specific observation module 

is the Global Evaluation Module (GEM). It evaluates the CI and returns relevant information to 

the higher levels (decisional level or human). The observation modules can be dynamically 

managed to respect real time constraints and to adapt the execution load on the system 

hardware. 

 
FIG. 6 – Integration of the observation level 

The rest of this section presents in details the structural mechanisms for the implementation 

of this observation level. An applicative example is given in Section 6 to illustrate these 

principles. 

5.1 Typology of the Observation Modules 
The systematic use of Observation Modules implies the definition of design rules. This 

section defines the internal structure of the Observation Modules, their connection typology, 

and observation methods for the Consistency Indicators evaluation. 
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5.1.1 Internal structure 
Basically, an observation module needs to consume relevant data to detect inconsistencies. It 

has, at least, one input port (Figure 7-a). Moreover it produces a data representing the 

evaluation of the Consistency Indicator (C.I.) of the observed functionality. It has one output 

port. To minimize the number of observation modules, it is possible to aggregate several basic 

observation modules sharing different input data (Figure 7-b). However, this aggregation 

process reduces the flexibility, the modularity and the readability of the proposed control 

architecture. 

FIG. 7 – Internal structure of observation modules 

5.1.2 Connection typology  
The integration of the Observation Modules in the architecture can be classified according to 

their connection into the architecture. We define 3 types of connections, illustrated in Figure 8 

on an architecture having typical control modules for the "path following" robotic task. 

• Data Evaluation (D.E.): concerns the evaluation of data produced or consumed by only 

one single control module.  

• Module Evaluation (M.E.): concerns the evaluation of data produced and consumed by 

one control module. 

• Multiple Module Evaluation (M.M.E.): concerns the evaluation of data produced and/or 

consumed by different control modules. 

The Consistency Indicators are produced by the Observation Modules according to the 

evaluation of the observed modules. 

 

 
FIG. 8– Observation Module connection typology 

 

  
(a) basic structure (b) aggregated structure 
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5.1.3 Consistency Indicator evaluation 
 The evaluation of a Consistency Indicator is realized by integrating into the executing code 

of the Observation Module, a chosen algorithm corresponding to the detection of a given 

inconsistency. The proposed connection typology also defines a typology of the detection 

algorithms. 

Data Evaluation (DE) modules contain typically threshold verification. They can be used to 

observe the respect of real time constraints, to evaluate the communication quality or to detect 

outranged control data. Threshold verification can be done in a static way, i.e. the data is 

compared with a threshold value, or in a dynamic way, i.e. the observed data is recorded and 

the observation is done over a given elapsed-time horizon. For example, in Figure 8, the DE 

module can detect if the reference produced by the Guidance module is out of the robot action 

capabilities. 

Module Evaluation (ME) modules typically use model-based diagnosis algorithms applied 

to one specific elementary task. The ME and its observed module must produce the same data, 

within a given range. These data are then compared to detect inconsistencies. For example in 

Figure 8, the ME and the Navigation modules can use different localization methods. 

Navigation based on particle filter, produces a precise estimation of the system position. Since 

this estimation is based on a stochastic process, failure might happen. Then, the ME dedicated 

to the monitoring of the Navigation system, can embed a basic and imprecise, dead reckoning 

navigation strategy able to detect irregular jumps in the estimation provided by the Navigation 

system. 

Multiple Module Evaluation (MME) modules can also use model-based diagnosis but in a 

most global point of view, comparing the behavioral evolution of the robot. For example on 

Figure 8 the MME could implement Multiple Models Kalman Filters (MMKF) [31] to monitor 

the physical part of the robot using Actuators input data and Sensors output data. The MMKF 

allows for detecting and identifying faults on wheeled mobile robot, as described in [25]. 

Another type of evaluation algorithm can be implemented to observe the group Navigation–

Guidance–Control (NGC) and monitor the realization of the entire robotic task. 

5.2 Global Evaluation Module 
The Consistency Indicators produced by the Observation Modules are centralized in a 

dedicated Global Evaluation Module (GEM). The GEM aggregates the Consistency Indicators 

of the current active Observation Modules, and extract relevant information to be sent to the 

decisional level of the robot architecture. The aggregation of the Consistency Indicators is 

made using several criteria: 

• the type of the inconsistency, 

• the criticality of the inconsistency, 

• the frequency of the inconsistency, 

• the value of the Consistency Indicator. 

In [23], Brandstötter et al. define three criticality levels: adjustable minor fault, important 

fault and critical fault. For an important fault, the robot can manage its mission with an 

adaptation. For a critical fault the robot is not able to manage its mission, and may need help 

from human operator. 

Other important criteria for the evaluation of the criticality of inconsistencies are parameters 

related to the operator, like his actual role in the accomplishment of the mission. In context of 

multi-operator supervising a fleet of robots, the operator himself is source of many criteria as 

competence, experience and current workload. 

Regarding the result of aggregation, the GEM can trigger different actions: 

• No action. For example the first occurrence of a minor error. 
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• A feedback control on the control sequence (modules activated to control the robot). 

This concerns recursive minor behavioral inconsistencies with well-known solutions. 

• A feedback control on the evaluation sequence. The evaluation sequence refers to the 

set of Observation Modules used to observe the control sequence. This can concern 

recursive minor real time inconsistencies. 

• A report to the operator with the different Consistency Indicators involved in the 

fault and their corresponding information which characterize the consistency loss. 

5.3 Real Time management / scheduling 

5.3.1 Basic Scheduling 
Figure 9 shows the normal activation (i.e. without observation) over the time of the control 

sequence of the “Path Following” robotic task. This sequence is recursively activated by the 

scheduler until an event changes the current sub-objective via a supervisor. 

 
FIG. 9 – Modules scheduling for the “Path Following” robotic task 

According to the observation approach proposed in this paper, many Observation Modules 

and a Global Evaluation Module are added within the previous modules activation sequence 

(Figure 10). Clearly, the position of the observation modules in the scheduling depends on the 

availability of their input data, and the Global Evaluation Module is executed at the end of the 

sequence. 

 
FIG. 10 – Modules scheduling integrating control and evaluation sequence 

The comparison between Figure 9 and Figure 10 puts in light that the use of the proposed 

observation approach can add a large amount of new modules. This induces an important 

computational burden which has to be managed to satisfy the real time constraints. 

5.3.2 Dynamical management 
For a given robotic task and its corresponding control and evaluation sequence we propose 

two solutions to manage the activation of Observation Modules to respect real time constraints. 

These solutions are in accordance to the software mechanisms proposed by the LIRMM 

architecture. In the first proposition, the periodicity of activation of the Observation Modules is 

adjusted in order to respect real time constraint. Thus the OMs are not executed in each control 

sequence of the robotic task. The second proposition is to manage the number of active 

modules in the whole sequence: some OMs are suppressed of the evaluation sequence. 
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� Periodic activation adjustment   
The first solution does not change the number of Observation Modules. It only adjusts their 

periodic activation according to the verification of real time constraints and to their criticality. 

The Global Evaluation Module dynamically modifies the periodic parameters of the OMs 

(Figure 11). The periodicity of the OMs activation is a parameter used by the scheduler to 

generate the modules scheduling. 

 
FIG. 11 – Periodic activation adjustment of the OMs  

As an example the Module Evaluation and the Multiple Module Evaluation in Figure 11 are 

activated only once while the control sequence is activated twice, and the Data Evaluation 

module is activated each three periods of control sequence. 

� Activation management 
The second solution (Figure 12) is to "physically" eliminate (or add) some Observation 

Modules from the scheduling sequence, if necessary. If the Global Evaluation Module detects a 

problematic situation, it can generate a specific event to the local supervisor. Then this 

supervisor proposes a new sub-objective to the scheduler integrating less (or more) Observation 

Modules upon the same robotic task (and then within the same control sequence). 

 
FIG. 12 – Activation management using a new sub-objective 

6 EXPERIMENTAL PROPOSITION 

The proposed approach and mechanisms are currently used to integrate adaptive autonomy 

for mobile robots in the hybrid control architecture based on the LIRMM architectural concepts. 

The goal of the project is to develop a fleet of wheeled autonomous robots running into the 

laboratory to realize an office point to point delivery task from a sender to a receiver. First, the 

hardware characteristics of the robot are detailed. Then a global overview of the architecture 

under development is presented. Finally an example of mission is explained in detail to put in 

light the expected adjustable behavior. 

6.1 Hardware characteristics 
The project uses two robots Pioneer-3DX from MobileRobots inc

©
. This robot has a balance 

drive system (two-wheel differential with caster), reversible DC motors, motor-control and 

drive electronics, high-resolution motion encoders and battery power. It supports two sonar 

arrays, each with eight transducers that provide proximity information over 360 degrees. 

Bumpers provide contact detection. 
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A microcontroller manages sensors and actuators. In the present project an embedded PC is 

connected to the robot microcontroller for low-level robot control. The robot-control software 

proposed by MobileRobots inc
©
 is not used. The connection between the on-board PC, where 

the proposed control architecture is running, and the microcontroller is implemented using a 

client-server communication.  

The embedded PC Dual-Core works at 2 GHz and supports Wifi or Bluetooth 

communication facilities. The real-time control architecture implementation uses Linux RTAI 

operating system. The control software architecture development is realized in C language and 

uses the development facilities available from the LIRMM architecture middleware. 

6.2 Architecture overview 
A simplified description of the global architecture organization planned for the project is 

proposed in Figure 13. This architecture is currently under development. The different 

mechanisms described in this paper (fault detection and dynamic management) have been 

validated on simple examples. Just the basic control architecture has been implemented on the 

on-board PC. So unfortunately the Human-Robot interaction is not yet available. 

 
FIG. 13 – Simplified architecture organization 

For the planned architecture three main parts can be distinguished: 

• The lower part concerns the robots and their dedicated control architecture 

(including OM and GEM) implemented on embedded PC. 

• The middle part corresponds to the supervisory part of the control. It concerns the 

global management of the office delivery task, and the Human-Robot interaction 

including inconsistency and generic data management. 

• The higher part concerns the Human-Robot interface where visualization facilities 

and joystick control are available for teleoperation. 

The delivery task management defines the mission attribution in function of the current 

missions, robots workload and their position. These criteria can be enriched in future 

development. 

In order to be able to address adaptive autonomy the following autonomy modes will be 

implemented on the robots: 
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• Autonomous: dynamic mission planning and path following with obstacle avoidance. 

• Path following with obstacle avoidance.  

• Cartesian teleoperation with local autonomous obstacle avoidance  

• Joint space teleoperation 

In autonomous mode, from a mission given by a user via the delivery task manager the 

autonomous robot has to plan its mission, find the sender and then deliver the packet to the 

receiver in a full autonomous way. In path following mode, the robot follows a path defined by 

the operator onto the laboratory map shared with the robot. In Cartesian teleoperation the 

operator sends references to the robot, in terms of desired heading and speed, while the robot 

autonomously modifies the received references in order to avoid obstacles. In joint space 

teleoperation, the operator acts directly on the speed of each wheel of the robot without any 

closed loop controller executed by the architecture.  

6.3 Example of an experimental mission 
In the following example, the delivery office mission is made by two autonomous Pioneer-

3DX robots carrying the same architecture, without collaborative mode. This mission assumes 

that all the location of the laboratory members is known, and that a distant operator can interact 

with the robots in case of inconsistency detection. 

All the laboratory member(s) can post requests to send an object to some other laboratory 

member(s). When a request is detected, one of the robots comes to deliver the object according 

to its workload and its current position. 

Figure 14 describes a realistic scenario which can be imagined within a mission. This puts in 

light how the detection of inconsistency, the autonomy adaptability and the Human-Robot 

interactions are connected.  

 
Fig. 14 – Scenario example: Autonomy mode activation 

At the beginning this scenario considers that both robots receive their own delivery mission 

(autonomy level: 6, cf. Fig. 14), posted by 2 senders. Robot 1 plans autonomously the path 

from its current position to Sender 1 and reaches autonomously his location. Concurrently, 

Robot 2 returns to the operator the following information: detection of real-time 

inconsistencies and failure of the path planning module in the autonomous generation of the 



 4
th
 National Conference on “Control Architectures of Robots” Toulouse, April 23-24, 2009 

 

 

path. Then, to overcome the detected problem, the operator defines a path for Robot 2 from its 

current position to Sender 2. The autonomy level of Robot 2 is decreased to 4.  

After the reception of its packet, Robot 1 computes a path to reach the location of Receiver 1. 

On its way, an inconsistency in the Navigation process has been detected (one could imagine 

that the Navigation module, embedding a localization algorithm based on particle filter, 

resulted in an unreachable position estimation - in comparison with the result of a classic and 

imprecise dead reckoning algorithm run by the related Observation Module.) This fact is 

confirmed by the localization data sent to the Operator. To handle this situation the operator 

decides to drive Robot 1 to Receiver 1 using Cartesian Teleoperation (including autonomous 

obstacle avoidance, autonomy level: 3) and visual feedback. While being teleoperated, Robot 1 

detects a sensor dysfunction on one of its ultrasonic proximeters (one can also imagine that this 

was the cause of the jump in the erroneous result of the navigation algorithm). Consequently, 

the Operator disables the automatic obstacle avoidance, decreasing the autonomy level to 1, 

and drives Robot 1 to Sender 1, or removes Robot 1 from the set of available resources – in this 

situation the mission of Sender 1 is transferred to Robot 2 agenda.  

While navigating into a corridor, Robot 2 emits an inconsistency alarm to the Operator, 

triggered by an MME module which detected a problem in the realization of the path following 

objective of Robot 2: uncharted obstacles appeared and the nominal path is no more achievable. 

Since the level of autonomy of Robot 2 is 4, the autonomous path re-planning capability is 

disabled – a full autonomy (level 6) could handle this situation. To understand the situation, the 

operator can use other sensors, like camera, to find the cause of this problem. He can for 

example observe that the weekly meeting is over, and a lot of laboratory members are walking 

through the corridor. The operator then reduces the autonomy level of Robot 2 to 1 and 

carefully drives the robot out of the corridor. Then Robot 2 can return in the path following 

mode (level 4). 

The above scenario illustrates how the robot control architecture can ask the operator to 

modify its current autonomy level. But furthermore the embedded architecture can also propose 

to terminate the teleoperation if the consistency evaluation process is able to detect that the 

inconsistency disappears. 

 

7 CONCLUSION 

This paper presents a generic and systematic observation approach included into a hybrid 

control architecture with adaptive autonomy for mobile robots. This approach adds an 

observation level to the architecture to detect and evaluate robot's state inconsistencies. This 

level is composed of specific Observation Modules (OM) and a Global Evaluation Module 

(GEM). These modules are a specialization of the conceptual module proposed in [9]. The 

Observation Modules are in charge of detecting the occurrence of inconsistencies. 

Inconsistencies have been distinguished (data, behavior, architectural or external) and 

characterized (relevant information). The OMs' role is to monitor and analyze internal data of 

the control sequence, in order to evaluate the Consistency Level of the robot. The analysis can 

be done using dedicated simple or sophisticated evaluation algorithms. Then the OMs send the 

Consistency Indicators to the Global Evaluation Module. The GEM is in charge to aggregate 

these Consistency Indicators and to manage the reaction strategies for the detected 

inconsistencies. It also identifies the most relevant information which must be sent to the 

Human supervisor. The supervisor can then adjust the robot autonomy according to the 

encountered problems.  

The proposed approach increases significantly the number of modules embedded into the 

scheduling sequence. Then, to optimize the observation process according to the real time 

constraints, two dynamical management techniques are proposed: the periodic activation 
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adjustment of the Observation Modules using GEM control and the reconfiguration of the 

evaluation sequence. 

These mechanisms are implemented in an hybrid control architecture developed to manage 

several autonomous mobile robots realizing an office delivery task. Two robots with 4 

autonomy levels are available. To increase the global system efficiency, a distant Human 

supervisor can adjust the robots' autonomy in case of inconsistencies detection. Two different 

scenarios are described to illustrate the possible working of the control architecture with the 

proposed inconsistencies evaluation mechanisms. 

 

To complete the works presented in this paper, the proposed dynamical management 

techniques has to be implemented. Then a rigorous evaluation of these techniques must be done 

to evaluate their relevance according to the impact on real time constraints. Furthermore, 

scheduling modifications and Human interventions are not the only possible reaction strategies 

to detected problems. Others strategies can be used to modify the robot control and to strongly 

enhance its autonomous behavior robustness.  

Finally the definition of a generic framework would be helpful to guide the developer 

reasoning for the identification and the characterization of inconsistencies. This framework 

would facilitate the identification of pertinent architecture variables, connection typology and 

evaluation algorithms to easily design the Observation Level. 
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