
HAL Id: lirmm-00394298
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00394298

Submitted on 2 Apr 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

SO_MAD: SensOr Mining for Anomaly Detection in
Railway Data

Julien Rabatel, Sandra Bringay, Pascal Poncelet

To cite this version:
Julien Rabatel, Sandra Bringay, Pascal Poncelet. SO_MAD: SensOr Mining for Anomaly Detection in
Railway Data. ICDM 2009 - 9th Industrial Conference on Data Mining, Jul 2009, Leipzig, Germany.
pp.191-205, �10.1007/978-3-642-03067-3_16�. �lirmm-00394298�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00394298
https://hal.archives-ouvertes.fr

SO MAD: SensOr Mining for Anomaly
Detection in railway data

Julien Rabatel12, Sandra Bringay13, and Pascal Poncelet1

1 LIRMM, Université Montpellier 2, CNRS
161 rue Ada, 34392 Montpellier Cedex 5, France

2 Fatronik France Tecnalia, Cap Omega, Rond-point Benjamin Franklin - CS 39521
34960 Montpellier, France

3 Dpt MIAp, Université Montpellier 3, Route de Mende
34199 Montpellier Cedex 5, France {rabatel,bringay,poncelet}@lirmm.fr

Abstract. Today, many industrial companies must face problems raised
by maintenance. In particular, the anomaly detection problem is prob-
ably one of the most challenging. In this paper we focus on the railway
maintenance task and propose to automatically detect anomalies in order
to predict in advance potential failures. We first address the problem of
characterizing normal behavior. In order to extract interesting patterns,
we have developed a method to take into account the contextual criteria
associated to railway data (itinerary, weather conditions, etc.). We then
measure the compliance of new data, according to extracted knowledge,
and provide information about the seriousness and possible causes of a
detected anomaly.

1 Introduction

Today, many industrial companies must face problems raised by maintenance.
Among them, the anomaly detection problem is probably one of the most chal-
lenging. In this paper we focus on the railway maintenance problem and propose
to automatically detect anomalies in order to predict in advance potential fail-
ures. Usually data is available through sensors and provides us with important
information such as temperatures, accelerations, velocity, etc. Nevertheless, data
collected by sensors are difficult to exploit for several reasons. First because, a
very large amount of data usually available at a rapid rate must be managed.
Second, they contain a very large amount of data to provide a relevant descrip-
tion of the observed behaviors. Furthermore, they contain many errors: sensor
data are very noisy and sensors themselves can become defective. Finally, when
considering data transmission, very often lots of information are missing.

Recently, the problem of extracting knowledge from sensor data have been
addressed by the data mining community. Different approaches focusing either on
the data representation (e.g., sensors clustering [1], discretization [2]) or knowl-
edge extraction (e.g., association rules [2], [3], [4], [5], sequential patterns [6], [7],
[8]) were proposed. Nevertheless, they usually do not consider that contextual

2

information could improve the quality of the extracted knowledge. The develop-
ment of new algorithms and softwares is required to go beyond the limitations.
We propose a new method involving data mining techniques to help the de-
tection of breakdowns in the context of railway maintenance. First, we extract
from sensor data useful information about the behaviors of trains and then we
characterize normal behaviors. Second, we use the previous characterization to
determine if a new behavior of a train is normal or not. We are thus able to
automatically trigger some alarms when predicting that a problem may occur.

Normal behavior strongly depends on the context. For example, a very low
ambient temperature will affect a train behavior. Similarly, each itinerary with
its own characteristics (slopes, turns, etc..) influences a journey. Consequently
it is essential, in order to characterize the behavior of trains as well as to detect
anomalies, to consider the surrounding context. We have combined these ele-
ments with data mining techniques. Moreover, our goal is not only to design a
system for detecting anomalies in train behavior, but also to provide information
on the seriousness and possible causes of a deviation.

This paper is organized as follows. Section 2 describes the data representation
in the context of train maintenance. Section 3 shows the characterization of
normal behaviors by discovering sequential patterns. Experiments conducted
with a real dataset are described in Section 5. Finally, we conclude in Section 6.

2 Data Representation

In this section, we address the problem of representing data. From raw data
collected by sensors, we design a representation suitable for data mining tasks.

2.1 Sensor Data for Train Maintenance

The data resulting from sensors for train maintenance is complex for the two
following reasons: (i) very often errors and noisy values pervades the experimen-
tal data; (ii) multisource information must be handled at the same time. For
instance, in train maintenance following data must be considered.

Sensors. Each sensor describes one property of the global behavior of a
train which can correspond to different information (e.g., temperature, velocity,
acceleration).

Measurements. They stand for numerical values recorded by the sensors
and could be very noisy for different reasons such as failures, data transfer, etc.

Readings. They are defined as the set of values measured by all the sensors
at a given date. The information carried out by a reading could be considered
as the state of the global behavior observed at the given moment. Due to the
data transfer some errors may occur and then readings can become incomplete
or even missing.

We consider that the handled data are such as those described in Table 1,
where a reading for a given date (first column) is described by sensor mea-
sures (cells of other columns).

3

TIME Sensor 1 Sensor 2 Sensor 3 ...

2008/03/27 06: 36: 39 0 16 16 ...

2008/03/27 06: 41: 39 82.5 16 16 ...

2008/03/27 06: 46: 38 135.6 19 21 ...

2008/03/27 06: 51: 38 105 22 25 ...

Table 1. Extract from raw data resulting from sensors.

2.2 Granularity in Railway Data

Data collected from a train constitutes a list of readings describing its behavior
over time. As such a representation is not appropriate to extract useful knowl-
edge, we decompose the list of readings at different levels of granularity and
then we consider the three following concepts journeys, episodes and episode
fragments which are defined as follows.

Journey. The definition of a journey is linked to the railway context. For a
train, a journey stands for the list of readings collected during the time interval
between the departure and the arrival. Usually, a journey is several hours long
and has some interruptions when the train stops in railway stations. We consider
the decomposition into journeys as the coarsest granularity of railway data.

Let minDuration a minimum duration threshold, maxStop a maximum stop
duration, and J be a list of readings (rm, ..., ri, ...rn), where ri is the reading
collected at time i. J is a journey if:

1. (n−m) > minDuration,

2. @(ru, ..., rv, ...rw) ⊆ J |

{
(w − u) > maxStop,

and ∀ v ∈ [u, w], velocity(v) = 0.

Episode. The main issue for characterizing train behavior is to compare ele-
ments which are similar. However, as trains can have different routes the notion
of journey is not sufficient (for instance, between two different journeys, we could
have different number of stops as well as a different delay between two railway
stations). That is the reason why we segment the journeys into episodes to get a
finer level of granularity. To obtain the episodes, we rely on the stops of a train
(easily recognizable considering the train velocity).

An episode is defined as a list of readings (rm, ...ri, ..., rn) such as:

– velocity(m) = 0 and velocity(n) = 0 1,
– if m < i < n, velocity(i) 6= 0.

1 Here, the velocity of the train at time t is denoted as velocity(t).

4

Fig. 1. Segmentation of a journey into episodes.

Figure 1 describes a segmentation of a journey into episodes by considering
the velocity changes. This level of granularity is considered as the most relevant
because it provides us with a set of homogeneous data. However, we can segment
episodes in order to obtain a more detailed representation and a finer granularity
level.

Episode Fragment. The level of granularity corresponding to the fragments
is based on the fact that the behavior of a train during an episode can easily be
divided in three chronological steps. First, the train is stationary (i.e., velocity 0)
then an acceleration begins. We call this step the starting step. More formally,
let E = (rm, ..., rn) be an episode. The startingfragment Estarting = (rm, ...rk)
of this episode is a list of readings such as:

∀i, j ∈ [m, k], i < j ⇔ velocity(i) < velocity(j).

At the end of an episode, the train begins a deceleration ending with a stop.
This is the ending step. More formally, let E = (rm, ..., rn) be an episode. The
endingfragment Eending = (rk, ...rn) of this episode is a list of readings such
as:

∀i, j ∈ [k, n], i < j ⇔ velocity(i) > velocity(j).

The traveling fragment is defined as the sublist of a given episode between
the starting fragment and the ending fragment. During this fragment, there are
accelerations or decelerations, but no stop. More formally, let E be an episode,
Estarting its starting fragment, and Eending its ending fragment. Then, the trav-
eling fragment of E, denoted as Etraveling, is a list of readings defined as :

Etraveling = E − Estarting − Eending.

Figure 1 shows the segmentation of an episode into three fragments: the
starting fragment, the traveling fragment and the ending fragment.

5

From now we thus consider that all the sensor data are stored in a database,
containing all information about the different granularity levels. For example,
all the sensor readings composing the fragment shown in Figure 1 are indexed
and we know that a particular fragment f is an ending fragment included in an
episode e, belonging to the journey J . J is associated with the itinerary I and
the index of e in I is 2 (i.e., the second portion of this route).

3 Normal Behavior Characterization

In this section, we focus on the data mining step in the knowledge discovery
process and more precisely on the extraction of patterns characterizing normal
behaviors.

3.1 How to Extract Normal Behavior?

The objective of the behavior characterization is, from a database of sensor
measurements, to provide a list of patterns depicting normal behavior. We want
to answer the following question: which patterns often appear in the data? Such
a problem, also known as pattern mining, has been extensively addressed by the
data mining community in the last decade.

Among all data mining methods, we can cite the sequential patterns mining
problem. The sequential patterns were introduced in [9] and can be considered
as an extension of the concept of association rule [10] by handling timestamps
associated to items. The research for sequential patterns is to extract sets of
items commonly associated over time. In the “ basket market ” concern, a se-
quential pattern can be for example: “ 40 % of the customers buy a television,
then buy later on a DVD player ”. In the following we give an overview of the
sequential pattern mining problem.

Given a set of distinct attributes, an item, denoted as i, is an attribute. An
itemset, denoted as I, is an unordered collection of items (i1i2...im). A sequence,
denoted as s, is an ordered list of itemsets 〈I1I2...Ik〉. A sequence database,
denoted as DB, is generally a large set of sequences. Given two sequences s =
〈I1I2...Im〉 and s′ = 〈I ′1I ′2...I ′n〉, if there exist integers 1 ≤ i1 < i2 < ... < im ≤ n
such that I1 ⊆ I ′i1 , I2 ⊆ I ′i2 , ..., Im ⊆ I ′im

, then the sequence s is a subsequence
of the sequence s′, denoted as s v s′.

The support of a sequence is defined as the fraction of total sequences in DB
that support this sequence. If a sequence s is not a subsequence of any other
sequences, then we say that s is maximal.

A sequence is said to be frequent if its support is at greater than or equal to
a threshold minimum support (minSupp) specified by the user.

The sequential patterns mining problem is, for a given threshold minSupp
and a sequence database DB, to find all maximum frequent sequences.

6

Sequential Patterns and Sensor Data. The discovery of sequential patterns
in sensor data in the context of train maintenance requires choosing a data format
adapted to the concepts of sequence, itemsets and items defined earlier.

So from now we consider a sequence as a list of readings, an itemset as a
reading, and an item as the state of a sensor. The order of itemsets in a sequence
is given by the timestamps associated to each reading.

Items are Sivt, where Si is a sensor and vt is the value measured by the
sensor at time t. For example, data described in Table 1 are translated into the
following sequence:

〈(S10S216S316)(S182.5S216S316)(S1135.6S219S321)(S1105S222S325)〉.

In addition, we use generalized sequences and time constraints ([11], [12]).
More precisely, a time constraint called maxGap is set in order to limit the time
between two consecutive itemsets in a frequent sequence. For instance, if maxGap
is set to 15 minutes, the sequence 〈(S1low)(S2low, S3high)〉 means that the state
described by the second itemset occurs at most 15 minutes after the first one.

A sequence corresponds to a list of sensor readings. So, a sequence database
can be created, where a sequence is a journey, an episode or an episode fragment,
depending on the chosen level of granularity (see Section 2).

3.2 Contextualized Characterization

Environmental Dimensions Structural Dimensions

id Duration Exterior Temperature Route Index

e1 low high J1 E1
e2 low low J1 E2
e3 high high J2 E1
e4 low low J1 E1
e5 high low J1 E2

Table 2. Episodes and contextual information.

Structural and Environmental Criteria
With the data mining techniques described in the previous section we are able

to extract patterns describing a set of episodes which currently occurs together.
However, they are not sufficient to accurately characterize train behaviors. In-
deed, the behavior of a train during a trip depends on contextual2 criteria.
Among these criteria, we can distinguish the two following categories:

2 The notion of context stands for the information describing the circumstances in
which a train is traveling. This information is different from behavioral data that
describe the state of a train.

7

– Structural criteria, providing information on the journey structure of the
studied episode (route3, episode index in the route).

– Environmental criteria, providing information on the contextual environ-
ment (weather conditions, travel characteristics, etc.).

Example 1 Table 2 presents a set of episodes, identified by the id column. In
this example, the sensor data were segmented by selecting the level of granularity
corresponding to episodes (see Section 2). Each episode is associated with envi-
ronmental criteria (the duration of the episode and the exterior temperature) and
structural criteria (the global route, and the index of the episode in this route).
For example, the duration of the episode e2 is short, and this episode was done
with a low exterior temperature. In addition, e2 is part of the itinerary denoted
by J1, and is the second portion of J1.

Let us consider a more formal description of the context of an episode. Each
episode is described in a set of n dimensions, denoted by D. There are two
subsets DE and DS of D, such as:

– DE is the set of environmental dimensions. In Table 2, there are two envi-
ronmental dimensions: Duration and Exterior Temperature.

– DS is the set of structural dimensions, i.e., the Route dimension whose value
is the route of the episode, and the dimension Index for the index episode
in the overall route.

Data Mining and classes
Now we present how the influence of these criteria on railway behaviors are

handled in order to extract knowledge. The general principle is the following:
(i) we divide the data into classes according to criteria listed above and (ii)
we extract frequent sequences in these classes in order to get contextualized
patterns.

Based on the general principle of contextualization, let us see how classes are
constructed. Let c be a class, defined in a subset of D, denoted by DC . A class
c is denoted by [cD1 , ..., cDi

, ..., cDk
], where cDi

is the value of c for the dimen-
sion Di, Di ∈ DC . We use a joker value, denoted by ∗, which can substitute any
value on each dimension in DC . In other words, ∀A ∈ D, ∀a ∈ Dim(A), {a} ⊂ ∗.

Thus, an episode e belongs to a class c if the restriction of e on DC
4 is

included in c:

∀A ∈ DC , eA ⊆ cA.

3 Here, a route is different from a journey. The route of a journey is the itinerary fol-
lowed by the train during this journey. Therefore, several journeys may be associated
with a single route (e.g., Paris-Montpellier).

4 The restriction of e in DC is the description of e, limited to the dimensions of DC .

8

As the environmental and structural criteria are semantically very different,
we have identified two structures to represent them: a lattice for environmental
classes and a tree for structural classes. We now explain how these structures
are defined.

Environmental Lattice. The set of environmental classes can be represented
in a multidimensional space containing all the combinations of different environ-
mental criteria as well as their possible values. Environmental classes are defined
in the set of environmental dimensions denoted by DE .

Class Duration Exterior Temperature

[*,*] * *

[low,*] low *

[high,*] high *

[low,high] low high

[*,high] * high

...

Fig. 2. Extract from environmental
classes. Fig. 3. Environmental Lattice.

Example 2 Figure 2 shows some of the environmental classes corresponding to
the dataset presented in Table 2.

A class c is denoted by [cExtT , cDur], where ExtT stands for the dimension
Exterior Temperature and Dur for the dimension Duration. For example, the
class denoted by [low, ∗] is equivalent to the context where the temperature is low
(i.e., cExtT = low), for any duration (i.e., cDur = ∗).

Using the dataset of Table 2, we can see that the set of episodes belonging to
the class [low, ∗] is {e1, e2, e4}. Similarly, all the episodes belonging to the class
[low, high] is {e1}.

Environmental classes and their relationships can be represented as a lattice.
Nevertheless we first have to define a generalization/specialization order on the
set of environmental classes.

Definition 1 Let c, c′ be two classes. c ≥ c′ ⇔ ∀A ∈ D, vA ⊂ uA. If c ≥ c′, then
c is said to be more general than c′.

In order to construct classes, we provide a sum operator (denoted by +) and
a product operator (denoted by •).

The sum of two classes gives us the most specific class generalizing them.
The sum operator is defined as follows.

Definition 2 Let c, c′ be two classes.

9

t = c + c′ ⇔ ∀A ∈ D, tA =

{
cA if cA = c′A,

∗ elsewhere.

The product of two classes gives the most general class specializing them.
The product operator is defined as follows.

Definition 3 Let c, c′ be two classes. Class z is defined as follows: ∀A ∈ D, zA =
cA ∩ c′A. Then,

t = c • c′ ⇔

{
t = z ifA ∈ D | zA = ∅
< ∅, ..., ∅ > elsewhere.

We can now define a lattice, by using the generalization/specialization order
between classes and the operators defined above. The ordered set 〈CS,≥〉 is a
lattice denoted as CL, in which Meet (

∧
) and Join (

∨
) elements are given by:

1. ∀T ⊂ CL,
∧

T = +t∈T t
2. ∀T ⊂ CL,

∨
T = •t∈T t

Figure 3 illustrates the lattice of environmental classes of the dataset provided
in Table 2.

Structural Hierarchy. Structural hierarchy is used to take into account infor-
mation that could be lost by manipulating episodes. Indeed, it is important to
consider the total journey including an episode, and the place of this episode in
the journey. Some classes are presented in Figure 4.

id Route Index Fragment

[*] * * *

[J1] J1 * *

[J2] J2 * *

[J1,E1] J1 E1 *

[J1,E1,begin] J1 E1 begin

[J1,E1,middle] J1 E1 middle

...

Fig. 4. Extract from structural classes. Fig. 5. Structural Hierarchy.

Example 3 Using the dataset of Table 2, we can see that the set of episodes be-
longing to the class [J1] is {e1, e2, e4, e5}. Similarly, the set of episodes belonging
to the class [J1, E1] is {e1, e4}.

Therefore, we create the hierarchy described in Figure 5, such as the higher
the depth of a node is, the more specific is the symbolized class.

10

Structural classes, defined in DS , are represented with a tree. The branches
of the tree are symbolizing a relationship “is included”. A tree is particularly
appropriated here because it represents the different granularity levels defined
earlier, i.e., from the most general to the finer level: journeys, episodes and
fragments.

Let C be the set of all structural classes, and HC the set of classes relation-
ships. HC ⊆ C × C, and (c1, c2) ∈ HC means that c2 is a subclass of c1.

A lattice can not represent a structural hierarchy as elements are included in
only one element of higher granularity: a fragment belongs to a single episode
and an episode belongs to a single route.

– The root of this hierarchy (denoted as ∗) is the most general class, i.e., it
contains all the episodes stored in the database.

– Nodes of depth 1 correspond to the various routes made by trains. Thus,
the class represented by the node [J1] contains all the episodes made in the
route denoted by J1.

– The next level takes into account the place of the episode in the path rep-
resented by the father node. The class [J1, E1] contains all the first episodes
of the journey J1, i.e., episodes of the journey J1 whose index is 1.

– So far, the classes we have defined contain episodes. However, we have seen
that it is possible to use a finer granularity in the data (see Section 2). In-
deed, an episode can be divided into three fragments: a starting fragment, a
traveling fragment and an ending fragment. To make the most of this level of
granularity and obtain more detailed knowledge, we consider classes of frag-
ments in the leaves of the hierarchy. Thus, class [T1, E1, starting] contains
starting fragments of the episodes contained in [T1, E1]. The extraction of
frequent sequences in this class will provide knowledge about the behavior
at the start of an episode, under the conditions of the class [T1, E1].

With the environmental lattice and structural tree presented in this section,
we can index knowledge from normal behavior according to their context. Thus,
when new data are tested to detect potential problems, we can precisely evaluate
the similarity of each part of these new data with comparable elements stored
in our normal behavior database.

3.3 Behavior Specificity

In the previous section, we showed how to extract frequent behaviors in classes.
To go further, we want to know the specific behavior of each class (i.e., of each
particular context). We therefore distinguish the specific patterns for a class (i.e.,
not found in class brothers in a hierarchy), and the general patterns appearing
in several brother classes. General patterns possibly may be specific to a higher
level of a class hierarchy.

11

Using this data representation, we can define the following concepts. Let D
be a sequence database, s a sequence, c a class in the structural hierarchy or the
environmental hierarchy described in Section 3.2.

Notation 1 The number of sequences (i.e., episodes or fragments according to
the chosen level of granularity) contained in c is denoted as nbSeq(c).

Notation 2 The number of sequences contained in c supporting s is denoted as
suppSeqc(s).

Definition 4 The support of s in c is denoted as suppc(s) and is defined by:

suppc(s) =
suppSeqc(s)

nbSeq(c)
.

Let minSupp be a minimum support threshold, s is said to be frequent in c
if suppc(s) ≥ minSupp.

Definition 5 s is a specific pattern in c if:

– s is frequent in c,
– s is non-frequent in the classes c′ (where c′ is a brother of c in the classes

hierarchy).

The notion of specificity provides additional information to the experts. A
pattern specific to a class describes a behavior that is linked to a specific context.
In particular, this information can be used in order to detect anomalies. For
example, if we test the episodes being in [J1, E1, starting] and that we meet a
lot of behaviors specific to another class, then we can think that these behaviors
are not normal in this context and we can investigate the causes of this anomaly
more efficiently.

4 Anomaly Detection

In this section, we present how anomaly detection is performed. We consider
that we are provided with both one database containing normal behavior on
which knowledge have been extracted (see Section 3) and data corresponding to
one journey.

The main idea is organized as follows. First, we define a measure to evaluate
the compliance of a new journey in a given contextual class. In case of any
detected anomaly, we make use of the class hierarchy to provide more detailed
information about the problem.

4.1 Detection of Abnormal Behaviors

This involves processing a score to quantify if the sequence corresponding to new
data to be tested is consistent with its associated class. We consider that the
consistency of an episode with a class c depends on the number of patterns of c

12

such as the episode is included in. The most the episode is included in patterns
of c, the most this episode is consistent with c. We thus introduce a similarity
score called the Conformity Score which is defined as follows.

Definition 6 Let s be a sequence to be evaluated in a class c. We denoted by P
the set of patterns of c, and Pincl the set of patterns of c being included in s. So,
the Conformity Score of s, denoted by conformity(s), is such as:

conformity(s) =
|Pincl|
|P |

.

We will thereafter denote by scorec(e) the score of an episode e in class c.

4.2 Anomaly Diagnosis

To provide further information on the causes of detected anomalies, we use
hierarchies developed in Section 3.2. The detection is performed as follows.

First, we measure the conformity score of a new episode e in the most precise
level of each of the hierarchies (i.e., structural and environmental). If the score
is high enough in the two classes then the behavior of the train during e is
considered as normal. Otherwise, it is possible to distinguish more clearly what
is the cause of the anomaly. For example, the anomaly may have structural or
environmental reasons.

To obtain more information about the detected anomaly, it is possible to
go up in the hierarchy and test the consistency score of e in “parent” classes
of problematic classes. For example, if the episode e has a poor score in the
class [low, high], then we evaluate its score in the classes c1 = [low, ∗] and
c2 = [∗, high]. If scorec1(e) is inadequate and scorec2(e) is sufficient, then the
provided information is that e is in compliance with the normal behaviors related
to the exterior temperature, but not with those related to travel duration.

By defining a minimum conformity score minCo we can also determine
whether the emission of an alarm is necessary or not. Thus, if score scorec(e),
then the episode is seen as problematic, and an alarm is emitted. However, we
can balance an alarm in relation to the seriousness of the detected problem. For
example, a score of 0.1 probably corresponds to a more important issue than a
score of 0.45.

5 Experiments

In order to evaluate our proposal, several experiments were conducted on real
datasets. They correspond to the railway data collected on 12 trains where each
train has 249 sensors. Each value is collected every five minutes. 232 temperature
sensors and 16 acceleration sensors are distributed on the different components
(e.g., wheels, motors, etc..) and a sensor measures the overall speed of the train.

13

5.1 Experimental Protocol

The experimental protocol follows the organization of the proposals:

1. Characterization of Normal Behavior.(see Section 3) We have studied
the impact of contextualization on the characterization of normal behavior,
and the benefit of the search for specific patterns in various contexts.

2. Anomaly Detection. (see Section 4) We have evaluated the conformity
score by applying it on normal and abnormal behavior.

5.2 Normal Behavior Characterization

The discovery of sequential patterns has been performed with the PSP algorithm,
described in [13]. We have used a C++ implementation, which can manage time
constraints.

Class Frequent Sequences Specific Patterns

[*,*] 387 387

[low,*] 876 634

[high,*] 616 411

[low,high] 6430 5859

Table 3. Number of frequent sequences and specific patterns, according to the envi-
ronmental class.

Table 3 shows, for an extract from the hierarchy presented in Section 3.2, the
number of frequent sequences found in each class, and the corresponding number
of specific sequences, extracted with a minimum support set to 0.3. We can note
that filtering specific patterns reduces the amount of stored results. Moreover,
the fact that each class, including most restrictive ones (i.e., the leaves of the
hierarchy), contain specific patterns shows both the importance of the context
in railway behavior, and the usefulness of our approach.

Note that for the most general class, denoted as [∗, ∗], the number of specific
patterns and frequent sequences is unchanged. This is because this class does
not have a brother in the environmental hierarchy. Moreover, we notice in these
results that the more a class is specific, the more it contains frequent sequences
and specific patterns. Indeed, we look for frequent behaviors. Train behavior
heavily depend on surrounding context. Therefore, the more a class is general,
the less behaviors are frequent, as they vary much more from one journey to
another.

5.3 Anomaly Detection

We have noted in the previous section that we can extract very precise knowl-
edge about normal train behavior. This knowledge is now used in an anomaly
detection process, through the methods described in Section 4.

14

To validate our approach, we use normal behavior from real data and we
ensure that they do not generate anomalies. To this end, we have segmented our
real data set into two subsets: (i) data on which we perform the characterization
of normal behavior; (ii) data to test.

Figure 6 shows the average score of episodes, depending on the class in the
environmental hierarchy. In each class, we have tested 15 randomly selected
episodes. Calculated scores are high, in particular in the most specific classes.
The average Conformity Score in the most general class (i.e., [∗, ∗]) is lower.
Indeed, behavior in this class are more various and, given the minimum support
used (minSupp = 0.3), many frequent sequences appear in a minority of the
data.

We have also measured the conformity of a random selection of 15 episodes
of the class [high, ∗] with the normal behavior of the class [low, high]. The av-
erage score decreases to 0.42, confirming that the behavior of a train when the
outside temperature is high does not correspond to what is expected when the
temperature is low.

Class Average Score

[*,*] 0.64

[low,*] 0.85

[high,*] 0.74

[low,high] 0.92

Fig. 6. Average score of tested
episodes.

Class Score

[low,high] 0.05

[low,*] 0.17

[*,high] 0.41

[*,*] 0.3

Fig. 7. Conformity Score of a de-
graded episode.

Then, in order to detect anomalies in really abnormal behavior, we simulate
defects. Indeed, the available real dataset does not contain enough abnormal
behaviors to perform valid experiments. Simulated data are created by degrading
data in the test dataset. For example, we apply our methods on an episode
created by increasing all wheel temperatures by 15oC. Figure 7 presents the
conformity score of this episode in each environmental class which it belongs,
from general to specific. The true score of this episode before being corrupted, in
its more specific environmental class (e.g., [low, high]) is 0.94. However, once the
episode is degraded by increasing all wheel temperatures by 15oC, the conformity
score becomes 0.05. By studying the previous level of the environmental lattice,
we can note a difference between the score of the episode in class [low, ∗] (i.e.,
low exterior temperature) and in class [∗, high] (i.e., long episode duration). The
score is higher in the class [∗, high]. This can be explained by the fact that such
heating of wheels sometimes occurs when a train was traveling during a long
time, and is not totally unusual in this context. However, this is not the case in
the context of the class [low, ∗].

15

6 Conclusion

In this paper, we have proposed a new strategy for detecting anomalies from
sensor data in the context of railway maintenance. We have addressed the prob-
lem of characterizing train behavior with sequential pattern mining. First, we
extract some patterns to describe normal behavior and second. Then, we use the
previous characterization to determine if a new behavior is normal or not. We
are thus able to automatically trigger some alarms.

Our contribution is twofold: (i) as the behavior of trains depends on envi-
ronmental conditions, we have proposed a method of characterization, which
originally focuses on contextual knowledge. (ii) to detect anomalies, we have
developed a conformity measure of new data and when an anomaly is detected
we are able to provide information on the seriousness and possible causes of a
deviation. In order to validate our approach, we have applied it to real railway
data.

This preliminary work opens up interesting prospects. How to make extracted
knowledge accessible for the experts (pattern visualization)? How to provide
more precise information about detected anomalies? How to apply these methods
in a real-time context?

References

1. Rodrigues, P.P., Gama, J.: Online prediction of streaming sensor data. In
Joo Gama, J. Roure, J.S.A.R., ed.: Proceedings of the 3rd International Work-
shop on Knowledge Discovery from Data Streams (IWKDDS 2006), in conjuntion
with the 23rd International Conference on Machine Learning. (2006)

2. Yairi, T., Kato, Y., Hori, K.: Fault detection by mining association rules from
house-keeping data. In: Proceedings of the 6th International Symposium on Arti-
ficial Intelligence, Robotics and Automation in Space. (2001)

3. Halatchev, M., Gruenwald, L.: Estimating missing values in related sensor data
streams. In Haritsa, J.R., Vijayaraman, T.M., eds.: Proceedings of the 11th Inter-
national Conference on Management of Data (COMAD ’05), Computer Society of
India (January 2005) 83–94

4. Chong, S.K., Krishnaswamy, S., Loke, S.W., Gaben, M.M.: Using association rules
for energy conservation in wireless sensor networks. In: SAC ’08: Proceedings of
the 2008 ACM symposium on Applied computing, New York, NY, USA, ACM
(2008) 971–975

5. Ma, X., Yang, D., Tang, S., Luo, Q., Zhang, D., Li, S.: Online mining in sensor
networks. In Jin, H., Gao, G.R., Xu, Z., Chen, H., eds.: NPC. Volume 3222 of
Lecture Notes in Computer Science., Springer (2004) 544–550

6. Guralnik, V., Haigh, K.Z.: Learning models of human behaviour with sequential
patterns. In: Proceedings of the AAAI-02 workshop “Automation as Caregiver”.
(2002) 24–30 AAAI Technical Report WS-02-02.

7. Cook, D.J., Youngblood, M., Heierman, III, E.O., Gopalratnam, K., Rao, S.,
Litvin, A., Khawaja, F.: Mavhome: An agent-based smart home. In: PERCOM
’03: Proceedings of the First IEEE International Conference on Pervasive Comput-
ing and Communications, Washington, DC, USA, IEEE Computer Society (2003)
521

16

8. Wu, P.H., Peng, W.C., Chen, M.S.: Mining sequential alarm patterns in a telecom-
munication database. In: DBTel ’01: Proceedings of the VLDB 2001 International
Workshop on Databases in Telecommunications II, London, UK, Springer-Verlag
(2001) 37–51

9. Agrawal, R., Srikant, R.: Mining sequential patterns. In Yu, P.S., Chen, A.S.P.,
eds.: Eleventh International Conference on Data Engineering, Taipei, Taiwan,
IEEE Computer Society Press (1995) 3–14

10. Agrawal, R., Imieliński, T., Swami, A.: Mining association rules between sets of
items in large databases. SIGMOD Rec. 22(2) (1993) pp. 207–216

11. Srikant, R., Agrawal, R.: Mining sequential patterns: Generalizations and perfor-
mance improvements. In Apers, P.M.G., Bouzeghoub, M., Gardarin, G., eds.: Proc.
5th Int. Conf. Extending Database Technology, EDBT. Volume 1057., Springer-
Verlag (25–29 1996) 3–17

12. Masseglia, F., Poncelet, P., Teisseire, M.: Efficient mining of sequential patterns
with time constraints: Reducing the combinations. Expert Systems with Applica-
tions 36(2, Part 2) (2009) 2677 – 2690

13. Masseglia, F., Cathala, F., Poncelet, P.: The psp approach for mining sequential
patterns. In Zytkow, J.M., Quafafou, M., eds.: PKDD. Volume 1510 of Lecture
Notes in Computer Science., Springer (1998) 176–184

