A Multi-agent Approach for Range Image Segmentation with Bayesian Edge Regularization - LIRMM - Laboratoire d’Informatique, de Robotique et de Microélectronique de Montpellier
Communication Dans Un Congrès Année : 2007

A Multi-agent Approach for Range Image Segmentation with Bayesian Edge Regularization

Résumé

We present in this paper a multi-agent approach for range image segmentation. The approach consists in using autonomous agents for the segmentation of a range image in its different planar regions. Agents move on the image and perform local actions on the pixels, allowing robust region extraction and accurate edge detection. In order to improve the segmentation quality, a Bayesian edge regularization is applied to the resulting edges. A new Markov Random Field (MRF) model is introduced to model the edge smoothness, used as a prior in the edge regularization. The experimental results obtained with real images from the ABW database show a good potential of the proposed approach for range image analysis, regarding both segmentation efficiency, and detection accuracy.
Fichier principal
Vignette du fichier
ark__67375_HCB-VW3Q7PK7-Q.pdf (596.18 Ko) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte
Loading...

Dates et versions

lirmm-00394193 , version 1 (23-09-2019)

Identifiants

Citer

Smaine Mazouzi, Zahia Guessoum, Fabien Michel, Mohamed Batouche. A Multi-agent Approach for Range Image Segmentation with Bayesian Edge Regularization. ACIVS 2007 - 9th International Conference on Advanced Concepts for Intelligent Vision Systems, Aug 2007, Delft, Netherlands. pp.449-460, ⟨10.1007/978-3-540-74607-2_41⟩. ⟨lirmm-00394193⟩
203 Consultations
133 Téléchargements

Altmetric

Partager

More