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Abstract

We prove that given an undirected graph G on n vertices and an integer k, one can compute, in polynomial
time in n, a graph G′ with at most 4k2 vertices and an integer k′ such that G has a feedback vertex set of size
at most k iff G′ has a feedback vertex set of size at most k′. This result improves a previous O(k11) kernel
of Burrage et al. [5], and a more recent cubic kernel of Bodlaender [3]. This problem was communicated by
Fellows in [4].

1 Introduction

One efficient way of dealing with NP-hard problems is to identify a parameter which contains its computational
hardness. For instance, instead of asking for a minimum vertex cover in a graph - a classical NP-hard optimization
question - one can ask for an algorithm which would decide, in O(f(k).nd) time for some fixed d, if a graph of size
n has a vertex cover of size at most k. If such an algorithm exists, the problem is called fixed-parameter tractable,
or FPT for short. An extensive litterature is devoted to FPT, the reader is invited to read for instance [8], [16]
or [10].

Kernelization is a natural way of proving that a problem is FPT. Formally, a kernelization algorithm receives
as input an instance G, k of the parameterized problem, and outputs, in polynomial time in the size of the instance,
an instance G′, k′ such that

• k′ ≤ k,

• the size of G′ only depends on k,

• the instances G, k and G′, k′ are both true or both false.

The reduced instance G′, k′ is a kernel of G, k. The existence of a kernelization algorithm clearly implies the
existence of an FPT algorithm since one can kernelize the instance, and then solve the reduced instance G′, k′

using any (valid) algorithm, hence giving an O(f(k) + nd) algorithm. A classical result asserts that being FPT
is indeed equivalent to having kernelization. However, the proof of this result does not imply that the size of the
reduced instance G′ is small with respect to k. A much more constrained condition than simply being FPT is
then to be able to reduce to an instance with polynomial size in k. And indeed, in the parameterized problems
zoology, an important distinction is done between three classes: W[1]-hard, FPT, and polynomial kernelization.

Maybe of more interest than a new refinement in the hardness hierarchy is the fact that kernelization deals with
reduction rules. Indeed, no branching is allowed in the process, since we start with an instance G, k and output
another instance G′, k′. Hence, the involved reduction rules can serve as a preprocessing stage in any attempt to
solve the problem. In other words, kernelization can be seen as the preliminar non-branching computation of the
instance, and thus is a very generic tool. Being then able to reduce the instance to linear or quadratic size in k
with reasonable constants is a very good first step towards the solution.

One of the long standing questions in polynomial kernelization was the FEEDBACK VERTEX SET problem
which input is a graph G and an integer k and output is true if one can remove at most k vertices to G to form a
forest, and false otherwise. In a more formal way, a feedback vertex set of a graph G = (V,E) is a subset S ⊆ V
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such that G \ S is acyclic, or equivalently is a forest. Note that our graphs may have loops and multiple edges.
However, since edges with multiplicity more than two are irrelevant for our purpose, we will implicitely assume
that all multiple edges are double edges. In practice, if any edge with multiplicity more than two appears in our
graph operations, we will make use of a tacit reduction rule which reduces its multiplicity to two.

The FEEDBACK VERTEX SET problem was first shown to be FPT by Downey and Fellows [7]. Some faster
FPT algorithms were provided in [2], [8], [1], [17], [14], [18], [13], [6]. Razgon [19] gave an exact algorithm in
O(1.8899n) time, improved by Fomin et al. [11] to O(1.7548n). The polynomial kernelization of FEEDBACK

VERTEX SET was solved by Burrage et al. [5] in O(n11), and improved to O(n3) by Bodlaender [3]. This latter
result used and generalized the reduction rules of the O(n11) kernelization to obtain a cubic kernel after an
intricate argument.

We provide in this paper a quadratic kernel for FEEDBACK VERTEX SET which reduces the input graph G to
a graph G′ with size at most 4k2. Our reduction rules are very much inspired from their proofs apart from a new
reduction rule (Rule 5). The noticeable fact concerning this new rule is that it is heavily based on combinatorial
optimization results. Namely, we make use of the very classical Hall’s matching theorem, but also of a less known
min/max result of Gallai [12] concerning disjoint A-paths in a graph (which is in fact equivalent to the maximum
matching problem in general graphs). The fact that a factor of k could be saved (from cubic kernel to quadratic
kernel) possibly follows from the fact that we switched from reduction rules based on counting arguments to
reduction rules based on min/max duality.

2 Matching based tools

Our kernalization of FEEDBACK VERTEX SET makes use of two results both admitting a proof based on maximum
matching in graphs (nonbipartite and bipartite). Given a vertex x of G, an x-flower of order k is a set of k cycles
pairwise intersecting exactly on x. Given a set of vertices A, an A-path is a path with length at least one, having
its endvertices in A, and its internal vertices outside of A. Finding disjoint A-paths is a tractable problem, as we
can see in the next result, which proof is briefly sketched.

Theorem 2.1. (Gallai [12]) Let A be a subset of vertices of a graph G. The maximum number of vertex disjoint
A-paths is equal to the minimum of |X|+

∑
C∈Cb

|A∩C|
2 c, where X is a subset of vertices of G and C is the set of

connected components of G \X.

Proof. As usual in duality results, the fact that the maximum is at most the minimum is obvious. We just have
to prove that equality is reached.

Observe first that when A is equal to V , we obtain the Tutte-Berge formula asserting that the maximum
matching in G is equal to the minimum of |X|+

∑
C∈Cb

|C|
2 c.

To prove the theorem, we simply express the maximum number p of vertex disjoint A-paths into a maximum
matching problem. For this, we introduce an auxiliary graph G′ obtained by substituting every vertex v of V \A
by two twin vertices v1, v2 with same neighborhood as v and together linked by an edge. The key-observation is
that the maximum size of a matching in G′ is precisely |V \ A| + p. By the Tutte-Berge formula, there exists a
set X ′ of vertices of G′ such that

|V \A|+ p = |X ′|+
∑

C′∈C′

b |C
′|

2
c

where C′ is the set of components of G′ \ X ′. Observe that if X ′ only contains one twin among v1, v2, say v1,
we can consider X ′ \ v1 instead of X ′ to achieve the same bound. Hence we can assume that for a given pair of
twins, X ′ contains both or none. Let us denote by X the subset of V obtained from X ′ by replacing each pair of
twins v1, v2 by v. Now the formula p = |X ′|+

∑
C′∈C′b |C

′|
2 c− |V \A| gives exactly that p = |X|+

∑
C∈Cb

|A∩C|
2 c,

where C is the set of all components of G \X.

A generalization of Theorem 2.1 to oriented graphs can be found in Kriesell [15]. Schrijver [20] showed how
Gallai’s result can be expressed into a maximum matching problem in nonbipartite graphs. Since the proof is based
on maximum matching, by Edmonds’ classical matching algorithm [9], it implies the existence of a polynomial
algorithm which computes the maximum set of disjoint A-paths and the certificate X. The next result is our
key-tool concerning x-flowers. It follows directly from Theorem 2.1:



Corollary 2.1. Let G be a graph and x be a vertex of G which is not a loop. The maximum order of an x-flower
is equal to the minimum of |X| +

∑
C∈Cb

e(x,C)
2 c, where X is a subset of vertices, C is the set of components of

G \ (X ∪ x), and e(x, C) is the number of edges between x and C.

Proof. If x is only incident to simple edges, we just apply Theorem 2.1 to G\x where the set A is the neighborhood
of x. If x is joined to some vertices by multiple edges, we first select these vertices in X and conclude as previously.

The following result is a straightforward consequence of Hall’s theorem. We will need it to apply our key
reduction rule. Here N(Z) denotes the set of neighbors of the vertices in Z.

Theorem 2.2. Let G be a bipartite graph on bipartition (X,Y ). There exists a polynomial algorithm which
computes a subset Z of X such that |N(Z)| < 2|Z| if such a subset Z exists.

Proof. We construct an auxiliary graph H obtained from G by splitting every vertex x of X into two nonadjacent
twins x1 and x2 with the same neighborhood in Y as x. We denote by X1 and X2 these two copies of X. By
Hall’s theorem, we have:

• either there exists a matching in H which covers X1 ∪X2, in which case every subset Z of X has a set of
neighbors in Y with size at least 2|Z|.

• or there exists a subset of vertices Z1 ∪Z2, where Z1 ⊆ X1 and Z2 ⊆ X2, which neighborhood in Y has size
strictly less than |Z1 ∪Z2|. Let Z be the subset of vertices x of X such that x1 ∈ Z1 or x2 ∈ Z2. Note that
the size of Z is at least half of the size of Z1 ∪ Z2. Moreover, the neighborhood N(Z) of Z in Y is exactly
the neighborhood of Z1 ∪ Z2. Hence |N(Z)| < 2|Z|.

Since a maximum matching, and dually a contracting set, can be computed in polynomial time, the subset
Z can be calculated when it exists.

We now make iterative use of Theorem 2.2 in our next proof.

Theorem 2.3. Let G be a nonempty bipartite graph on bipartition (X, Y ) with |Y | ≥ 2|X| and such that every
vertex of Y has at least one neighbor in X. Then there exists nonempty subsets X ′ ⊆ X and Y ′ ⊆ Y such that
the set of neighbors of Y ′ in G is exactly X ′, and such that every subset Z ⊆ X ′ has at least 2|Z| neighbors in
Y ′. In addition, such a pair of subsets X ′, Y ′ can be computed in polynomial time in the size of G.

Proof. We apply Theorem 2.2 to the graph G. If there is no subset Z, we just set X ′ := X and Y ′ := Y . If a subset
Z exists, we simply delete in G the vertices Z from X, and the vertices N(Z) from Y . By our hypothesis, we
have that Z 6= X since |N(X)| = |Y | ≥ 2|X|. Moreover, we still have |Y \N(Z)| ≥ 2|X \Z|, and by construction,
every vertex of Y \N(Z) have its (nonempty) neighborhood contained in X \ Z. Thus G \ (Z ∪N(Z)) satisfies
the hypothesis of Theorem 2.3. Hence we can iterate our procedure which will terminate on some subsets X ′, Y ′

with the required properties.

3 The reduction rules

Let us list some basic reduction rules for the kernelization of the FEEDBACK VERTEX SET problem. We assume
here that the input is a couple G, k. The first rule, Rule 0, simply says that if we can certify that the size of a
minimum feedback vertex set of G is more than k, we reduce G, k to some trivial false instance G′, k′, for example
G′ is the loop and k′ = 0.

• Rule 1 If there is a loop on some vertex x, we reduce to G′ := G \ x and k′ := k − 1.

• Rule 2 If there is a vertex x with degree 0 or 1, we reduce to G′ := G \ x and k′ := k.

• Rule 3 If a vertex x is incident to exactly two edges xy and xz (possibly with y = z), we reduce to
G′ := (G \ x) ∪ yz and k′ := k.

• Rule 4 If there exists an x-flower F of order p and a set of q pairwise disjoint cycles which are moreover
disjoint from F such that p + q ≥ k + 1, we reduce to G′ := G \ x and k′ := k − 1.



Note that these reduction rules described so far are safe, i.e. G has a feedback vertex set of size at most k iff
G′ has a feedback vertex set of size at most k′. We now introduce our key-rule.

Rule 5 If there is a set of vertices X, a vertex x ∈ V \X and a set of connected components C of G \ (X ∪x)
(not necessarily all the connected components) such that:

• There is exactly one edge between x and every C ∈ C.

• Every C ∈ C induces a tree.

• For every subset Z ⊆ X, the number of components of C having some neighbor in Z is at least 2|Z|.

Then one can form a graph G′ by joining x to every vertex of X by double edges, and removing the edges
between x and the components of C. We then reduce to G′ and k′ := k.

Theorem 3.1. Rule 5 is safe.

Proof. We more strongly show that the size of a minimum feedback vertex set in G′ is equal to the size of a
minimum feedback vertex set in G.

Let S′ be a feedback vertex set of G′. Since the double edges incident to x force that x ∈ S′ or X ⊆ S′, we
observe that S′ is also a feedback vertex set of G. Indeed, assume for contradiction that C is a cycle of G \ S′.
Then C contains x since we only modified edges incident to x when reducing G to G′. This means that S′ does
not contain x, thus it contains X. Hence every edge between x and some component of C is a bridge in G \ S′,
and consequently cannot belong to C. Finally every edge of C belongs to G′ \ S′, contradicting the fact that S′

is a feedback vertex set for G′.
Now we assume that S is a feedback vertex set of G, and show that there exists a feedback vertex set S′ of G′

with size at most |S|. If S contains x, it is indeed a feedback vertex set of G′ since G and G′ only differ on edges
incident to x. So we now assume that S does not contain x. Let us denote by Y the set X \S. Let us also denote
by Z the set of vertices of S which belong to some component of C. The crucial fact is that S′ = (S ∪ Y ) \ Z
is a feedback vertex set of G′, since every C in C is a component of G′ \ S′. We just have to show that the size
of S′ is at most the size of S. Assume for contradiction that |Z| < |Y |. Observe that every vertex y of Y has
a neighbor in at most one component C in C which does not intersect Z, otherwise the vertices x, y together
with two components C, C ′ ∈ C disjoint from Z and joined to y would contain a cycle. This means that the total
number of C in C which have a neighbor in Y is at most |Y |+ |Z| < 2|Y |, contradicting the definition of X.

Observe that any application of a reduction rule strictly decreases the value n + s, where n is the number of
vertices of the graph G and s is its number of simple edges. Thus the total number of reduction rules one can
apply starting from a graph G is linear in the size of G. Therefore, to get a kernel, we just have to prove that if
G is large enough, one can efficiently find a reduction rule to apply. This is the aim of the next section.

4 Applying the rules

We now show how to construct a polynomial kernel for the graph G.

Theorem 4.1. If G is a graph on n vertices with n > 4k2, one can find a reduction rule to apply to G in
polynomial time in n.

Proof. The application of Rules 1 up to 3 is routine, hence we can assume that G is a loopless graph, with
minimum degree three, and such that the only multiple edges are double edges. Observe now that if there exists
a feedback vertex set S of G with at most k vertices, the number of edges between S and V \ S is greater than
4k2− k. Indeed, V \S spans a forest and hence induces at most |V \S| − 1 edges. Moreover every vertex of V \S
has degree at least three, so the total number of edges leaving V \S is at least 3|V \S| − 2(|V \S| − 1) > 4k2− k.

Hence, there must be a vertex of S with degree greater than (4k2 − k)/|S|, thus degree at least 4k since S
has at most k elements. In particular, if G has maximum degree less than 4k, we simply give a negative answer
by applying Rule 0. Therefore, we now assume that there exists a vertex x with degree at least 4k. If there exists
an x-flower of order k + 1, we apply Rule 4. Otherwise, we apply Corollary 2.1 in order to find a set of vertices



X ⊆ V \ x such that the maximum order p of an x-flower is equal to |X| +
∑

C∈Cb
e(x,C)

2 c, where C is the set of
components of G \ (X ∪ x), and e(x, C) is the number of edges between x and C.

Let C′ be the components of C which are linked to x with more than one edge. We denote by e′ the total
number of edges between x and the components of C′. Note that |X|+e′/3 is at most p, the worst case being when
x is linked to each component of C′ with exactly three edges. Hence k ≥ |X|+ e′/3, which gives 3k ≥ 3|X|+ e′.

Furthermore, there are k1 components in C \ C′ which contain a cycle and k2 elements of X which are linked
to x with a double edge, where k1 + k2 ≤ k otherwise we would apply Rule 4.

In all, the number c of components of C which are trees and are linked to x with exactly one edge is at least
the minimum degree 4k of x minus |X| for every neighbor of x in X, minus e′, and finally minus k1 + k2. This
gives that c ≥ 4k − |X| − e′ − k. And since 3k ≥ 3|X|+ e′, we have that c ≥ 2|X|. Consequently, there exists a
set Y of at least 2|X| components of C which induce trees and are joined to x with a single edge.

We now form a bipartite simple graph B on vertex set X, Y where vC is an edge of B, for v ∈ X and C ∈ Y ,
if and only if there exists an edge between v and C in G. Since every component C in Y spans a tree, G has
minimum degree three and C is only linked to x by an edge, there are edges leaving C which are not incident to
x, and thus are incident to X. This means that every element of Y is joined to a vertex of X. Moreover we have
|Y | ≥ 2|X|, hence we can apply Theorem 2.3, to find nonempty subsets X ′ ⊆ X and Y ′ ⊆ Y such that the set of
neighbors of Y ′ in B is exactly X ′, and such that every subset Z ⊆ X ′ has at least 2|Z| neighbors in Y ′. Observe
now that:

• every element C of Y ′ is a component of the graph G \ (X ′ ∪ x),

• every element C of Y ′ is linked to x with a single edge,

• every element C of Y ′ spans a tree.

• every subset Z of X ′ is linked to at least 2|Z| elements of Y ′

Consequently, we can apply Rule 5 to G, X ′, x.
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