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Abstract. We complete the study of [16] and [20] about the Miller’s
algorithm. The Miller’s algorithm is a central step to compute the Weil,
Tate and Ate pairings. The aim of this article is to analyse the weakness
of the Miller’s algorithm when it undergoes a fault attack. We prove that
the Miller’s algorithm is vulnerable to a fault attack which is valid in all
coordinate systems, through the resolution of a nonlinear system. We
show that the final exponentiation is no longer a counter measure to this
attack for the Tate and Ate pairings.

Keywords: Miller’s algorithm, Identity Based Cryptography, Fault
Attack.

1 Introduction

In 1984, A. Shamir challenged the cryptographer community to find a protocol
based on the user’s identity [18]. This challenge was issued almost ten years later
by D. Boneh and M. Franklin. In 2003, D. Boneh and M. Franklin created an
identity-based encryption scheme based on pairings [4]. The general scheme of
an identity based encryption is described in [4]. The important point is that
to decipher a message using an Identity Based Protocol, a computation of a
pairing involving the private key and the message is done. The particularity
of Identity Based Cryptography is that an attacker can know the algorithm
used, the number of iterations and the exponent. The secret is only one of the
arguments of the pairing. The secret key influences neither the execution time
nor the number of iterations of the algorithm. Fault attack against pairing based
cryptography were first developed three years ago ([16], [19] and [20]).

In [16], D. Page and F. Vercauteren introduce a fault attack against the Du-
ursma and Lee algorithm. The fault attack consists in modifying the number of
iterations of the algorithm. We complete this idea in order to apply it to the
Miller’s algorithm, and we describe a way to realise this fault injection.

In [20], C. Whelan and M. Scott present a fault attack against the Weil and
Eta pairings. They consider the case when exactly the last iteration is modified
by a fault injection. They deduce that the Miller’s algorithm is not vulnerable
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to a fault attack, because the system obtained after the fault attack is nonlinear
and then impossible to solve. In [19] they conclude that if the secret is used as
the first argument of the pairing computation, then it cannot be found. Contrary
to their conclusion, we show that even if the secret is the first argument of the
pairing, we can discover it with a fault attack, and solve the nonlinear system
obtained after the fault attack on the Miller’s algorithm. Moreover, we generalise
the fault attack to every iteration of the algorithm, not only the last one. Both
articles considered affine coordinates. We show that in every coordinate systems,
our attack will give us the result.

Our contribution is to generalise the fault attack to the Miller’s algorithm, not
only for the last iteration, but for every possible iterations; and to demonstrate
that for all the coordinate systems (affine, projective, Jacobian, and Edwards
coordinates) a fault attack against the Miller’s algorithm can be done through
the resolution of a nonlinear system. This demonstration will be followed by dis-
cussion about the weakness to this fault attack of pairings based on the Miller’s
algorithm. We show that the Weil pairing is directly sensitive to the fault at-
tack described. Some methods to override the final exponentiation are given,
and then, for a motivated attacker, the final exponentiation will no longer be a
natural counter measure for the Tate and Ate pairings [6].

The outline of this article is as follow. First we will give a short introduction
to pairing and to the Miller’s algorithm in Section 2. Section 3 presents our
fault attack against the Miller’s algorithm, Section 4 analyses the vulnerability
of pairings using the Miller’s algorithm as a central step, finally, we give our
conclusion in Section 5.

2 Pairings and the Miller’s Algorithm

2.1 Short Introduction to the Pairing

We will consider pairings defined over an elliptic curve E over a finite field Fq, for
q a prime number. In the case where q is a power of a prime number, while the
equations are a slightly different the same scheme can be applied. We describe
the attack for calculations in Jacobian coordinates. The affine, projective and
Edwards coordinates cases can be treated by the same way.

We will consider the Weierstrass elliptic curve in Jacobian coordinates : Y 2 =
X3 + aXZ4 + bZ6, with a and b ∈ Fq. Let l ∈ N

∗, and k be the smallest integer
such that l divides (qk − 1), k is called the embedding degree. Let G1 ⊂ E(Fq),
G2 ⊂ E(Fqk), G3 ⊂ F

∗
qk , be three groups of order l.

Definition 1. A pairing is a bilinear and non degenerate function: e : G1 ×
G2 → G3.

The most useful property in pairing based cryptography is bilinearity:
e([n]P, [m]Q) = e(P, Q)nm. Four different pairings are used in cryptography, and
three of them are constructed in the same way. The Miller’s algorithm [15] is the
central step for Weil, Tate and Ate pairings computations.
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2.2 Miller’s Algorithm

The following description of the Miller’s algorithm is referenced in
[7, chapter 16].

The Miller’s algorithm is the most important step for the Weil, Tate and Ate
pairings computation. It is constructed like a double and add scheme using the
construction of [l]P . The Miller’s algorithm is based on the notion of divisors.
We only give here the essential elements for the pairing computation.

The Miller’s algorithm constructs the rational function FP associated to the
point P , where P is a generator of G1 ⊂ E(Fq); and at the same time, it evaluates
FP (Q) for a point Q ∈ G2 ⊂ E(Fqk).

Algorithm 1: Miller(P, Q, l)
Data: l = (ln . . . l0)(radix 2 representation), P ∈ G1(⊂ E(Fq)) and

Q ∈ G2(⊂ E(Fqk));
Result: FP (Q) ∈ G3(⊂ F

∗
qk);

1 : T ← P
2 : f1 ← 1
3 : f2 ← 1
for i = n − 1 to 0 do

4 : T ← [2]T , where T = (X, Y, Z) and [2]T = (X2, Y2, Z2)
5 : f1 ←− f1

2 × h1(Q), h1(x) is the equation of the tangent at the point T
if li = 1 then

6 : T ← T + P
7 : f1 ←− f1 × h2(Q), h2(x) is the equation of the line (PT )

end
end
return f1

Algorithm 1 is a simplified version of the Miller’s algorithm (see [3]). The
original algorithm is given in Section A.1. Without loss of generality we can
consider this simplified Miller’s algorithm. We will see in Section 4.1 that the
conclusions for the original algorithm are the same.

3 Fault Attack Against the Miller’s Algorithm

From here on, the secret key will be denoted P and the public parameter Q. We
are going to describe a fault attack against the Miller’s algorithm. We assume
that the algorithm is implemented on an electronic device (like a smart card).
We restrict this study to the case where the secret is used as the first argument
of the pairing. If the secret is used as the second argument, the same attack can
easily be applied as it is explained in Section 3.3. Thus whatever the position of
the secret point, we can recover it.

The goal of a fault injection attack is to provoke mistakes during the calcu-
lation of an algorithm, for example by modifying the internal memory, in order
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to reveal sensitive data. This attack needs a very precise positioning and an ex-
pensive apparatus to be performed. Nevertheless, new technologies could allow
for this attack [10].

3.1 Description of the Fault Attack

We complete the scheme of attack described in [16] to use it against the Miller’s
algorithm. In [16] the attack consists in modifying the number of iterations. We
complete the idea of [16] by giving a precise description of the attack, by com-
puting the probability of finding suitable number of iterations and by adapting
it to the Miller’s algorithm case.

We assume that the pairing is used during an Identity Based Protocol, that
the secret point P is introduced in a smart card or an electronic device as the
first argument of the pairing. If the secret key is the second argument, then it
is easier to find it, as it is explained in Section 3.3. The aim of the attack is to
find P in the computation of e(P, Q). We assume that we have as many public
point Q as we want, and for each of them we can compute the pairing between
the secret point P and the point Q. In order to find the secret P , we modify the
number of iterations in the Miller’s algorithm by the following way.

First of all, we have to find the flip-flops belonging to the counter of the
number of iterations (i.e. l) in the Miller’s algorithm. This step can be done
by using reverse engineering procedures. In classical architecture, the counter is
divided into small piece of 8 bits. We want to find the piece corresponding with
the less significant bits of the counter. To find it, we make one normal execution
of the algorithm, without any fault. Then we choose one piece of the counter,
and provoke disturbances in order to modify it and consequently the number of
iterations of the Miller’s algorithm. For example the disturbance can be induced
by a laser [2]. Lasers are today thin enough to make this attack realistic [10].
Counting the clock cycles, we are able to know how many iterations the Miller
loop has done. If the difference between the new number of iterations and the
number of non modified iterations is smaller than 28, then we find the correct
piece. If not, we repeat this manipulation until we find the piece of the counter
corresponding to the less significant bits.

Once the less significant bits are found, we make several pairing computations
and for each of them we modify the value of the counter. Each time, we record
the value of the Miller loop and the number of iterations we made. The aim is
to obtain a couple (d, d + 1) of two consecutive values, corresponding to d and
d + 1 iterations during the Miller’s algorithm, we give the probability to obtain
such couple in Section 3.2.

3.2 The dth Step

We execute the Miller’s algorithm several times. For each execution we provoke
a disturbance in order to modify the value of l, until we find the result of the dth

and (d + 1)th iterations of Algorithm 1. We denote the two results by Fd,P (Q)
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and Fd+1,P (Q). To conclude the attack, we consider the ratio Fd+1,P (Q)
Fd,P (Q)2 . By

identification in the basis of Fqk , we are lead to a system which can reveal the
secret point P , which is described in Section 3.3.

The Probability. The important point of this fault attack is that we can
obtain two consecutive couples of iterations, after a realistic number of tests.
The number of picks with two consecutive number is the complementary of the
number of picks with no consecutive numbers. The number B(n, N) of possible
picks of n numbers among N integers with no consecutive number is given by
the following recurrence formula:

⎧
⎨

⎩

N ≤ 0, n > 0, B(n, N) = 0,
∀N, n = 0B(n, N) = 1

B(n, N) =
∑N

j=1
∑n

k=1 B(n − k, j − 2).

With this formula, we can compute the probability to obtain two consecutive
numbers after n picks among N integers. This probability P (n, N) is

P (n, N) = 1 − B(n, N)
Cn

n+N

The probability for obtaining two consecutive numbers is sufficiently large to
make the attack possible. In fact, for an 8-bits architecture only 15 tests are
needed to obtain a probability larger than one half, P (15, 28) = 0.56.

Finding j. After d iterations, if we consider that the algorithm 1 has calculated
[j]P then during the (d + 1)th iteration, it calculates [2j]P and considering the
value of the (d + 1)th bit of l, it either stops, or it calculates [2j + 1]P . Q has
order l,( as P and Q have the same order). By counting the number of clock
cycles during the pairing calculation, we can find the number d of iterations.
Then reading the binary decomposition of l gives us directly j. We consider
that at the beginning j = 1, if ln−1 = 0 then j ← 2j, otherwise j ← 2j + 1,
and we continue, until we arrive at the (n − 1 − d)th bit of l. For example, let
l = 1000010000101 in basis 2, and d = 5. At the fifth iteration j = 65.

3.3 Curve and Equations

In [16] and [20], only the affine coordinates case is treated. In this case, a simple
identification of the element in the basis of Fqk gives the result. We demonstrate
that for every coordinate systems, the fault attack against the Miller’s algorithm
is efficient. We describe it for example in Jacobian coordinates. The difference be-
tween with the cases described in [16] and [20] is that we solve a nonlinear system.

The Embedding Degree. In order to simplify the equations, we consider
case k = 4. As the important point of the method is the identification of the
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decomposition in the basis of Fqk , it is easily applicable when k is larger than
3. k = 3 is the minimal value of the embedding degree for which the system
we obtain in Section 3.3 can be solve ”by hand”, without the resultant method
described in Section 3.3. We use k = 4 in order to make the demonstration
easier.

We denote B = {1, ξ,
√

ν, ξ
√

ν} the basis of Fqk , this basis is constructed by a
tower extensions. P ∈ E(Fq) is given in Jacobian coordinates, P = (XP , YP , ZP )
and the point Q ∈ E(Fqk) is in affine coordinates. As k is even, we can use a
classical optimisation in pairing based cryptography which consists in using the
twisted elliptic curve to write Q = (x, y

√
ν), with x, y and ν ∈ Fqk/2 and√

ν ∈ Fqk , for more details we refer the reader to [3].
The equations of the function h1 and h2 in the Miller’s algorithm are the

following: ⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

P = (XP , YP , ZP ),
Q = (x, y

√
ν)

T = (X, Y, Z)
h1(x, y

√
ν) = Z3Z

2y
√

ν − 2Y 2−
= 3(X − Z2)(X + Z2)(xZ2 − X),

with Z3 = 2Y Z in step 5,
h2(x, y

√
ν) = Z3y

√
ν − (YP Z3 − Y Z3

P )x
= −(XpY Zp − XYP Z),

with Z3 = ZZP (XP Z2 − XZ2
P ) in step 7.

As we make random modifications of l during the fault attack, we suppose
that we stop the Miller’s algorithm at its dth step. Moreover, as the point P is
of order l, it is sufficient to observe what happens for d < l, because:
[j + ρl]P = [j]P for ρ ∈ N, so we consider 1 ≤ d < l.

Case 1: ld+1 = 0. We know the results of the dth and (d + 1)th iterations
of the Miller’s algorithm, Fd,P (Q) and Fd+1,P (Q). We examine what happens
during the (d + 1)th iteration.

At the step 4 of the Miller’s algorithm we calculate [2j]P = (X2j , Y2j , Z2j)
and store the result in the variable T . The coordinates of [2j]P are given by the
following formula:

⎧
⎪⎪⎨

⎪⎪⎩

X2j = −8XjY
2
j + 9(Xj − Z2

j )2(Xj + Z2
j )2,

Y2j = 3(Xj − Z2
j )(Xj + Z2

j )×
= (4XjY

2
j − X2) − 8Y 4

j ,
Z2j = 2YjZj.

where we denote [j]P = (Xj , Yj , Zj).
Step 5 then gives:

Fd+1,P (Q) = (Fd,P (Q))2 ×
(
Z2jZ

2
j y

√
ν − 2Y 2

j − 3(Xj − Z2
j )(Xj + Z2

j )(xZ2
j − Xj)

)
.

As we suppose that ld+1 = 0, the additional step is not done. The return result
of the Miller’s algorithm is Fd+1,P (Q). We dispose of Fd,P (Q), Fd+1,P (Q) and
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the point Q = (x, y
√

ν), with x and y ∈ Fq2 . Recall that the coordinates of Q
can be freely chosen.

We can calculate the value R ∈ F
∗
qk of the ratio Fd+1,P (Q)

(Fd,P (Q))2 ,

R = R3ξ
√

ν + R2
√

ν + R1ξ + R0,

where R3, R2, R1, R0 ∈ Fq.
Moreover, we know the theoretical form of R in the basis B = {1, ξ,

√
ν, ξ

√
ν}

which depends of coordinates of [j]P and Q:

R = 2YjZ
3
j y

√
ν − 3Z2

j (X2
j − Z4

j )x − 3Xj(X2
j − Z4

j ) − 2Y 2
j .

As the point Q = (x, y
√

ν) is known, we know the decomposition of x, y ∈
Fqk/2 , x = x0 +x1ξ, y = y0 + y1ξ, where (1, ξ) defines the basis of Fqk/2 , and the
value of x0, x1, y0, y1. Furthermore, Xj, Yj , and Zj are in Fq.

Consequently, with the exact value of R in Fqk , the coordinates of point Q
and the theoretical expression of R depending on the coordinates of P and Q,
we obtain the following system of equations in Fq, by identification in the basis
of Fqk .

⎧
⎪⎪⎨

⎪⎪⎩

2YjZ
3
j y1 = R3,

2YjZ
3
j y0 = R2,

(−3Z2
j (X2

j − Z4
j ))x1 = R1,

(−3Z2
j (X2

j − Z4
j ))x0 − 3Xj(X2

j − Z4
j ) − 2Y 2

j = R0.

This system can be simplified to the following (where we know value of λ0,1,2):

YjZ
3
j = λ2 (1)

Z2
j (X2

j − Z4
j ) = λ1 (2)

3Xj(X2
j − Z4

j ) + 2Y 2
j = λ0 (3)

⎧
⎪⎪⎨

⎪⎪⎩

This nonlinear system can be solve by the following way. Equation (1) gives
Yj as a function of Zj , then equation (2) gives 3(X2

j − Z4
j ) as a function of

Zj . Substituting this expression in equation (3) gives Xj as a function of Zj ,
substituting this expression of Xj in equation (2), we obtain a degree 12 equation
in Zj:

(λ2
0 − 9λ2

1)Z
12 − (4λ0λ

2
2 + 9λ3

1)Z
6 + 4λ4

1 = 0

This equation in Zj admits by construction the point P as a solution. As the
degree is even, this equation admits automatically at least an other solution, and
at worst 12 solutions. We can use the function factorff in PariGP, a software
for mathematical computation [17], to obtain the factorization of the equation in
Zj in Fq, and consequently the solutions of this equation. Using equation (2) we
can express Xj in Zj , and the first equation gives Yj . Solving the equation in Zj ,
we find at most 24 = 12 × 2 × 1 possible triplets (Xj , Yj , Zj) for the coordinates
of the point [j]P . In practice we find at most eight possible solutions for Zj ,
one example is given in Annex B. Once we have the coordinates of [j]P , to find
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the possible points P , we have to find j′ the inverse of j modulo l, and then
calculate [j′][j]P = [j′j]P = P . Using the elliptic curve equation, we eliminate
triplets that do not lie on E. Then we just have to perform Miller’s algorithm
with the remaining points and compare with the result obtained with the secret
point P . So we recover the secret point P , in the case where ld+1 = 0.

Case 2: ld+1 = 1. In this case, the (d + 1)th iteration involves the addition in
the Miller’s algorithm. The doubling step is exactly the same, for the addition
step, we have to consider [2j +1]P = (X2j+1, Y2j+1, Z2j+1) knowing that [j]P =
(Xj , Yj , Zj), [2j]P = (X2j , Y2j , Z2j) and P = (XP , YP , ZP ).

As we have that

h2(X, Y ) = Z2j+1y
√

ν − (YP Z3
2j − Y2jZ

3
P )x − (XP Y2jZP − X2jYP Z2j),

only the coordinate Z2j+1 appears in Step 7 of algorithm 1, and Z2j+1 =
ZP Z2j(XP Z2

2j − X2jZ
2
P ).

At the (d + 1)th iteration we have to calculate:

Fd+1,P (Q) = (Fd,P (Q))2 × h1(Q)h2(Q).

This time, the unknown values are Xj , Yj , Zj and XP , YP , ZP in the ratio R =
h1(Q)h2(Q). With the value of R and Q, and the theoretical expression of R,
by identification we obtain four equations in the six unknown value. The elliptic
curve equation will give us two others equation, as P and [j]P ∈ E(Fq).

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

W1(XP , YP , ZP , Xj , Yj , Zj) = λ1,
W2(XP , YP , ZP , Xj , Yj , Zj) = λ2,
W3(XP , YP , ZP , Xj , Yj , Zj) = λ3,
W4(XP , YP , ZP , Xj , Yj , Zj) = λ4,

Y 2
P − X3

P + 3XP Z4
P − bZ6

P = 0
Y 2

j − X3
j + 3XjZ

4
j − bZ6

j = 0

Where, W{1,2,3,4}() is a polynomial and λ{1,2,3,4} ∈ Fq. We get then a slightly
more difficult system to solve, but giving us the coordinates of P directly, as
coordinates of P are solution of the system. We can use the resultant method
to find the coordinates of the point P . Considering two polynomials S1(X, Y )
and S2(X, Y ), if they are seen as polynomials in X with coefficients in Fq[Y ],
then the resultant of S1 and S1 is a polynomial in Y whose roots are solution
of the system composed with S1(X, Y ) and S2(X, Y ). A succession of resultant
will give an equation in only one unknown value. Experiments show that this
equation is of degree 48, but this equation have at most 8 solutions. We can use
the function polresultant in PariGP to compute the resultant.

When the Secret is the Second Argument of the Pairing. If the point Q
is secret during the pairing computation, all the system written above are linear
in Q coordinates, so it can be recover very easily, by identification in the base
of Fqk .
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4 Vulnerability of Pairings Based on the Miller’s
Algorithm

4.1 Weil Pairing

The Weil pairing is directly sensitive to the attack, as it is composed of two
Miller’s algorithm executions.

Indeed, the Weil pairing is defined as eW (P, Q) = FP (Q)
FQ(P ) .

We consider that the same modified l is used for the Miller Lite and the Full
Miller part. We can apply the attack described above, we describe it with the sim-
plified version of the Miller’s algorithm, the equations with the original Miller’s
algorithm A.1 are similar.

Let H1 and H2 be the equations used in the steps 5 and 7, in the Full Miller
part. For example, H1(P ) is the equation of the tangent at point T in the Full
Miller’s algorithm, and at this moment T = [2j]Q.
The ratio R between the result of two consecutive iterations is then h1(Q)

H1(P ) = R,
the system obtained after the identification of the element in the basis of Fqk

is composed of 4 equations with 6 unknown values. Using the elliptic curve
equation it can be solved with the resultant method exactly as in Section 3.3.
If the original algorithm is employed, the ratio R becomes: h1(Q)H2(P )

h2(Q)H1(P ) , and the
same method can be applied.

4.2 Tate and Ate Pairings

The Tate and Ate pairings are constructed on the same model, one execution of
the Miller’s algorithm plus a final exponentiation, for example the Tate pairing

is eT (P, Q) = (FP (Q))
qk−1

l . The first difficulty in attacking these two pairings
with our scheme is to find a ( qk−1

l )th root of the result.
The conclusion in [20] was that the final exponentiation is a natural counter-

measure to the fault attacks. However, several method exist in literature in the
microelectronic community to read the intermediary result during a computation
on a smart card, or to override the final exponentiation.

We describe one of them, the scan attack against smart card, presented by D.
Ellie and R. Karri in [8]. This scan attack consists of reading the intermediary
state in the smart card. All smart cards contains an access, the scan chains,
for testing the chip, which allows for this scan attack. The method of a scan
attack is to scan out the internal state in test mode. This scanning gives us
all the intermediary states of the smart card. So if the computation are stopped
exactly before the exponentiation, a scan attack can give the result of the Miller’s
algorithm.

Other attacks to override the final exponentiation exist, they are quitte diffi-
cult to realise but not unrealistic. For exemple, the under voltage technique [2]
or the combination of the cipher instruction search attack realised by M. Khun
and described in [2] which consists in recognizing enciphered instructions from
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their effect and the use of a focused ion beam workstation to access the EEP-
ROM. A taxonomy of attackers has been done in [1], to realise the fault attack
describe above, we consider that we were a class II attacker (knowledge insider).
In order to perform the scan, under voltage and cipher instruction search, the
attacker must be a class III, i.e. a funded organisation. Some material counter
measures exist to prevent the modification of the memory by light or electro-
magnetic emissions, e.g. a shield. It is also possible to add a Hamming code at
the end of the register to detect the fault [13], or to use an asynchrone clock.

5 Conclusion

We have presented in this paper the vulnerability to a fault attack of the Miller’s
algorithm when it is used in an Identity Based Protocol. The attack consists
in modifying the internal counter of an electronic device to provoke shorter
iterations of the algorithm, we consider all the possible iterations. We describe
precisely the way to realise this fault attack. We give the probability of obtaining
two consecutive iterations, and we find out that a small number of tests are
needed to find two consecutive results.

We consider the case when the point P , the first argument of the Miller’s
algorithm, is secret. The result of the fault attack is a nonlinear system, whose
variables are coordinates of P and Q. We describe the method to solve this
nonlinear system. If the secret is the second point Q, our scheme is also applicable
and the nonlinear system becomes a linear system, which is easier to solve.
Thus, whatever the position of the secret point, our fault attack will recover
it. Moreover, we have described the resolution in Jacobian coordinates, but the
scheme is the same in affine, projective and Edwards coordinates and we explain
how to solve it.

Then, we have analised the weakness to this fault attack of pairing based on
the Miller’s algorithm. The Weil pairing is directly sensitive to this attack. The
Tate and Ate pairings present a final exponentiation which previously protect
them against this fault attack. We introduce attacks used for a while in the
microelectronic community to override the final exponentiation in the Tate and
Ate pairings. The scan attack, the under voltage attack and the cipher instruction
search are three different attacks which allow the attacker to get the result of
the Miller iteration before the final exponentiation.

As a conclusion, we can say that the fault attack is a threat against the Miller’s
algorithm, and consequently to pairings based on the Miller’s algorithm.
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A Pairing Algorithm

A.1 Original Miller’s Algorithm

Algorithm 2: Miller(P, Q, n)
Data: n = (nl . . . n0)(radix 2 representation), P ∈ G1(⊂ E(Fp)) and

Q ∈ G2(⊂ E(Fpk));
Result: FP (Q) ∈ G3(⊂ F

∗
pk);

T ← P
f1 ← 1
f2 ← 1
for i = l − 1 to 0 do

T ← [2]T1

f1 ←− f1
2 × h1(Q)

f2 ←− f2
2 × h2(Q) (where Div(h1

h2
) = 2(T ) − ([2]T ) − P∞)

if ni = 1 then2
T ← T ⊕ P
f1 ←− f1 × h1(Q)
f2 ←− f2 × h2(Q) (where Div(h1

h2
) = (T ) + DP − ((T ) ⊕ DP ) − P∞)

end
end
return f1

f2

B Example

We compute this exemple using PariGP [17].
k = 4

p = 680241220348515477477949259894191902369939655
391504568151207016994661689050587617052536187229749 (319 bit)

E : Y 2 = X3 + 3XZ4

card(E(Fp)) = 68024122034851547747794925989419190236993
9655390338170945836123217606411022317222264735061564936 (319 bit)

l = 1166397205370893777055276948271688598347500051217 (160 bit)

P = [12, 48, 2]

To construct Fqk , we use the element a ∈ Fqk such that a4 = 2

Q = [a2, 10051291662999945753408354793254190036729474358
2692206264363320753064855041994266311971573488636∗ a]

We stop the Miller’s algorithm at the 46th iteration.
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The ratio R is:
33725958646808068348839953904622987479597324232233
9094577672485334431934756557508827
480079490557 × a2 + 62475206273985700946754583669539512
7071983321507188174321543153770228940196002139337802972603156×a+2904662950
149156985601567743940464818069284748735166316768106
92056674915620683567856541417846103

Written down the equations we obtain the following system:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

YjZ
3
j = λ2 = 52642153715028659889670329848

3149985967580207398544590133171776
285079049014186714839235255813297

3Z2
j (X2

j − Z4
j ) = λ1 = 47514830941754363936962131134

6136013833460391400891264127160029
381884835668719747434801612007813

3Xj(X2
j − Z4

j ) − 2Y 2
j = λ0 = 389774925333599778917792485

50014542056301118051798793647439
6324937986773429904049195994769383646

(λ2
0 − 9λ2

1)Z
12 − (4λ0λ

2
2 + 9λ3

1)Z
6 + 4λ4

1 = 0

The function factorff(f(Z),p) in PariGP gives six different solutions in Z.
[Mod(1660728175872055618509152840075099142307465465155823285225045

17934359493296306626253218820537301, p),
Mod(18612943962395238829049904990
175006578277838877750622865464857
922468703654633140744590802
2796608, p), Mod(3280389631373575273365349259849319
223564147200984160109740
53919835615159207949583353409343895840, p), Mod(3522022
572111579501414143339092
599800135249352930885571771530971590465298426380336991
26843333909, p), Mod(494111
78072456308918745020999244183658716126661399833949655
843776997465250425620960662
8164433141, p), Mod(51416840276130991562703397588668198
813919310887592223962870249
9060302195754280990799317366692448, p)]

Among all the possible triplet the six are on the elliptic curve. We find the
inverse modulo p of 46 and compute the six possibilities for P . Then we just
have to perform six Miller’s algorithms and compare with the result obtained
with the secret point P .
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