
HAL Id: lirmm-00394624
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00394624v1

Submitted on 25 May 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

A Decentralised Task Mapping Approach for
Homogeneous Multi-Processor Network-on-Chips

Peter Zipf, Gilles Sassatelli, Nurten Utlu, Nicolas Saint-Jean, Pascal Benoit,
Manfred Glesner

To cite this version:
Peter Zipf, Gilles Sassatelli, Nurten Utlu, Nicolas Saint-Jean, Pascal Benoit, et al.. A Decentralised
Task Mapping Approach for Homogeneous Multi-Processor Network-on-Chips. International Journal
of Reconfigurable Computing, 2009, 2009, pp.#453970. �10.1155/2009/453970�. �lirmm-00394624�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00394624v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Hindawi Publishing Corporation
International Journal of Reconfigurable Computing
Volume 2009, Article ID 453970, 14 pages
doi:10.1155/2009/453970

Research Article

A Decentralised Task Mapping Approach for
Homogeneous Multiprocessor Network-On-Chips

Peter Zipf,1 Gilles Sassatelli,2 Nurten Utlu,3 Nicolas Saint-Jean,2 Pascal Benoit,2

and Manfred Glesner3

1 Digital Technology Lab, University of Kassel, Wilhelmshöher Allee 73, 34121 Kassel, Germany
2 Laboratoire d’Informatique, de Robotique et de Microélectroniqe de Montpellier (LIRMM), University of Montpellier II,
UMR CNRS 5506, 161 rue ADA, 34392 Montpellier Cedex 5, France

3 Institute of Microelectronic Systems, Darmstadt University of Technology, Karlstrasse 15, 64283 Darmstadt, Germany

Correspondence should be addressed to Peter Zipf, zipf@uni-kassel.de

Received 27 December 2008; Accepted 25 May 2009

Recommended by Michael Huebner

We present a heuristic algorithm for the run-time distribution of task sets in a homogeneous Multiprocessor network-on-chip.
The algorithm is itself distributed over the processors and thus can be applied to systems of arbitrary size. Also, tasks added at run-
time can be handled without any difficulty, allowing for inline optimisation. Based on local information on processor workload,
task size, communication requirements, and link contention, iterative decisions on task migrations to other processors are made.
The mapping results for several example task sets are first compared with those of an exact (enumeration) algorithm with global
information for a 3× 3 processor array. The results show that the mapping quality achieved by our distributed algorithm is within
25% of that of the exact algorithm. For larger array sizes, simulated annealing is used as a reference and the behaviour of our
algorithm is investigated. The mapping quality of the algorithm can be shown to be within a reasonable range (below 30% mostly)
of the reference. This adaptability and the low computation and communication overhead of the distributed heuristic clearly
indicate that decentralised algorithms are a favourable solution for an automatic task distribution.

Copyright © 2009 Peter Zipf et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1. Introduction

On-chip multiprocessing provides the computing power
and parallelism required for many of today’s real-world
applications with high data rates. The diminishing returns
of Instruction Level Parallelism (ILP) point the interest to
higher levels of applications, where explicit Thread Level
Parallelism (TLP) can be exploited [1]. A logical consequence
of increasing performance demands is to use both ILP and
TLP simultaneously by integrating a large number of pro-
cessors in one Multiprocessor System-on-Chip (MPSoC). At
the same time, reduced clock frequencies for the individual
processor cores enable a large reduction of the overall power
consumption while keeping the system performance up.

Multiprocessor systems can only be utilised sufficiently,
if the software running on them can be separated into sets
of communicating tasks working in parallel. These tasks
are then distributed over a set of processors sharing the

workload. For a well-known set of tasks and workloads, the
distribution can be precalculated for an optimal mapping.
For applications with unpredictable workload like, for exam-
ple, user-induced multimedia processing, and subsequently
unpredictable changes in active tasks and communication
requirements, a run-time task mapping depending on the
actual resource utilisation must be applied to balance the
processor loads.

In this paper we present a decentralised task mapping
heuristic for task sets on an MPSoC. The heuristic running
on each processor is capable of reconfiguring the system
by migrating individual tasks to neighbouring processors
based on the local workload, task sizes, and communication
requirements of the tasks to be migrated. It is not restricted
to a final set of tasks but can also handle task sets added
during operation, thus supporting a reconfiguration at task
level. Due to its scalability, a homogeneous Network-on-
Chip (NoC) structure is used as the underlying hardware

2 International Journal of Reconfigurable Computing

architecture, which is essential for the developed task
mapping heuristic. An experimental implementation of the
multiprocessor platform based on interconnected FPGA
prototyping boards is used to investigate the potential
of decentralised task distribution and workload balancing
algorithms.

1.1. Multiprocessor Network-on-Chips. An MPSoC is a spe-
cial form of SoC; where the functional modules are all
processor modules. Due to the advantages on-chip design
offers, like a free choice of bus bit widths or high data
transfer rates, such systems can be adapted very well to their
specific requirements. Based on the envisioned application
scenario of multimedia workloads, which are characterised
by structured and regular computations, some additional
desired properties for the system can be derived. This refers
mainly to the communication model, the processor types,
and the physical interconnect architecture. Multiprocessor
systems can be based on shared memory or message passing
communication. For large high-performance systems with
up to several hundred processors, only a communication
based on message passing is reasonable [2, 3], combined
with distributed local memory. To enable a simple task
distribution, a homogeneous MPSoC should be preferred,
where each node consists of an identical processor to present
a uniform (homogeneous) array.

The components of MPSoCs are usually connected by
point-to-point or bus-based structures. Both interconnect
concepts cannot be scaled well for larger numbers of proces-
sors, for example, exceeding 50. A Multiprocessor Network-
on-Chip (MPNoC) uses a Network-on-Chip [4] structure to
interconnect its processor modules. A set of interconnection
segments is combined to a network by routers. Data sent
from one Processor is then relayed from one router to the
next until it reaches its destination [5]. Such a MPNoC called
HS-Scale [6] is used in our work.

1.2. The Task Mapping Problem. For the envisioned data
flow applications, a high overall system throughput is the
dominant requirement, surpassing short latencies as needed,
for example, in closed loop control systems. In order to
improve throughput, tasks must be mapped in the right
way. The main question to be answered for a task mapping
is: what makes one mapping better than another? Conse-
quently, the objective is to reduce (a) the average distance
of travelling data packets and (b) the workload on the
individual processors. In addition, the maximum bandwidth
on the communication links should not be exceeded. These
objectives are specific for on-chip scenarios where individual
interconnects are not the most dominant limitation and the
network topology including all its parameters is fixed and
known in advance.

Two major concepts in developing task mapping strate-
gies are the graph theoretic approach and the mathematical
programming approach [7]. Although rapid advances in
both the methodology and application of graph theoretic
models have been realised, many models actually are special
types of linear programming problems [8]. Task mapping

considering traffic generation is a nonlinear problem, which
limits the usability of common graph theoretic approaches.
Due to the unsatisfactory support of nonlinear task mapping
by graph-based methods, in this work flexible mathematical
programming for developing an algorithm is used.

1.3. Section Overview. Section 2 introduces some relevant
previous work on the task mapping problem for multipro-
cessor systems. Section 3 describes the heuristic algorithm
developed and an exact algorithm used for comparison.
Section 4 discusses some experimental results obtained by
running the algorithms on a set of example task sets. In
Section 5 the performance of the heuristic algorithm for
larger network processing unit (NPU) arrays is investigated
based on a large number of random task sets. Section 6
concludes with a summary and some final remarks.

2. Related Work

The aim of this work is to develop a run-time task
mapping algorithm for MPNoCs to balance the system
throughput. This is done by considering the two conflicting
requirements maximisation of average processor utilisation
and minimisation of the contention on links caused by
intertask communication. A classification of some relevant
related work on task mapping is given in Table 1. The main
categories are the factors taken into account for the mapping
(computation and/or traffic), the flexibility of the mapping
process (static or dynamic), and the way it is implemented
(centralised or decentralised).

The first category is based on the target factors taken
into account to achieve the mapping goal. In [9], only the
network bandwidth is considered but not the computing
requirements of the applications. The aim of [10] is the
minimisation of total communication time for sets of similar
tasks. Other factors like congestion are not considered. Also,
workload balancing is only done by mapping exactly one
task to one processor. A more general load balancing model
considering job and resource migration is used in [11].
As communication bandwidth is assumed to be sufficient,
the mapping depends only on the communication distance
and is independent of the network traffic. In contrast, a
mapping optimisation regarding computation and traffic is
given in [12]. The goal is to minimise the total execution
and communication costs. Communication costs are used
as an attracting force between tasks, causing them to be
assigned to the same processor. The costs of incompatibilities
between tasks are used as a repulsive force, causing a task
distribution over several processors. Communication costs
occur if two tasks are assigned to different processors and
are independent of the congestion on the links. They are
not explicitly specified, but occur as the multiplication of
the communication flow between two tasks and the distance
between the processors they are mapped to. The mapping
problem is solved by a Max Flow/Min Cut algorithm in
combination with a greedy algorithm. In [13] also the total
execution time is minimised by weighting the computation
of each task and each interaction between tasks. The resulting

International Journal of Reconfigurable Computing 3

Table 1: Classification of related work on task mapping.

Group Description Examples

Computation or Traffic: Maximum utilisation of processors or
minimum traffic generation

[9–11]

Computation and Traffic: Maximum utilisation of processors and
minimum traffic generation

[12–14]

Static Mapping: Offline or predictive mapping at design
time

[12, 15–17]

Dynamic Mapping: Supports run-time task migration (and
injection)

[18–20]

Central Mapping: Global view, Master Slave [12, 14, 19–21]

Decentrlised Mapping: Local view [22]

cost function is minimised by a hybrid of a genetic algorithm
and mean field annealing. The turnaround time is improved
in [14]. After defining execution and communication costs
simulated annealing is used.

While workload balancing tries to exploit parallel exe-
cution in space by distributing all tasks regarding the
computation demand evenly among the processors, intertask
communication tends to exploit computation in time, by
mapping the whole application to a single processor in
order to save bandwidth of communication links [23]. Task
Mapping differs regarding the time at which assignment
decisions are made. Most authors propose the use of static
mapping [12, 15–17], according to most of the current
real-time operating systems of embedded systems [18].
Static mapping is less complex and easier to design than
dynamic mapping. The assignment is defined prior to the
application execution at design time and is not changed
any more later on. To improve the performance of dynamic
workloads at run-time, task migration has been used [18–
20] to relocate tasks in order to distribute the workload more
homogeneously among the resources. Differently from task
migration, dynamic mapping can insert new tasks into a
system at run time [24].

For the decision-making policy of task mapping, the
two fundamental models centralised and decentralised can
be considered. In a centralised model [12, 14, 19–21],
one specialised master processor and an arbitrary number
of slave processors are used [20]. The master has global
knowledge of the application characteristics and of the
distributed system [12]. It performs task mapping, aiming at
an equal distribution of the load among the slave processors
and communication links. The centralised task mapping
allows a globally coordinated and hence efficient placement
mechanism, however at the cost of scalability. An increasing
number of processors in future systems or a great number of
tasks will overload the master. In decentralised models, the
authority for task mapping is shared among all processors.
Because of the absence of a global view, knowledge of
application and processor characteristics is shared by the
exchange of messages. All decisions for the task mapping are
made from local interaction laws.

Typical applications running in MPNoCs like multi-
media and networking display a dynamic workload of

tasks. This implies a varying number of tasks running
simultaneously [24]. It is impossible to foresee and specify an
appropriate response for every potential run-time scenario
before the application execution. Therefore, unpredictable
information like task arrival times, workload of processors,
and contention on the links must be gathered during execu-
tion. This work considers dynamic mapping for MPNoCs,
which supports varying workloads by task injection and
target load distribution by task migration. Tasks are mapped
on the fly, according to computation and communication
requirements, following a distributed (decentralised) map-
ping scheme, considering both computation (workload) and
traffic data.

3. The Heuristic Task Mapping Algorithm

Since scalability of the platform architecture and program-
ming model will be a major challenge for MPSoC designs
in the years to come, a platform providing a large number
of processors must discard all non-scalable properties. Our
hardware platform HS-Scale [6] is a homogeneous MPSoC
based on programmable RISC processors, small distributed
memories, and an asynchronous Network-on-Chip (NoC).
The software model is a multithreaded sequential program-
ming model with communication primitives handled at run-
time by a simple multitasking operating system specifically
developed for the platform; the threads are described in C
language. The HS-Scale framework guarantees any applica-
tion to be executed independent of the platform settings,
specifically the number of processing elements (PE) and the
chosen task mapping. The communication is abstracted via
communication primitives, so that tasks can communicate
with each other without knowing their position in the
system. The communication primitives were derived from 5
of the 7 layers of the OSI model, allowing transparent data
communications between tasks either locally or remotely:
the routing is done following a dynamic routing table. If the
task is local, the writing of data is done on a local software
FIFO. If it is a remote task, the operating system must
assure that there is enough space for the remote software
FIFO to avoid deadlocks on the network. This is done using
dedicated functions. As soon as the OS gets a positive answer,
it can start encapsulating and sending the data packets to the

4 International Journal of Reconfigurable Computing

T2

T1

T3

T4

T5

(a) Task graph

T1

T4 T5
1

3

2

4

5

6

7

8

9

T3

T2

(b) Task placement

Figure 1: A task graph and its placement on an NPU array.

Task T1 T2 T3 T4 T5

NPU 3 2 2 1 4

Figure 2: Task placement representation.

remote task while the remote task can de-encapsulate and
receive the data packets and write them to its local software
FIFO. A lightweight operating system has been developed for
the specific needs of the MPNoC platform. The OS provides
preemptive task switching and communication support for
task interactions using the communication primitives [6].

Load balancing, the overall communication bandwidth,
and the local communication bandwidth have to be con-
sidered for the task mapping. This section introduce the
implemented algorithms after defining the underlying model
and a mathematical problem formulation.

3.1. Problem Definition and Model Formulation. To reduce
the average distance of travelling data, the number of
data packets and the distance between the communicating
network processing units (NPUs) must be known.

The mapping alternatives are determined by using
an appropriate solution representation and by modifying
representations (solutions). Every possible solution can be
represented by a Table with two rows (see also Figure 2). The
first row is an ID list of all existing tasks without repetition.
This constraint results from the fact that each task must only
be mapped exactly once. The second row contains the IDs of
used NPUs. Because each NPU has multitasking capabilities
which enables a time-sliced execution of tasks, a repetition
of NPU IDs is allowed. Not all NPUs need to be used and
thus some need not appear in the second row. As an example,
the task graph of Figure 1(a) with five consecutive tasks is
mapped on the array with 3× 3 NPUs shown in Figure 1(b).
The according solution representation Table is shown in
Figure 2.

The target hardware architecture is a homogenous array.
Therefore it is possible to assign any task to any NPU. New
solutions can easily be generated by exchanging NPUs in the
second line of the solution representation by other existing
NPUs. This is equivalent to the combinatoric variation with
repetition, where order matters and an object can be chosen

more than once. The number of possible variations with
repetition is given by

NPUTask, (1)

where NPU is the number of available NPUs to be chosen
from and Task is the number of tasks to be placed.

The problem can now be formulated as follows. Given
the computation time for every task and the data flow
between communicating tasks, find a task placement that
reduces the distance through which data travels and balances
computation load. Each task has to be assigned to a single
NPU and each NPU can execute multiple tasks.

The communication costs fi,k between task i and task k
depend on the distance dj,l, determined by the position of
NPU j to which task i is assigned (xi, j = 1) and NPU l
on which task k is assigned (xk,l = 1). The problem is a
quadratic assignment problem (QAP) [8]. The formulation
of the overall bandwidth minimisation can be given as.

minimise z =
n∑

i=1

m∑

j=1

n∑

(k=1,k /= i)

m∑

(l=1)

fi,k · dj,l · xi, j · xk,l (2)

The load balancing between NPUs can be considered as
the linear assignment problem (LAP), where each task i in
the task graph has been assigned a constant computational
complexity ti, where ti, j is this cost when task i is assigned to
NPU j:

minimise z =
n∑

i=1

m∑

j=1

ti, j · xi, j . (3)

subject to

m∑

j=1

xi, j = 1, i = 1, . . . ,n, (4)

where n is the number of tasks, andm is the number of NPUs.
This constraint guarantees that task i is assigned to exactly
one NPU.

To consider local bandwidth, the congestion cj,l on the
links between NPU j and NPU l must also be included. A
complete formulation of the objective function can be to
minimise z, where

z = α ·
n∑

i=1

m∑

j=1

ti, j · xi, j

+ β ·
n∑

i=1

m∑

j=1

n∑

(k=1,k /= i)

m∑

(l=1)

fi,k · dj,l · xi, j · xk,l

+ γ ·
n∑

i=1

m∑

j=1

n∑

(k=1,k /= i)

m∑

l=1

cj,l · xi, j · xk,l

(5)

subject to (4).
Equation (5) considers load balancing, overall bandwidth

and local bandwidth, weighted by the scaling factors 0 ≤
α,β, γ ≤ 1.

International Journal of Reconfigurable Computing 5

Table 2: Area scalability and power consumption results for 90 nm
technology.

No. of NPUs 1 2 2× 2 3× 3

Area (mm2) 18.22 36.63 73.61 165.30

Power (mW/MHz) 2.56 5.14 10.34 23.26

Table 3: FPGA synthesis results.

Module NPU Router Processor Other

No. of Slices 2496 683 1462 351

% of Slices 14.4 3.9 8.5 2.0

3.2. The Task Mapping Algorithms. Three task mapping
algorithms have been implemented. The first one is an exact
algorithm based on complete enumeration. It delivers one
solution which is guaranteed to be as good as any other
objective function value. This algorithm is only used for
small examples (up to 9 NPUs and 11 tasks) and as a
reference, because (5) contains a modified QAP formulation
(QAP problems have been shown to be NP-hard [25])
and for a complete enumeration NPUTask solutions have
to be generated. The program flow is shown in Figure 3.
All solutions are generated, evaluated, and the best value
encountered is returned as the result.

The second algorithm is a constructive algorithm.
Its results are used as the starting point for the main
improvement heuristic. to produce a feasible initial mapping
solution, the constructive algorithm is run on one task
injection (boundary) NPU. Initially only, global information
is available, because no task is running on any NPU. Also,
the 2D mesh structure of the hardware is used based on a
reachability measure.

All NPUs are evaluated regarding their reachability. For
illustration the array given in Figure 4 is used. The distance
between two NPUs is given by the number of required hops,
as shown in Figure 4(a). The sum of hops from NPU 1 to
all other NPUs is 18. Applying this procedure to all NPUs
gives their reachability. It can be seen in Figure 4(b) that the
NPU with the best reachability is in the centre. To avoid
overloading NPUs with good reachability, the reachability
of NPUs which run tasks is penalised proportional to their
computation time.

The program flow of the constructive algorithm is shown
in Figure 5. Output tasks are sinks in the task graph. All tasks
on the injection NPU are mapped to the remaining NPUs.
This is done starting with the input task of each application’s
task set and continued by moving on to its successor tasks.

The constructive algorithm is activated once. Later the
improvement algorithm is started on all NPUs until a
steady state is reached. The closer the initial solution to
the optimum, the fewer the number of required operations
during the following improvement procedure. However, a
good solution usually requires a complex algorithm and high
computational effort. The proposed constructive heuristics
balances the desire for a high quality initial solution and a
simple algorithm, which is easy to implement and does not
require extensive computations.

Cost current solution
<

cost best solution?

Complete
enumeration

i = 1

i = i +1

Generate and evaluate
new solution

End

Save current solution
as best solution

 i > NPU ?Task

Figure 3: Program flow: exact algorithm.

3

4

21

1
2

2 3

Σ18

(a) Reachability of
NPU 1

Σ18 Σ15 Σ18

Σ15 Σ12 Σ15

Σ18 Σ15 Σ18

(b) Reachability of all
NPUs

Figure 4: Reachability calculation.

The third algorithm is a hybrid tabu search and force
directed improvement algorithm. It is a distributed algo-
rithm meant to run on each NPU if required. A model
of spring-connected weights is used as its basis. Weights
correspond to tasks and springs to communication between
the tasks. A spring will try to pull its tasks closer together
or push them apart, depending on its stiffness which is
proportional to the quality (objective function rating) of
the considered neighbourhood. The algorithm starts with
a stiffness of distance 0 and 1. The NPU of the sending
task and its neighbours which have a distance of one
hop are considered first. If the objective function value
worsens, the stiffness value is incremented to consider a
growing neighbourhood. Assignment of tasks with high
communication demands are prioritised. In order to achieve
proper tradeoffs between time spent looking for solutions
and the quality of the solutions found, a feature of tabu
search, the candidate list strategy feature of the tabu search
is applied [26]. The candidate list is used as a penalty Table

6 International Journal of Reconfigurable Computing

Table 4: Evaluation results for the task graph (TG) examples for α = β = γ = 1 in (5) for constructive algorithm (CA), improvement
algorithm (IA), and exact algorithm (EA).

Examples Value CA IA EA

TG 1 OF 1,161,862 941,508 941,380

% 123.4 100.0 100.0

LB 256 384 320

OB 256 384 320

CL 1,161,350 940,740 940,740

TG 2 OF 1,657,440 942,148 941,764

% 176,0 100,0 100.0

LB 832 704 512

OB 448 704 512

CL 1,656,160 940,740 940,740

TG 6 OF 1,359,998 762,921 762,157

% 178.4 100.1 100.0

LB 6,720 7,932 6,848

OB 2,240 2,688 3,008

CL 1,351,038 752,301 752,301

TG 7 OF 1,378,832 909,235 732,787

% 188.2 124.1 100.0

LB 8,568 7,680 5,376

OB 2,432 2,624 2,176

CL 1,367,832 898,931 725,235

TG 8 OF 2,565,628 2,108,464 2,009,720

% 127.7 104.9 100.0

LB 704 832 640

OB 704 832 640

CL 2,564,220 2,106,800 2,008,440

TG 9 OF 1,591,952 869,200 868,816

% 183.2 100.0 100.0

LB 384 640 448

OB 128 640 448

CL 1,591,440 867,920 867,920

TG 15 OF 2,958,737 2,334,168 2,033,084

% 145.5 114.8 100.0

LB 768 1,024 832

OB 704 1,024 832

CL 2,957,265 2,332,120 2,031,420

TG 17 OF 2,819,944 2,406,374 2,008,914

% 140.4 119.8 100.0

LB 896 1,280 512

OB 768 704 512

CL 2,818,280 2,404,390 2,007,890

TG 24 OF 359,000 232,869 230,629

% 155.7 101.0 100.0

LB 960 2,880 1,216

OB 896 1,472 896

CL 357,144 228,517 228,517

TG 26 OF 1,820,626 942,789 942,597

% 193.1 100.0 100.0

LB 1,952 1,088 928

OB 672 960 928

CL 1,818,002 940,741 940,741

International Journal of Reconfigurable Computing 7

Table 5: Comparison of the constructive algorithm (CA), improvement algorithm (IA) and exact algorithm (EA).

Algorithm CA IA EA

HW throughput (bytes/s) 133,118 240,365 266,237

% of Exact 49.99 90.28 100

256 byte link 1 0 0

Contention on links 128 byte link 1 2 2

64 byte link 1 7 4

Overall Communication OB 448 704 512

Computational Load CL 1,656,160 940,740 940,740

Table 6: Relative OF-minima (values in % of random mapping).

Minima [NPUs] Relative value [%]

Task count Annealing Heuristic Annealing Heuristic

10 9 16 55.4 64.5

20 16 16 49.9 63.8

30 25 25 52.5 65.3

40 36 36 56.2 64.9

50 36 49 61.9 66.6

60 49 49 65.5 67.4

70 49 64 68.1 68.8

80 49 81 71.8 69.8

90 64 64 71.9 69.7

which includes one element for each NPU. For example,
a penalty is applied if the algorithm could not attain a
better objective function value. After a certain value in the
candidate list is reached, for example, a certain number of
unsuccessful repetitions of the algorithm, the corresponding
NPU is marked tabu and is no longer allowed to run
the task mapping algorithm. This procedure provides three
mechanisms.

(i) Avoid cycling by setting NPUs tabu if the improve-
ment algorithm repeatedly cannot reach a better
objective function value.

(ii) Intensification of the search by remaining NPUs,
excluding nonpromising regions.

(iii) Termination criterion for the algorithm: eventually,
all NPUs will be marked tabu.

The program flow of the improvement algorithm is
shown in Figure 6. First, the algorithm checks whether a
task is assigned to the NPU on which it runs. If no task
is available, the tabu candidate originally set to zero will
be incremented by one. Otherwise, all successor tasks are
determined, except those with output flow which are not
allowed to migrate (sinks). If no valid successor exists,
the tabu candidate value is increased by one and the task
is excluded from consideration. If successors exist, the
successor with maximum receiving flow will be selected.
According to the objective function, the NPU costs consist
of the computation workload on the sending NPU, the
computation workload on the receiving NPU, the distance
between task and considered successor multiplied by the

flow, and finally of the congestion between sending and
receiving NPU. The flow to the successor is then checked
to determine if it is so high that it is worth assigning both
tasks to execute on the same NPU, despite the increasing
computational demand. If this is not the case, the successor
will be assigned to the neighbour NPU of distance 0 and
1, with minimum sum of congestion and NPU workload.
If the NPU costs worsen, the neighbourhood is expanded
to a distance of 2 and the value of the tabu candidate is
incremented. This procedure of neighbourhood expansion
will be continued until the NPU costs are at least equal to the
old NPU costs. The improvement algorithm is repeated on
the considered NPU as long as its repetition is not forbidden
by the tabu list.

4. Experimental Results

A complete synthesisable RTL model of the HS-Scale hard-
ware has been designed. The VHDL model was synthesised
with a 90 nm ST Microelectronics design kit. The NPU
clock has been constrained to 3 nanoseconds allowing a
300 MHz clock frequency. Table 2 summarizes the results.
The model has been placed and routed with a 64 KB local
memory, which occupies 87% of the total NPU area. Of
the remaining 13%, the processor occupies 54%, the router
38%. Other elements (UART, interrupt controller, network
interface, etc.) occupy about 7%. Table 2 clearly shows the
areascalability of the MPNoC hardware platform and gives
the estimated power consumption.

The very first validations of the system were performed
using RTL simulations. Since this method is too slow for

8 International Journal of Reconfigurable Computing

Map task randomly on boundary NPU

Constructive
algorithm

with best reachability
− Map task to NPU with distance 1 and

− Undo penalisation reachability old NPU
− Penalise reachability new NPU

End

All applications
considered?

All tasks
mapped?

Output task?

Determine successor task with max flow

Consider next application

− Map remaining tasks randomly

− Penalise reachability new NPU
− Undo penalisation reachability old NPU

− Map input task on boundary NPU with
best reachability

− Undo penalisation reachability old NPU
− Penalise reachability new NPU

Figure 5: Program flow: constructive algorithm.

running realistic application scenarios, a prototype system
using Xilinx Spartan-3 XC3S1000 FPGAs on Xilinx Starter
Kit FPGA boards was realised. Table 3 gives the device
utilisation for a single NPU on a single XC3S1000 FPGA
providing 17,280 logic cells. Each NPU is placed on one
board. The complete prototype is then composed of several
prototyping boards connected by ribbon cables. This allows
for easy extension of the system by adding further FPGA
boards.

A set of 27 task graphs was used as examples to evaluate
the quality of the constructive and improvement algorithms.
The properties of the graphs, that is, computational and
communication requirements, are taken from real applica-
tions, for example, Motion JPEG video-codec. Variations
were generated by duplicating tasks to enable load sharing
or by iterative execution of tasks. The example task sets
range between 5–11 tasks, distributed to 1–4 independent
applications, that is, independent data flows. Figures 7(a),
7(b), and 8(a) show examples of the task graphs used,
including computational and communication requirements
(given in clock cycles and bytes resp.). In task graph 6
(Figure 7(a)) the tasks 2, 3, and 4 have been replicated twice
for load sharing, while at the same time also increasing
communication (arrows). Due to the problem complexity
for the exact mapping solution, the target array was limited
to 3 × 3 NPUs. Table 4 shows a representative selection
of the data obtained from the evaluation. The rows for
local bandwidth or link contention (LB), overall bandwidth
(OB), and computational load (CL: z from (3)) show the
respective algorithm representation of these values. The
individual values for the objective function (OF) of the

calculated mappings and their relation to the exact results are
given.

The average deviation between the results of the improve-
ment algorithm and the exact solution is 6.47% for the
given examples, and the maximum difference is below 25%.
TG 1 contains task 2 with a computational requirement
of 494,810. TG 2 is a parallelised version of TG 1, where
task 2 has been replicated once (task 20), resulting in a
computational requirement of 247,405 for each of task 2 and
20. It can also be seen that a load balancing can easily be
done at the cost of increased communication (OB of the
exact algorithm increases from 320 to 512, corresponding
to the two additional communication links with costs of
128 and 64 bytes per block calculation). The CL of the
exact algorithm for TG 1 and TG 2 are identical because
no changes in the computational complexity arises by
duplicating tasks. From the viewpoint of the computational
loadbalancing, it can be seen by comparing the CL values of
TG 2, that the construction algorithm provides an inferior
solution, whereas the improvement algorithm and the exact
algorithm provide solutions with equal quality (visualised in
Figure 9).

Figure 8 shows the task graph model of application
example 2 with 6 tasks and a 3 × 3 NPUs graph. The task
graph of Figure 8(a) was mapped by all three algorithms
on an FPGA-based NPU array implementing the 3 × 3
array of Figure 8(b). Figure 9 shows the mapping results
for the three algorithms. Table 5 gives the corresponding
throughput numbers measured on a VHDL simulation of
the hardware platform running at 7 MHz. It can be seen that
the result of the improvement algorithm for the example

International Journal of Reconfigurable Computing 9

Improvement
algorithm

Task on NPU?

Determine all successors
of task without output flow

− Increment tabu_candidate for NPU
− Exclude task from further consideration

Number of
successors = 0?

Increment
tabu_candidate

for NPU

Tabu_candidate
> tabu_value?

Set NPU
tabu

− Determine NPU cost
− Select successor with max flow

(Load of NPU +
computation time successor)

< flow?

Assign task to neighbour of distance
0 or 1, with min(congestion + load)

NPU cost new > NPU cost old?

− Expand neighbourhood
− Increment tabu_candidate of NPU

− Determine successor with max increased (congestion + load)
− Assign sucessor to neighbour with min (congestion + load)

Assign task on NPU
with distance 0

Figure 6: Program flow: improvement algorithm.

is within 10% (90.28%) of the best solution. The local
and overall communication requirements (abstracted values
for the objective function) and the computational load of
the NPUs as computed by the three algorithms are also
given.

5. Results for Larger Arrays and Task Sets

The previous results indicate the feasibility of the proposed
decentralised placement heuristic. The general performance
of the heuristic can only be evaluated by considering a larger
range of array sizes and task counts. The exact enumeration
algorithm cannot be used as a reference for array sizes
above 3 × 3 and more than about 12 tasks because of the
high complexity of O(NPUTask). Instead, we use a simulated
annealing algorithm to optimise the task mapping problem
with global knowledge for larger arrays and higher numbers
of tasks. These results can be compared to the results of our
heuristic.

5.1. Experimental Settings and Data. To gain significant
information on the behaviour of the algorithms, a large
number of experiments must be made for different array
sizes and task counts. A task graph generator was imple-
mented to produce random task graphs. Each task graph is
characterised by the number of nodes (tasks) it contains,
the number of unconnected subgraphs (task groups or
processes), and the specific values for the computational load
of each task and the communication bandwidth of each edge
(data communication between tasks). For our experiments
the following parameters are varied.

(i) Array size: array sizes from 1×1 to 9×9, that is, from
1 to 81 NPUs.

(ii) Task count: task sets with between 10 and 90 tasks.

(iii) Process count: values between 2 and 8 have been
used.

The graph generator software produces a number of samples
for each parameter combination, for example, 100 graphs

10 International Journal of Reconfigurable Computing

64

64

64

128

634801

2

3

4

5

20

30

40

21

31

41

17982 1798217982

16182 16182 16182

24990

128

64

164937 164937 164937

(a) Task graph 6

1

2

3

128

64

161840

494810

63480

63480

494810

4

5

128
64

64

64 64
494810

72820

80920

7

8

9

80 80920

(b) Task graph 17

Figure 7: Examples of the task graphs used.

1

2

3

4

5

161840

145640

74970

63480

64

128

64

64

64

128

20 247405 247405

(a) Task graph 2

5

3

1

2

4

6

7

8

9

(b) Processor graph

Figure 8: Modelling example for an application and NoC processor
array.

with 25 tasks, and 4 independent processes, with a randomly
distributed number of tasks per process. Figure 10 shows
one of the task graphs generated during the experiments.
It contains 14 tasks arranged in 3 independent groups
(processes) which are meant to run in parallel on the NPU
array. Each task graph is then handed to the heuristic and the
simulated annealing algorithm for placement. Additionally, a
random placement is also generated. The resulting objective
function values for all three obtained placements are saved
as average, minimum, and maximum values over all samples
for each parameter combination.

Simulated annealing is known as a good heuristic
approach for problems with a largely unknown solution
space structure and should produce reasonable reference
results.

5

1
2
20

3

4

(a) Constructive

52 3

1 20

4

(b) Improvement

234

1205

(c) Exact

Figure 9: Comparison of constructive, improvement and exact
algorithm.

To get some general information about the design space,
two considerations can be made. Firstly, we will assume that
input and output tasks must be placed on a boundary NPU.
For array sizes above 2 × 2, the number b of boundary
NPUs grows linearly with the square root of the NPU count
(b = 4(

√
n − 1) = 4

√
n − 4, n ≥ 4, with n being the

(square) number of NPUs), while the number i of internal
NPUs grows linearly with the NPU count (i = (

√
n − 2)2 =

n−4
√
n+ 4 = n−b, n ≥ 4), that is, the fraction of boundary

NPUs b/i = b/(n−b) shrinks. While this does not reduce the
complexity class of the problem, it still reduces the number
of valid mappings due to the fact that input and output tasks
must be mapped to boundary NPUs. The number of valid
mappings mv is given by

mv =
(
4(
√
n− 1)

)2g · (√n− 2
)2(t−2g), (6)

where n is the number of NPUs, and t is the number of tasks,
and assuming that each task group g must have at most one
input and one output task (or one-task processes, this can be
the same task, so 2g is an upper limit). The first term gives the
number of boundary NPUs, while the second term gives the
number of “inner” NPUs of the array. The break even point
of b and i is between array sizes of 6× 6 and 7× 7 (36 and 49
NPUs). For 9× 9 array, there are 32 boundary NPUs and 49
inner NPUs, so a large predominance of inner NPUs needs
not to be considered.

Secondly, some information about the objective function
values to be expected can be obtained by examining random
mappings or by using the simulated annealing algorithm to
search for worst case solutions. Figure 11 shows the values
of random task mappings for 50 tasks and different array
sizes, averaged over 1000 samples each (please note the
logarithmic scale for the y-axis). The error bars give the
range between the best and the worst mapping value found
within the samples. It can be seen that larger arrays allow for
more efficient mappings according to the objective function.
Also, a saturation effect can be observed towards larger
arrays.

5.2. Mapping Evaluation. The obtained data can be analysed
and the quality of the heuristic mapping results can be
rated in relation to the simulated annealing results. Figure 12

International Journal of Reconfigurable Computing 11

2
(218143)

640

5
(428411)

512

6
(98201)

640

7
(140902)

128

3
(343043)

512

4
(449080)

576

320 320

512

10
(20844)

320

11
(107526)

640

12
(251024)

128

13
(200236)

384

14
(313646)

128 512 640

448

17
(90122)

128

18
(340364)

448

19
(498512)

640

128

192

Figure 10: Example: generated task graph.

1e + 09

1e + 08

1e + 07
1 2 3 4 5 6 7 8 9

Square root (number of NPUs)

Random (50)

Figure 11: Objective function value space for 50 tasks and random
mapping.

shows the objective function results for the heuristic and
those for the simulated annealing algorithm for the same task
graphs for a 3 × 3 array (4 processes); Figure 13 shows the
same data for a 6 × 6 array (8 processes). The dotted line
(values in %, right y-axis) gives the ratio between simulated
annealing and the heuristic. It can be seen that the heuristic
performs better for higher numbers of processes. For 8
processes, the heuristic delivers never more than 30% less
well results than simulated annealing for arrays between size
3×3 to 5×5, while even keeping below 20% for arrays larger
than that. For 4 processes, the heuristic results are never more
than 45% worse than simulated annealing, but less than 35%
in the great majority of examples. This is true over all data
sets, that is, for all array sizes.

Figures 14 and 15 show the mapping development for a
fixed task size of 30 and 60 tasks, respectively, and different
array sizes (data shown for 8 processes). For the figures, the
y-axis range is fixed. It can be seen that there is a diminishing

3e + 08

2.5e + 08

2e + 08

1.5e + 08

1e + 08

5e + 07

0
10 20 30 40 50 60 70 80 90

Number of tasks

Heuristic
Annealing

Random
Heuristic/annealing

50

40

30

20

10

0

Figure 12: Objective function values (left y-axis) on a 3 × 3 NPU
array and ratio in percent (right y-axis).

tendency for saturation towards larger NPU arrays, which
was already visible in the data for random placement (see
Figure 11).

Looking at the relative difference between the heuristic
and simulated annealing on the one hand and the random
placement on the other hand, it can be seen that there is an
distinct minimum in both results at array sizes specific to
the task count considered. Figures 16 and 17 show this for
20 and 70 tasks respectively (data shown for 8 processes).
The relative minimum for 20 tasks is at 4 × 4 arrays while
it is at 49 and 64 NPUs for 70 tasks. It also becomes clear
that the specificity of the minimum diminishes for higher
task counts. More specific, while simulated annealing can
get down to about 50% of the objective function values of
random placement for 20 tasks, it can only accomplish little
below 70% of it for 70 tasks. At the same time, the results for

12 International Journal of Reconfigurable Computing

9e + 07

8e + 07

7e + 07

6e + 07

5e + 07

4e + 07

3e + 07

2e + 07

1e + 07

0
10 20 30 40 50 60 70 80 90

Number of tasks

Heuristic
Annealing

Random
Heuristic/annealing

50

40

30

20

10

0

Figure 13: Objective function values (left y-axis)on a 6 × 6 NPU
array and ratio in percent (right y-axis).

1e + 09

1e + 08

1e + 07

1 2 3 4 5 6 7 8 9

Square root (number of NPUs)

Heuristic (30)
Annealing (30)

Figure 14: Objective function values for a fixed task count (30) and
different array sizes.

the heuristic get closer to that of simulated annealing, already
apparent in Figures 12 and 13. Table 6 gives an overview on
the minima found for selected task counts. It can be seen that
for higher task counts, the heuristic tends to require larger
processor arrays than simulated annealing to accomplish its
best results.

Finally, it is interesting to look at a specific placement of
tasks produced by the heuristic and the simulated annealing
algorithm, to see the basic differences. Figure 18 shows the
task mapping of the task graph from Figure 10 on a 5 ×
5 array as produced by the heuristic. The three processes
are composed of tasks 2–7, 10–14, and 17–19, respectively,
with the first and last tasks of each process being input
and output tasks. It becomes obvious that the placement
produced by the heuristic is limited by the initial distribution
of the input and output tasks. In two cases, NPUs 5 and

1e + 09

1e + 08

1e + 07

1 2 3 4 5 6 7 8 9

Square root (number of NPUs)

Heuristic (60)
Annealing (60)

Figure 15: Objective function values for a fixed task count (60) and
different array sizes.

100

90

80

70

60

50

40

(%
)

1 2 3 4 5 6 7 8 9

Square root (number of NPUs)

Heuristic (20)
Annealing (20)

Figure 16: Relative quality of a fixed task count (20) and different
array sizes.

24, two tasks share the same processor. Apart from this,
all other tasks could be placed on their own NPU, thus
distributing their workload evenly. The same holds for
the simulated annealing result where no processor sharing
occurs. It can be seen that the processes are better clustered
by the simulated annealing algorithm, while the far-apart
input and output tasks as initially placed by the heuristic
disrupt a close clustering. Nevertheless, the overall result of
the heuristic (OF = 4, 616, 314) is only 31% worse than that
of simulated annealing (OF = 3, 516, 371) which is quite a
good result in the light of the missing global information for
the heuristic.

International Journal of Reconfigurable Computing 13

100

95

90

85

80

75

70

65

(%
)

1 2 3 4 5 6 7 8 9

Square root (number of NPUs)

Heuristic (70)
Annealing (70)

Figure 17: Relative quality of a fixed task count (70) and different
array sizes.

0

1

2

3

4

4

5

6
6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

18

5

7
2

3

10

11

12

13

14

17

19

Figure 18: Heuristic placement of task graph from Figure 10 on a
5× 5 array.

6. Conclusion

This paper describes a distributed task mapping heuristic
for homogeneous MPNoCs, derived from a mathematical
model. It is based on an initial placement of tasks and a dis-
tributed improvement strategy locally implemented on the
processing elements. Task sets belonging to different initial
applications can be handled as well as tasks added during
system operation. For the mapping improvement, only local
information available at the affected NPUs and its close
vicinity is used, thus avoiding additional communication
overhead. Also, the low computational load of the algorithm
itself makes its application very attractive.

Running the heuristic for a selected set of example
applications shows the good results of the heuristic compared
to the exact solution. The accuracy of the results is supported
by a system simulation of the VHDL hardware model. For
larger array sizes, the heuristic was compared to a simulated
annealing algorithm and random placement. It can be seen
from the obtained data, that for larger process counts not
only do the achieved results of the heuristic come closer

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

18

5

6

27

3

4

10

11

1213 14 17 19

Figure 19: Annealing placement of task graph from Figure 10 on a
5× 5 array.

to those of simulated annealing—in fact, for large array
sizes and high task counts they are even better in some
cases—but also the difference of both towards the random
placement results get much better. This means, the heuristic
delivers increasingly better results for increasing process and
task counts. Thus, the heuristic appears to be well suited
for future challenges. In summary, the combination of the
constructive and the distributed improvement algorithms in
the final system appears as a promising decision eliminating
many potential scaling problems.

The presented algorithm implementation is a first
approach to the problem of efficiently using homogeneous
multiprocessor NoC platforms with a large number of
processors. Dynamic workloads pose a heavy problem on
such systems, for example, because task migration costs
will not be negligible any more and must be included into
the optimisation algorithms. We believe that the answer
to this challenge can only be a scalable solution (like
that presented in the paper) which is mainly based on
distributed algorithms, using only local information, like
the one presented. There is a large design space waiting to
be discovered, for example, looking at biologically -inspired
algorithms that have proved to be very successful already in
nature.

References

[1] L. Benini and D. Bertozzi, “Network-on-chip architectures
and design methods,” IEE Proceedings: Computers and Digital
Techniques, vol. 152, no. 2, pp. 261–272, 2005.

[2] S. Bertozzi, A. Acquaviva, D. Bertozzi, and A. Poggiali,
“Supporting task migration in multi-processor systems-on-
chip: a feasibility study,” in Proceedings of the Conference on
Design, Automation and Test in Europe (DATE ’06), vol. 1, pp.
1–6, Munich, Germany, March 2006.

[3] T. D. Braun, H. J. Siegel, N. Beck, et al., “A comparison
study of static mapping heuristics for a class of meta-tasks
on heterogeneous computing systems,” in Proceedings of the
8th Heterogeneous Computing Workshop (HCW ’99), pp. 15–
29, San Juan, Puerto Rico, April 1999.

[4] E. Carvalho, N. Calazans, and F. Moraes, “Congestion-
aware task mapping in NoC-based MPSoCs with dynamic
workload,” in Proceedings of IEEE Computer Society Annual

14 International Journal of Reconfigurable Computing

Symposium on VLSI (ISVLSI ’07), pp. 459–460, Porto Alegre,
Brazil, March 2007.

[5] J. Chakrapani and J. Skorin-Kapov, “Mapping tasks to pro-
cessors to minimize communication time in a multiprocessor
system,” in The Impact of Emerging Technologies of Computer
Science and Operations Research, pp. 45–64, Kluwer Academic
Publishers, Boston, Mass, USA, 1995.

[6] W. W. Chu, L. J. Holloway, M.-T. Lan, and K. Efe, “Task
allocation in distributed data processing,” Computer, vol. 13,
pp. 57–69, 1980.

[7] K. Efe, “Heuristic models of task assignment scheduling in
distributed systems,” Computer, vol. 15, no. 6, pp. 50–56, 1982.

[8] F. Glover, M. Laguna, and R. Martı́, “Fundamentals of scatter
search and path relinking,” Control and Cybernetics, vol. 29,
no. 3, pp. 653–684, 2000.

[9] J. Henkel, W. Wolf, and S. Chakradhar, “On-chip networks:
a scalable, communication-centric embedded system design
paradigm,” in Proceedings of the 17th IEEE International
Conference on VLSI Design, pp. 845–851, Mumbai, India,
January 2004.

[10] J. L. Hennessy and D. A. Patterson, Computer Architecture:
A Quantitative Approach, Morgan Kaufmann, San Francisco,
Calif, USA, 2003.

[11] F. S. Hillier and G. J. Lieberman, Introduction to Operations
Research, McGraw-Hill, Boston, Mass, USA, 7th edition, 2001.

[12] B. Hong and V. K. Prasanna, “Performance optimization of
a de-centralized task allocation protocol via bandwidth and
buffer management,” in Proceedings of the 2nd International
Workshop on Challenges of Large Applications in Distributed
Environments (CLADE ’04), pp. 108–117, Honolulu, Hawaii,
USA, June 2004.

[13] J. Hu and R. Marculescu, “Energy- and performance-aware
mapping for regular NoC architectures,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, vol.
24, no. 4, pp. 551–562, 2005.

[14] J. A. Keane, A. J. Grant, and M. Q. Xu, “Comparing distributed
memory and virtual shared memory parallel programming
models,” Future Generation Computer Systems, vol. 11, no. 2,
pp. 233–243, 1995.

[15] F.-T. Lin and C.-C. Hsu, “Task assignment scheduling by
simulated annealing,” in Proceedings of the 10th Conference on
Computer and Communication Systems, pp. 279–283, Hong
Kong, September 1990.

[16] V. M. Lo, “Heuristic algorithms for task assignment in
distributed systems,” IEEE Transactions on Computers, vol. 37,
no. 11, pp. 1384–1397, 1988.

[17] C. Marcon, A. Borin, A. Susin, L. Carro, and F. Wagner, “Time
and energy efficient mapping of embedded applications onto
NoCs,” in Proceedings of the Asia and South Pacific Design
Automation Conference (ASP-DAC ’05), vol. 1, pp. 33–38, 2005.

[18] A. Ngouanga, G. Sassatelli, L. Torres, T. Gil, A. Soares, and
A. Susin, “A contextual resources use: a proof of concept
through the APACHES’ platform,” in Proceedings of IEEE
Design and Diagnostics of Electronic Circuits and Systems, pp.
42–47, Prague, Czech Republic, April 2006.

[19] V. Nollet, T. Marescaux, P. Avasare, D. Verkest, and J.-Y.
Mignolet, “Centralized run-time resource management in a
network-on-chip containing reconfigurable hardware tiles,” in
Proceedings of the Conference on Design, Automation and Test
in Europe (DATE ’05), vol. 1, pp. 234–239, Munich, Germany,
March 2005.

[20] J. M. Orduna, F. Silla, and J. Duato, “A new task mapping
technique for communication-aware scheduling strategies,”

in Proceedings of the International Conference on Parallel
Processing Workshops (ICPPW ’01), pp. 349–354, 2001.

[21] K. Park, “A heuristic approach to task assignment opti-
mization in distributed systems,” in Proceedings of IEEE
International Conference on Systems, Man and Cybernetics, vol.
2, pp. 1838–1842, Orlando, Fla, USA, October 1997.

[22] D. A. Patterson and J. L. Hennessy, Computer Organization and
Design, Morgan Kaufmann, San Francisco, Calif, USA, 2004.

[23] S. Sahni and T. Gonzalez, “P-complete approximation prob-
lems,” Journal of the Association for Computing Machinery, vol.
23, no. 3, pp. 555–565, 1976.

[24] N. Saint-Jean, G. Sassatelli, P. Benoit, L. Torres, and M. Robert,
“HS-Scale: a hardware-software scalable mpsoc architecture
for embedded systems,” in Proceedings of IEEE Computer
Society Annual Symposium on VLSI (ISVLSI ’07), pp. 21–28,
Porto Alegre, Brazil, March 2007.

[25] R. Varadarajan, “An efficient approximation algorithm
for load balancing with resource migration in distributed
systems,” Tech. Rep., 1992, http://citeseerx.ist.psu.edu/
viewdoc/summary?doi=10.1.1.49.6072.

[26] P. Yang and F. Catthoor, “Dynamic mapping and ordering
tasks of embedded real-time systems on multiprocessor
platforms,” in Proceedings of the 8th International Workshop on
Software and Compilers for Embedded Systems (SCOPES ’04),
pp. 167–181, 2004.

International Journal of

Aerospace
Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2010

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Active and Passive
Electronic Components

Control Science
and Engineering

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 International Journal of

 Rotating
Machinery

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com

 Journal ofEngineering
Volume 2014

Submit your manuscripts at
http://www.hindawi.com

VLSI Design

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Shock and Vibration

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Civil Engineering
Advances in

Acoustics and Vibration
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Advances in
OptoElectronics

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Sensors
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Chemical Engineering
International Journal of Antennas and

Propagation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Navigation and
 Observation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
Sensor Networks

International Journal of

