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Abstract. Since the early seventies, numerous numerical programs have been 
developed to simulate biophysical processes. The current challenge facing 
scientific communities is to access any program using their usual language. 
Migration is a way of dealing with the challenge.  
The conventional methodology to build up migration functions is the rule-based 
method. An alternative consists in using the category theory. This paper 
illustrates the methodology applied to bidirectional migration of a program 
written using a language based on the system theory (SIMILE) to a biological 
modelling language (APES - EU SEAMLESS integrated project) constructed 
using design patterns. Using the category theory enabled us (i) to provide a 
mathematical formalism for composition of the program features, i.e. the 
architecture and semantic function, (ii) to identify aspects which could not be 
preserved in the migration because of language expressiveness, and (iii) to 
automate the migration. 

Keywords: Preservation, Architecture, Semantic Function, UML, Program 
Equivalence. 

1   Introduction 

Since the early seventies, numerous numerical programs have been developed to 
simulate biophysical processes. Most of those programs were first written using 
common programming languages, e.g. Fortran, and source code structure specific to 
each researcher [1]. Later on, in the 90s, a family of languages based on the system 
theory appeared [2]. Within that range, Modelica [3], Stella [4] and SIMILE [5], for 
instance, started being used as an assistant framework for program construction. 
Those languages used the concepts of object, relation between objects, object 
aggregation and model abstraction level M1. Recently, the new concept of design 
patterns [6] and ADL [7] started to be used in biological programs [8]. While 
languages based on the system theory and on the new concepts are simultaneously 
being used, the biological community today is faced with the problem of re-using the 



different programs. The current challenge facing the community is to access any 
program using their usual language, and to be able to integrate program improvements 
whatever the language. Bidirectional migration [9, 10] is a way of dealing with the 
challenge. 

To be moved at the end: Rule-based transformation systems [11] and triple graph 
grammars [12] are commonly adopted for migration. Both methods consist in 
identifying appropriate transformation rules and the rule matching algorithms [13]. In 
these methods, the transformation rules are incrementally identified and thus not 
automated. Moreover, preservation is evaluated in fine. Alternatively, other 
methodologies are quoted facing preservation. Concerning architecture, [14] proposed 
a method using process algebra. On the other hand, [15] adopted the category theory 
for preserving program maintainability in regard to the semantic function, i.e. the 
program computation [16]. Out of preservation, the category theory has already been 
applied to computer science to solve complex theoretical problems [17, 18].  

Program = Turing machine, but need to preserve data organization for 
maintenance.  

 
In the case of biological program migration, our objective was to preserve the 

architecture of the program and the semantic function. Our question was then to 
identify a methodology enabling bidirectional preservation of both features. The 
category theory [19] deals with mathematical structures and relationships between 
them. Graphs are made of objects, and arrows between objects. In addition to objects 
and arrows (called morphisms in the category theory), the category theory also 
considers the composition of arrows, i.e. the composition of morphisms [20]. The 
advantage of the theory is thus to take into account graph structure through the 
composition of morphisms. In our case, we assumed that languages could be 
represented by categories. We hypothesize that studying the relationship between 
categories could enable us to (i) identify aspects which could not be preserved 
because of the difference in language expressiveness and (ii) construct the appropriate 
bidirectional migration function. Once the object correspondence established in the 
scope of the category theory, the elaboration of translation rules becomes automated 
by construction.  

The aim of this paper is to present the methodology and highlight its merits for 
bidirectional migration. We illustrate our proposal with the bidirectional migration of 
a program written using SIMILE [5] and a biological modelling language (APES - EU 
SEAMLESS integrated project) constructed using design patterns [6]. 

2   Category theory 

2.1   Definition and notation 

A category C is defined by: 
-  A class of objects, noted Ob(C).  
-  For each pair of objects (X, Y), a set noted HomC(X, Y), whose elements are 

called morphisms of X on Y. 



-  and for each triplet of objects (X, Y, Z) of Ob(C), an application HomC(X, Y) × 
HomC(Y, Z)  HomC(X, Z) called composition of morphisms. 

A category should verify the following conditions: 
-  Condition 1: if a pair of objects (X1, Y1) is different from the pair (X2, Y2), then  

HomC(X1, Y1) ∩ HomC(X2, Y2) = ∅ 
-  Condition 2: for each object X ∈ Ob(C), there is an element of HomC(X, X), 

noted idX which is a neutral element for the composition of morphisms: f ° idX = 
idY ° f  = f 

-  Condition 3: composition is associative. Let f: X  Y, g: Y  Z and h: Z  
 T, we have: (h ° g) ° f = h ° (g ° f). 

 

2.2   Operations on categories 

Several operations can be performed on categories (monads, toposes, etc.). Two of 
them were used in this study: product of categories and functor. In our case, because 
the class of objects was a finite set and the class of morphisms was a set, the category 
is said to be small. 
 
Product of small categories. Let Ob(C) = {XC, YC …} and Ob(D) = {XD, YD …}. 
The product of C and D, noted C × D, provides a new category E defined as follows: 
-  Ob(E) is the Cartesian product of Ob(C) and Ob(D). An object of E corresponds to 

a pair of objects of C and D, e.g. (XC, XD).  
-  Hom(E) is the Cartesian product of Hom(C) and Hom(D). A morphism of E (XC, 

YC)  (XD, YD) is a pair <f, g> of morphisms of C × D where f: XC  XD in 
C and g: YC  YD in D. 

-  The composition of morphisms is defined by: <fC, gC> ° <fD, gD> = <fC ° fD, gC ° 
gD> 

- and morphism identity by: idE = <idC, idD> 
  
Functor. A functor corresponds to a morphism of categories. A functor supports the 
mapping from objects to objects, morphisms to morphisms, and preserves source, 
target, identities and composition. The covariant functor F (called functor in this 
paper) mapping category C to category D is defined as follows: 
-  Objects: for each X ∈ Ob(C), F(X) ∈ Ob(D) 
-  Morphisms: for each f ∈ HomC(X, Y), F(f) ∈ HomD(F(X), F(Y)) 
Two conditions have to be verified:  
-  Condition 4: relative to identity morphism F(idX) = idF(X) 
-   Condition 5: let f and g 2 morphisms of the source category: F(g ° f) = F(g) ° F(f) 



3   Application to migration 

3.1   Categories 

A language is defined by its architecture and a semantic function. According to [5], 
architectural configurations, or topologies, are connected graphs of constituents and 
connectors that describe architectural structure. Architecture provides the inclusion 
relationships between constituents and sets of constituents. Architecture can then be 
represented by a category (CArch), where constituents are objects and morphisms the 
inclusion relationships between constituents. In that case, the composition of 
morphism is given by the association of morphisms e.g. (A ∈ B) and (B ∈ C)  (A 
∈ C). In accordance with this definition, conditions 1 and 3 are verified by 
construction. For condition 2, the identity morphisms correspond to the inclusion 
relationship mappings of an object with itself, which is true. 
The semantic function deals with the numerical relationship existing between 
constituents. The semantic function can thus be considered as a calling sequence. It 
can then be represented by a category (CSF) where constituents are objects and 
morphisms the calling sequence of the constituents. In that case, the composition of 
morphism is given by the order relationship e.g. (A ≤ B) and (B ≤ C)  (A ≤ C). In 
accordance with this definition, condition 1 is verified by construction. Since the 
composition of morphisms corresponds to the composite of sequence, which is also a 
sequence, condition 3 is also verified. Finally, the identity morphism for condition 2 
corresponds to the empty path. 

From a mathematical point of view, the product of categories allows to consider 
simultaneously the characteristics of both categories. In this paper, we deal with 
languages whose architecture and semantic function are independent. Thus, we 
considered the language as the product of the architecture and the semantic function 
according to equation (1). 

CLang = CArch × CSF . (1) 

3.2   Migration function 

Migration consists in establishing the correspondence between the source and the 
target language. A language is described using classes to instantiate in order to build 
the program. By definition, the functor represents the migration function. Object 
mapping corresponds to mapping the source language classes to the target ones, and 
morphism to the translation rules. Translation rules consider simultaneously both the 
architecture and semantic function. Functor F from source to target language, 
represented respectively by CSourceLang and CTargetLang categories, is noted:  

F: CSourceLang  CTargetLang . (2) 

 
In order to introduce a common description of the language, we regroup the 

original language classes using UML. The extra classes created are then used for 
constructing the categories and the functors. By definition, a functor should always 



map the source to target objects and morphisms. Aspects having no target 
correspondence cannot be preserved. 

4   Illustration  

4.1   SIMILE category (CS) 

SIMILE [5, 21] is a modelling language devoted to the simulation of differential 
dynamic systems [22]. In the user interface, SIMILE proposes a set of classes that 
need to be instantiated in order to build up the program. Change in entity status in 
relation to that of the connected ones is specified using numerical equations also 
written by users. In [5], the authors describe language functionalities, but not the 
language itself. From functionalities, we deduced the class diagram presented in 
Figure 1. 
 

 
 

Fig. 1. Class diagram of SIMILE language designed using the UML convention. Classes are 
represented by rectangles. Classes in grey correspond to those being instantiated by the user. 
The diagram was inferred from the description of functionalities by [5]. 
 

In accordance with UML, the SIMILE language offers 2 types of element class: 
entity and connector, which correspond respectively to the objects used for the 
description of the simulated system, and to the characterization of the associative 
relationship existing between entities. We classified entities depending on their 
capacity to aggregate the others. Complex entities (K) could aggregate any entity 
while simple entities (SE) could not. Within the K class, “SubModel” enabled the 
constitution of groups of entities. Within the SE, we distinguished associative SE (L) 
which could be associated to K, and basic SE (M) which could not. M was the base 
class for 3 entity classes, namely: 



-  “Compartment”, representing the state of the system 
-  “Flow”, representing the numerical function responsible for changes in the 

state of the system 
- “Information”, representing the information used in the management of the 

system. Information can be defined either by a parameter, or an input, or an 
intermediary variable. 

L was the base class for the “Command” class associated to K. Commands were 
orders applied to every entity included in K (K entry condition, loops, etc.).  

Two types of oriented connectors are offered. “Influence” is used to establish the 
numerical relationship between different SE and thus specify the calling sequence. 
“Role” only applies to K, and deals with the program architecture. It confers the size 
of the multi-dimensional array of a K target in relation to that of the K sources. 

The class of objects of the two feature categories is a set containing the 3 objects of 
the language: {K, L, M}. Based on the class diagram (Figure 1), we established the 
morphisms between objects for the two feature categories shown in Figure 2. In the 
case of the semantic function, morphisms K  M and M  K are not explicit but 
resulted respectively from the composition of Hom(K, L) × Hom(L, M) and Hom(M, 
L) × Hom(L, K). From a mathematical point of view, the architecture feature graph 
presents a tree structure where leaves correspond to classes L and M, and internal 
nodes to class K. The semantic function feature graph presents a lattice structure 
where all classes are interconnected. These two graphs are summarised in Table 1. 

 
a)         b) 

 
 
 
 
 
 
 

 
Fig. 2. Graphs of the architecture (a) and semantic function (b) of SIMILE.  

 
Table 1. Morphisms of the architecture and the semantic function categories of SIMILE. A 
column corresponds to the source and a line to the target. IdX corresponds to the identity 
morphism, ‘*’ to the existence and ‘∅’ to the absence of morphism.  
 

 Source Architecture Semantic function 
 object K M L K M L 
 K idK ∅ ∅ idK * * 
 M * idM ∅ * idM * 
 L * ∅ idL * * idL 

 
The language category corresponds to the product of the architecture and the 

semantic function categories. The resulting class of objects of the SIMILE category is 
Ob(CS) = {(K, K), (K, L), (K, M), (L, K), (L, L), (L, M), (M, K), (M, L), (M, M)}. 

K 

M 

L

M

L K



Language category morphisms are obtained by the Cartesian product of architecture 
and semantic function morphisms (Table 2).  

 
Table 2. Morphisms of the SIMILE language category. The table shows the Cartesian product 
of morphisms of architecture (column), and semantic function categories (line). The table was 
drawn up from the definition of the product of categories according to the category theory. IdX 
corresponds to the identity morphism, ‘*’ to the existence and ‘∅’ to the absence of morphism.  
 
 Hom(x,y)  K,K K,M K,L M,K M,M M,L L,K L,M L,L 
 K,K  idK,idK idK,* IdK,* ∅,idK ∅,* ∅,* ∅,idK ∅,* ∅,* 
 K,M  idK,* idK,idM IdK,* ∅,* ∅,idM ∅,* ∅,* ∅,idM ∅,* 
 K,L  idK,* idK,* IdK,idL ∅,* ∅,* ∅,idL ∅,* ∅,* ∅,idL 
 M,K  *,IdK *,* *,* idM,IdK idM,* idM,* ∅,idK ∅,* ∅,* 
 M,M  *,* *,idM *,* idM,* idM,idM idM,* ∅,* ∅,idM ∅,* 
 M,L  *,* *,* *,idL idM,* idM,* idM,idL ∅,* ∅,* ∅,idL 
 L,K  *,idK *,* *,* ∅,idK ∅,* ∅,* idL,idKidL,* idL,* 
 L,M  *,* *,idM *,* ∅,* ∅,idM ∅,* idL,* idL,idM idL,* 
 L,L  *,* *,* *,idL ∅,* ∅,* ∅,idL idL,* idL,* idL,idL 

4.2   APES category (CA) 

APES [23] is a platform devoted to the simulation of agricultural production on a 
field level. APES was developed under the EU Sixth Framework Research 
Programme SEAMLESS [24, 25]. APES architecture consists of a set of self-
contained components [26] interconnected using the ModCom core [27]. The role of 
Modcom is (i) to construct a recursive calling chain of the component set and (ii) to 
transfer output variable values from one component to the others at every time step of 
the simulation. In APES, the architecture of a component obeys a specific design 
based on the use of design patterns. The connection of the component with ModCom 
is based on the “adapter” structural design pattern. Connection consists in adapting 
the component interface (ClsMyComponent) to that of ModCom (OdeSimObj). 
OdeSimObj provides four virtual methods which present specific roles in the 
component running within the components chain. Among them, GetRates is the 
method dedicated to run the program of the component (Figure 3). 
 



 
 
Fig. 3. Class diagram of an APES component designed using the UML convention. Classes in 
grey correspond to those implementing the component program.  

 
The structure of the component program is based on the object paradigm [28]. In 

accordance with this paradigm, the state of the program is described using classes of 
data (Implemented data class = MD) and its behaviour using classes of methods 
(Implemented method class = R). We established the class diagram of the component 
in reference to [23] and [29]. The role of data classes is to group variables in 
accordance with the categorization imposed by APES. A distinction is made between 
three types of data classes. Basic data (U) correspond to the variables of the program: 

-  “CState”, containing the state variables of the program 
-  “CRate”, containing the variation rate variables of the program 
-  “CAuxiliary”, containing the other variables of the program which cannot be 

part of the two data classes above.  
Input data (T) are provided from the other components of the platform: 

-  “CRateExternal”, containing the input state variables 
-  “CStateExternal”, containing the input variation rate variables 
-  “CExogeneous”, containing the input auxiliary variables 

Specific input data (S) relative to a particular method:  
-  “CParameter”, containing the value of the different parameters of the program 

In the data classes, the variable types correspond to usual static data types (integer, 
Boolean, real, string). Arrays of variables are allowed, but not data structures. Classes 
allow the adjunction of text describing each data item, its initial value and the upper 
and lower bounds. 



The role of the method class is to establish the calling sequence of the methods and 
to carry out the calculation on the U variables using variables from U, T, and S. The R 
class is designed using three design patterns [6]: the “strategy” behavioural design 
pattern consists in defining a unique design of method structure in order to make them 
interchangeable, the “façade” structural design pattern consists in defining a unified 
interface, and the “composite” structural design pattern consists in allowing the 
composite of methods into tree structures to represent part-whole hierarchies of 
methods. The association of those patterns provides a unique structure to all methods, 
independently of the program source code.  

Finally, we added the “Q” class corresponding to the statement provided by the 
virtual machine. In APES, the considered statements are “if” and “for”. 

The class of objects of the two feature categories is a set containing the 5 objects of 
the language: {R, U, T, S, Q}. Based on the class diagram (Figure 3), we established 
the morphisms between objects for the two feature categories (Figure 4). The graph of 
architecture feature shows 3 sub-graphs. Two sub-graphs consist of isolated nodes, 
i.e. U and T. The third sub-graph consists of a tree graph where leaves correspond to 
S and Q and the internal node to R.  The graph of the semantic function feature shows 
a lattice structure. These two graphs are summarized in Table 3.  
 
a)            b) 
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Fig. 4. Graphs of the architecture (a) and semantic function (b) of APES.  
 
Table 3. Morphisms of the architecture and the semantic function categories of APES. A 
column corresponds to the source and a row to the target. IdX corresponds to the identity 
morphism, ‘*’ to the existence and ‘∅’ to the absence of morphism. 
 

Source Architecture Semantic function 
Object R U T S Q R U T S Q 
R idR ∅ ∅ ∅ ∅ idR * ∅ ∅ * 
U ∅ idU ∅ ∅ ∅ * idU ∅ ∅ * 
T ∅ ∅ idT ∅ ∅ * * idT ∅ * 
S * ∅ ∅ idS ∅ * * ∅ idS * 
Q * ∅ ∅ ∅ IdQ * * ∅ ∅ IdQ 

 
 



The resulting class of objects of the APES category is Ob(CA) = {(R, R}, (R, U), 
(R, T), (R, S), (R, Q), (U, R), (U, U), (U, T), (U, S), (U, Q), (T, R), (T, U), (T, T), (T, 
S), (T,Q), (S, R), (S, U), (S, T), (S, S), (S, Q), (Q, R), (Q, U), (Q, T), (Q, S), (Q, Q)}. 
Language category morphisms are given in Table 4 (Q class not displayed).  

 
Table 4. Morphisms of the APES language category. The table displays the Cartesian product 
of morphisms of architecture (column), and semantic function categories (row). The table is 
based on the definition of the product of categories according to the category theory. IdX 
corresponds to the identity morphism, ‘*’ to the existence and ‘∅’ to the absence of morphism. 
To improve legibility, ‘⎯’ is used in place of ‘(∅,∅)’. 
 

 Hom(x,y)  R,R R,U R,T R,S U,R U,U U,T U,S T,R T,U T,T T,S S,R S,U S,T S,S 
 R,R  idR,idRidR,* idR,∅ idR,∅ ∅,idR ∅,*   ⎯   ⎯ ∅,idR ∅,*   ⎯   ⎯ ∅,idR ∅,*   ⎯   ⎯ 
 R,U  idR,* idR,idU idR,∅ idR,∅ ∅,* ∅,idU   ⎯   ⎯ ∅,* ∅,idU   ⎯   ⎯ ∅,* ∅,idU   ⎯   ⎯ 
 R,T  idR,* idR,* idR,idTidR,∅ ∅,* ∅,* ∅,idT   ⎯ ∅,* ∅,* ∅,idT   ⎯ ∅,* ∅,* ∅,idT   ⎯ 
 R,S  idR,* idR,* idR,∅ idR,idS∅,* ∅,* ∅,∅ ∅,idS ∅,* ∅,*   ⎯ ∅,idS ∅,* ∅,*   ⎯ ∅,idS 
 U,R  ∅,idR ∅,*   ⎯   ⎯ idU,idRidU,* idU,∅ idU,∅ ∅,idR ∅,*   ⎯   ⎯ ∅,idR ∅,*   ⎯   ⎯ 
 U,U  ∅,* ∅,idU   ⎯   ⎯ idU,* idU,idUidU,∅ idU,∅ ∅,* ∅,idU   ⎯   ⎯ ∅,* ∅,idU   ⎯   ⎯ 
 U,T  ∅,* ∅,* ∅,idT   ⎯ idU,* idU,* idU,idTidU,∅ ∅,* ∅,* ∅,idT   ⎯ ∅,* ∅,* ∅,idT   ⎯ 
 U,S  ∅,* ∅,*   ⎯ ∅,idS idU,* idU,* idU,∅ idU,idS∅,* ∅,*   ⎯ ∅,idS ∅,* ∅,*   ⎯ ∅,idS 
 T,R  ∅,idR ∅,*   ⎯   ⎯ ∅,idR ∅,*   ⎯   ⎯ idT,idRidT,* idT,∅ idT,∅ ∅,idR ∅,*   ⎯   ⎯ 
 T,U  ∅,* ∅,idU   ⎯   ⎯ ∅,* ∅,idU   ⎯   ⎯ idT,* idT,idUidT,∅ idT,∅ ∅,* ∅,idU   ⎯   ⎯ 
 T,T  ∅,* ∅,* ∅,idT   ⎯ ∅,* ∅,* ∅,idT   ⎯ idT,* idT,* idT,idTidT,∅ ∅,* ∅,* ∅,idT   ⎯ 
 T,S  ∅,* ∅,*   ⎯ ∅,idS ∅,* ∅,*   ⎯ ∅,idS idT,* idT,* idT,∅ idT,idS∅,* ∅,*   ⎯ ∅,idS 
 S,R  *,idR *,* *,∅ *,∅ ∅,idR ∅,*   ⎯   ⎯ ∅,idR ∅,*   ⎯   ⎯ idS,idRidS,* idS,∅ idS,∅ 
 S,U  *,* *,idU *,∅ *,∅ ∅,* ∅,idU   ⎯   ⎯ ∅,* ∅,idU   ⎯   ⎯ idS,* idS,idUidS,∅ idS,∅ 
 S,T  *,* *,* *,idT *,∅ ∅,* ∅,* ∅,idT   ⎯ ∅,* ∅,* ∅,idT   ⎯ idS,* idS,* idS,idTidS,∅ 
 S,S  *,* *,* *,∅ *,idS ∅,* ∅,*   ⎯ ∅,idS ∅,* ∅,*   ⎯ ∅,idS idS,* idS,* idS,∅ idS,idS

4.3   Migration 

From SIMILE to APES (F: CS  CA). As architectural and semantic function 
categories are composed of the same set of objects, pair-to-pair correspondence can 
be summarized as object-to-object correspondence: K, L, and M in SIMILE 
correspond respectively to R, Q, and [U, T and S] in APES (Table 5).  

 
Table 5. Summarized mapping of the language classes from SIMILE to APES. 
 

Ob(CS) Simile class APES class Ob(CA) 
K Submodel CMyStrategy R 
M Compartment CRate U 
M Flow CState U 

Parameter CParameter S 
Connected to a 
compartment 

CStateExternal T 

Connected to a 
flow 

CRateExternal T Input 

Other CExogeneous T 

M Information  

Intermediary variable CAuxiliary U 
L Command Statement Q 



Establishing the correspondence of morphisms amounts to checking the cell 
content correspondence between Table 2 (source) and Table 4 (target). As they 
correspond to input data, S and T could not be the target of the semantic function 
morphisms (calling sequence). In Table 6, the target cells whose source content are 
not preserved in the migration are shown in grey. All grey cells correspond to 
architecture, i.e. (*,-)   (∅,-). For Q, architecture and semantic function are 
preserved (not shown). 

 
Table 6. Morphism preservation in the SIMILE to APES migration. In grey, cells whose source 
content is not preserved in the migration. All grey cells correspond to architecture, i.e. (*,-) 

 (∅, -). To improve legibility, ‘−’ is used in place of ‘(∅,∅)’. 
 

Hom(x,y) R,R R,U R,T R,S U,R U,U U,T U,S T,R T,U T,T T,S S,R S,U S,T S,S 
 R,R idR,idR idR,* idR,∅ idR,∅ ∅,idR ∅,* ⎯ ⎯ ∅,idR ∅,* ⎯ ⎯ ∅,idR ∅,*   ⎯   ⎯ 
 R,U idR,* idR,idU idR,∅ idR,∅ ∅,* ∅,idU ⎯ ⎯ ∅,* ∅,idU ⎯ ⎯ ∅,* ∅,idU ⎯   ⎯ 
 R,T idR,* idR,* idR,idT idR,∅ ∅,* ∅,* ∅,idT ⎯ ∅,* ∅,* ∅,idT ⎯ ∅,* ∅,* ∅,idT   ⎯ 
 R,S idR,* idR,* idR,∅ idR,idS ∅,* ∅,* ⎯ ∅,idS ∅,* ∅,* ⎯ ∅,idS ∅,* ∅,* ⎯ ∅,idS 
 U,R ∅,idR ∅,* ⎯ ⎯ idU,idR idU,* idU,∅ idU,∅ ∅,idR ∅,* ⎯ ⎯ ∅,idR ∅,* ⎯ ⎯ 
 U,U ∅,* ∅,idU ⎯ ⎯ idU,* idU,idU idU,∅ idU,∅ ∅,* ∅,idU ⎯ ⎯ ∅,* ∅,idU ⎯ ⎯ 
 U,T ∅,* ∅,* ∅,idT ⎯ idU,* idU,* idU,idT idU,∅ ∅,* ∅,* ∅,idT ⎯ ∅,* ∅,* ∅,idT ⎯ 
 U,S ∅,* ∅,* ⎯ ∅,idS idU,* idU,* idU,∅ idU,idS ∅,* ∅,* ⎯ ∅,idS ∅,* ∅,* ⎯ ∅,idS 
 T,R ∅,idR ∅,* ⎯ ⎯ ∅,idR ∅,* ⎯ ⎯ idT,idR idT,* idT,∅ idT,∅ ∅,idR ∅,* ⎯ ⎯ 
 T,U ∅,* ∅,idU ⎯ ⎯ ∅,* ∅,idU ⎯ ⎯ idT,* idT,idU idT,∅ idT,∅ ∅,* ∅,idU ⎯ ⎯ 
 T,T ∅,* ∅,* ∅,idT ⎯ ∅,* ∅,* ∅,idT ⎯ idT,* idT,* idT,idT idT,∅ ∅,* ∅,* ∅,idT ⎯ 
 T,S ∅,* ∅,* ⎯ ∅,idS ∅,* ∅,* ⎯ ∅,idS idT,* idT,* idT,∅ idT,idS ∅,* ∅,* ⎯ ∅,idS 
 S,R *,idR *,* *,∅ *,∅ ∅,idR ∅,* ⎯ ⎯ ∅,idR ∅,* ⎯ ⎯ idS,idR idS,* idS,∅ idS,∅ 
 S,U *,* *,idU *,∅ *,∅ ∅,* ∅,idU ⎯ ⎯ ∅,* ∅,idU ⎯ ⎯ idS,* idS,idU idS,∅ idS,∅ 
 S,T *,* *,* *,idT *,∅ ∅,* ∅,* ∅,idT ⎯ ∅,* ∅,* ∅,idT ⎯ idS,* idS,* idS,idT idS,∅ 
 S,S *,* *,* *,∅ *,idS ∅,* ∅,* ⎯ ∅,idS ∅,* ∅,* ⎯ ∅,idS idS,* idS,* idS,∅ idS,idS

 
 
From APES to SIMILE (G: CA  CS). Table 7 shows the mapping of the 
language objects from APES to SIMILE. The same methodology as applied to F 
enabled us to identify the preservation of G migration. In that direction all morphisms 
were mapped. All aspects of the 2 features are then preserved. 
Table 7. Summarized mapping of the classes from APES to SIMILE. 
 

Ob(CA) APES classes SIMILE classes Ob(CS) 
R CMyStrategy Submodel K 
U CState Compartment M 
U CRate Flow M 
U CAuxiliary Information M 
T CStateExternal Information M 
T CRateExternal Information M 
T CExogeneous Information M 
S CParameter Information M 
Q Statement Command L 

 
 



Verification of identity morphism mapping (condition 4) consisted in checking that 
the identity morphisms of APES corresponds to the identity morphisms of SIMILE. 
Table 8 shows that correspondence. 

 
Table 8. Identity morphism correspondence between APES and SIMILE. 
 

Ob(CA) idAPES Ob(CS) idSim Ob(CA) idAPES Ob(CS) idSim 
R,R idR,idR K,K idK,idK T,R idT,idR M,K idM,idK 
R,U idR,idU K,M idK,idM T,U idT,idU M,M idM,idM 
R,T idR,idT K,M idK,idM T,T idT,idT M,M idM,idM 
R,S idR,idS K,M idK,idM T,S idT,idS M,M idM,idM 
U,R idU,idR M,K idM,idK S,R idS,idR M,K idM,idK 
U,U idU,idU M,M idM,idM S,U idS,idU M,M idM,idM 
U,T idU,idT M,M idM,idM S,T idS,idT M,M idM,idM 
U,S idU,idS M,M idM,idM S,S idS,idS M,M idM,idM 

 
 

Verification of condition 5 consisted in checking that G(g ° f) = G(g) ° G(f) for each 
pair of morphisms f and g in table 4. For example: 
 

 f   G(f) 
  HomArch(T,U) × HomSF(U,R)  HomArch(M,M) × HomSF(M,K)  

 <∅,*> <idM,*> 
        
 g  G(g) 

 HomArch(R,T) × HomSF(R,U) HomArch(K,M) × HomSF(K,M) 
 <idR,*>  <idK,idM>                        
 
 g  °  f   

 HomArch(R,T) × HomSF(R,U)  HomArch(T,U) × HomSF(U,R)  
 HomArch(R,U) × HomSF(R,R)       

                                                  <idR,*> 
 

 G(g) ° G(f)  
 HomArch(K,M) × HomSF(K,M)       HomArch(M,M) × HomSF(M,K) 
  HomArch(K,M) × HomSF(K,K) 

  <idK,*> . 
 

 
 g ° f   G(g ° f) 

 HomArch(R,U) × HomSF(R,R) HomArch(K,M) × HomSF(K,K) 
 <idR,*> <idK,*> .  

 

 
 
 
 

 
 
 

 
 
 
 

 
 
 

(3) 
 
 
 
 

(4) 
 
Since (3) = (4), G(g) ° G(f) = G(g°f) is verified for this pair of morphisms. Similar 

calculations made on each pair of morphisms in Table 4 reveals that G verifies the 
condition 5.  



5   Discussion 

In discussion, I can propose the way of elaborating the bidirectional in order to 
preserve “architectural” information, i.e. the semantic relation between variables. I 
can propose to elaborate an additional class which is associated to the variables ones. 
=> category is a support to provide the construction of the improvement of languages. 
Here I also have to explain the nature of equivalence between the two languages. 

6   Related work 

Here I have to describe the related works conducted in this area. This paragraphs 
should considers QQDODU – the object considered by transformations (generally 
semantic function: white box vs black box, etc) - the use of CT in MDA and 
transformations, etc – the level of abstraction (people generally considers M2, but one 
can wonders about the industrialization of such methodology). This part can be 
fulfilled with the last bibliography.  

From introduction paragraph: Rule-based transformation systems [11] and triple 
graph grammars [12] are commonly adopted for migration. Both methods consist in 
identifying appropriate transformation rules and the rule matching algorithms [13]. In 
these methods, the transformation rules are incrementally identified and thus not 
automated. Moreover, preservation is evaluated in fine. Alternatively, other 
methodologies are quoted facing preservation. Concerning architecture, [14] proposed 
a method using process algebra. On the other hand, [15] adopted the category theory 
for preserving program maintainability in regard to the semantic function, i.e. the 
program computation [16]. Out of preservation, the category theory has already been 
applied to computer science to solve complex theoretical problems [17, 18].  
 

7   Conclusion  

UML enabled us to transcribe biological modelling languages using aggregation and 
association relationships between classes. This construction was possible on two 
contrasting languages commonly used in biology. Since our target was program 
migration, we only considered the terminal classes of the language and not 
inheritance. We obtained a mathematical representation of the language, where 
aggregation is expressed as inclusion and association as order relationship.  

In our illustration, we established the functorial relationship APES  SIMILE 
and the application is surjective. By construction, the functor provided both the object 
and morphism relationships. As each morphism corresponds to a translation rule, the 
construction of the migration function simply consists in instantiating the functor. 
According to [16], two programs are equivalent if they provide identical mapping 
between a set of inputs with a set of outputs. In the category theory, the concept of 



equivalence is defined using the functor properties. Our construction supported that 
this definition of the equivalence of programs can be extended to architecture. 
Conversely, SIMILE  APES mapping is incomplete because of differences in 
architecture. With this example, we illustrated the advantages of applying the 
category theory to identify the aspects of migration which could not be preserved due 
to language expressiveness. In that case, conferring the properties necessary to verify 
the condition for functor establishment provides a support for language improvement. 
This aspect is not covered in this paper. Future work will consist in establishing the 
functorial bijection enabling bidirectional migration of the improved languages. 
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