
Mapping Computation with No Memory

Serge Burckel1, Emeric Gioan2, and Emmanuel Thomé1

1 INRIA-LORIA, France
2 CNRS-LIRMM, France

Abstract. We investigate the computation of mappings from a set Sn

to itself with in situ programs, that is using no extra variables than the
input, and performing modifications of one component at a time. We
consider several types of mappings and obtain effective computation and
decomposition methods, together with upper bounds on the program
length (number of assignments). Our technique is combinatorial and al-
gebraic (graph coloration, partition ordering, modular arithmetics).

For general mappings, we build a program with maximal length 5n−4,
or 2n− 1 for bijective mappings. The length is reducible to 4n− 3 when
|S| is a power of 2. This is the main combinatorial result of the paper,
which can be stated equivalently in terms of multistage interconnection
networks as: any mapping of {0, 1}n can be performed by a routing in a
double n-dimensional Beneš network. Moreover, the maximal length is
2n − 1 for linear mappings when S is any field, or a quotient of an Eu-
clidean domain (e.g. Z/sZ). In this case the assignments are also linear,
thereby particularly efficient from the algorithmic viewpoint.

The in situ trait of the programs constructed here applies to optimiza-
tion of program and chip design with respect to the number of variables,
since no extra writing memory is used. In a non formal way, our approach
is to perform an arbitrary transformation of objects by successive ele-
mentary local transformations inside these objects only with respect to
their successive states.

Keywords: mapping computation, boolean mapping, linear mapping,
memory optimization, processor optimization, program design, circuit
design, multistage interconnection network, butterfly, rearrangeability.

1 Introduction

The mathematical definition of a mapping E : Sn → Sn can be thought of
as the parallel computation of n assignment mappings Sn → S performing the
mapping E, either by modifying at the same time the n component variables,
or mapping the n input component variables onto n separate output component
variables. If one wants to compute sequentially the mapping E by modifying the
components one by one and using no other memory than the input variables
whose final values owerwite the initial values, one necessarily needs to transform
the n mappings Sn → S in a suitable way. We call in situ computation this
way of computing a mapping, and we prove that it is always possible with a

C.S. Calude et al. (Eds.): UC 2009, LNCS 5715, pp. 85–97, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

86 S. Burckel, E. Gioan, and E. Thomé

number of assignments linear with respect to n and a small factor depending
on the mapping type. The impact of these results should be both practical and
theoretical.

To be formal and to avoid confusions, let us already state a definition. For
the ease of the exposition, we fix for the whole paper a finite set S of cardinal
s = |S|, a strictly positive integer n and a mapping E : Sn → Sn.

Definition 1. An in situ program Π of a mapping E : Sn → Sn is a finite se-
quence (f (1), i(1)), (f (2), i(2)), ..., (f (m), i(m)) of assignments where f (k) : Sn →
S and i(k) ∈ {1, ..., n}, such that every transformation X = (x1, ..., xn) �→ E(X)
is computed by the sequence of successive modifications

X := (x1, ..., xi(k)−1, f
(k)(X), xi(k)+1, ..., xn), k = 1, 2, ..., m

where f (k) modifies only the i(k)−th component of X . In other words, every
assignment (f (k), i(k)) of an in situ program performs the elementary operation

xi(k) := f (k)(x1, ..., xn).

The length of Π is the number m. The signature of Π is the sequence
i(1), i(2), ..., i(m).

All in situ programs considered throughout this paper operate on consecutive
components, traversing the list of all indices, possibly several times in forward or
backward order. Thus program signatures will all be of type: 1, 2, ..., n−1, n, n−
1, ..., 2, 1, 2, ...n− 1, n, For ease of exposition, we shorten the above notations
the following way: the mappings Sn → S corresponding to assignments in the
several traversals will be simply distinguished by different letters, e.g. fi denotes
the mapping affecting the variable xi on the first traversal, gi the one affecting
xi on the second traversal, and so on, providing an in situ program denoted
f1, f2, ..., fn−1, fn, gn−1, ..., g2, g1, For instance, a program f1, f2, g1 on S2

represents the sequence of operations: x1 := f1(x1, x2), x2 := f2(x1, x2), x1 :=
g1(x1, x2).

As a preliminary example, consider the mapping E : {0, 1}2 → {0, 1}2 defined
by E(x1, x2) = (x2, x1) consisting in the exchange of two boolean variables.
A basic program computing E is: x′ := x1, x1 := x2, x2 := x′. An in situ
program f1, f2, g1 of E avoids the use of the extra variable x′, with f1(x1, x2) =
f2(x1, x2) = g1(x1, x2) = x1 ⊕ x2.

Our results can be seen as a far reaching generalization of this classical com-
putational trick. The motivations for this work will now be detailed. They are
of three types : technological, combinatorial and algorithmic.

First, a permanent challenge in computer science consists in increasing the
performances of computations and the speed of processors. A computer de-
composes a computation in elementary operations on elementary objects. For
instance, a 32 bits processor can only perform operations on 32 bits, and any

Mapping Computation with No Memory 87

transformation of a data structure must be decomposed in successive opera-
tions on 32 bits. Then, as shown in the above example on the exchange of the
contents of two registers, the usual solution to ensure the completeness of the
computation is to make copies from the initial data. But this solution can gen-
erate some memory errors when the structures are too large, or at least decrease
the performances of the computations. Indeed, such operations involving several
registers in a micro-processor, through a compiler or an electronic circuit, will
have to make copies of some registers in the cache memory or in RAM, with
a loss of speed, or to duplicate signals in the chip design itself, with an extra
power consumption.

On the contrary, the theoretical solution provided by in situ computation
would avoid the technological problems alluded to, and hence increase the per-
formance. We point out that theoretical and combinatorial approaches such as
ours are found fruitful in the context of chip design in many electronic oriented
publications, see for instance [10] for further references. A short note on our
methods intended for an electronic specialist audience has already been pub-
lished [4]. Further research in this direction (also related to algorithmic ques-
tions, see below) would be to develop applications in software (compilers) and
hardware (chip design).

From the combinatorial viewpoint, the assignments, which are mappings
Sn → S, can be considered under various formalisms. For example, in multi-
stage interconnection networks, an assignment is regarded as a set of edges in a
bipartite graph between Sn and Sn where an edge corresponds to the modifica-
tion of the concerned component.

Multistage interconnection networks have been an active research area over
the past forty years. All the results of the paper can be translated in this context,
since making successive modifications of consecutive components of X ∈ Sn is
equivalent to routing a butterfly network (i.e. a suitably ordered hypercube)
when S = {0, 1}, or a generalized butterfly network with greater degree for an
arbitrary finite set S (see Section 2). In the boolean case, the existence of an in
situ program with 2n − 1 assignments for a bijective mapping is equivalent to
the well known [2] rearrangeability of the Beneš network (i.e. of two opposite
butterflies), that is: routing a Beneš network can perform any permutation of
the input vertices to the output vertices. Rearrangeability is a powerful tool
in network theory. And we mention that butterfly-type structures also appear
naturally in recursive computation, for example in the implementation of the
well-known FFT algorithm [7], see [9].

First, we state such a rearrangeability result extended to an arbitrary finite
set S (see Theorem 1, which is presumably not new). Next, we address the
problem of routing a general arbitrary mapping instead of a permutation, which
is a non-trivial and new extension. A general result is obtained involving 5n− 4
mappings (see Corollary 2). Then, the main combinatorial result of the paper,
on boolean mappings (see Theorem 3), proposes a more involved answer to this
problem. An equivalent statement is the following: any mapping of {0, 1}n is
performed by a routing in a double n-dimensional Beneš network.

88 S. Burckel, E. Gioan, and E. Thomé

From the algorithmic viewpoint, building assignments whose number is linear
in n to perform a mapping of Sn to itself is satisfying in the following sense. If the
input data is an arbitrary mapping E : Sn → Sn with |S| = s, given as a table of
n×sn values, then the output data is a linear number of mappings Sn → S whose
total size is a constant times the size of the input data. This means that the in
situ program of E has the same size as the definition of E by its components, up
to a multiplicative constant. This complexity bound is essentially of theoretical
interest, since in terms of effective technological applications, it may be difficult
to deal with tables of n×sn values for large n. Hence, it is interesting to deal with
an input data given by algebraic expressions of restricted size, like polynomials
of bounded degree for instance, and compare the complexity of the assignments
in the output data with the input one. This general question (also related to the
number of gates in a chip design) is motivating for further research (examples
are given in [4]).

Here, we prove that, in the linear case, i.e. if the input is given by polynomials
with degree at most 1, with respect to any suitable algebraic structure for S (e.g.
any field, or Z/sZ), then the assignments are in number 2n− 1 and overall are
also linear (see Theorem 4). Hence, we still obtain a program whose size is
proportional to the restricted size of the input mapping. This result generalizes
to a large extent the result in [6] obtained for linear mappings on the binary
field.

We will also discuss the complexity of the algorithms that build the in situ
programs, which is not the same complexity problem. In the linear case, the
decomposition method takes O(n3) steps.

This paper is organized as follows. Section 2 investigates the link between
in situ programs (as defined by definition 1) and multistage interconnection
networks. Subsequent sections of the paper give reformulations of the presented
results in both settings. In Section 3, we prove that every bijective, resp. general,
mapping E on Sn is computed by a sequence of 2n−1, resp. 5n−4, assignments.
In Section 4, we improve the bound 5n − 4 to 4n − 3 in the case S = {0, 1}.
In Section 5, we consider a set S with an algebraic suitable ring structure. We
prove that every linear mapping E on Sn is computed by a sequence of 2n − 1
linear assignments.

2 Multistage Interconnection Networks

A multistage interconnection network, or MIN for short, is a directed graph
whose set of vertices is a finite number of copies Sn

1 , Sn
2 , . . . , Sn

k of Sn, called
columns, and whose edges join elements of Sn

i towards some elements of Sn
i+1 for

1 ≤ i < k. Then routing a MIN is specifying one outgoing edge from each vertex
of Sn

i for 1 ≤ i < k. A mapping E of Sn is performed by a routing of a MIN if
for each element X ∈ Sn

1 there is a directed path using specified edges from X
to E(X) ∈ Sn

k . The gluing of two MINs M, M ′ is the MIN M |M ′ obtained by
identifying the last column of M and the first column of M ′.

Mapping Computation with No Memory 89

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

x3 x2 x1 x :=f (x)1 1 x :=f (x)2 2 x :=f (x)3 3 x :=g (x)2 2 x :=g (x)1 1

reverse butterfly
butterfly

Benes network

assignment network

Fig. 1.

The assignment network Ai is the MIN with two columns whose edges
join (x1, . . . , xn) to (x1, . . . , xi−1, e, xi+1, . . . , xn) for an arbitrary e ∈ S.
Hence each vertex has degree s =| S |. With notations of Definition 1,
given an assignment (f (k), i(k)) in an in situ program, we naturally define
a routing of Ai(k) by specifying the edge between X = (x1, . . . , xn) and
(x1, ..., xi(k)−1, f

(k)(X), xi(k)+1, ..., xn). Hence, the modifications made by the as-
signments of the program are represented by this routing in the columns of this
MIN. Denote R

(s)
n the MIN A1|A2| . . . |An and B

(s)
n the MIN An| . . . |A2|A1. The

usual butterfly, also called indirect binary cube, stands here as B
(2)
n . The Beneš

network is the network obtained from R
(2)
n |B(2)

n by replacing the two consecutive
assignment networks An by a single one. Note that this last reduction is not part
of the usual definition, however it is more convenient here since two successive
assignments on a same component can always be replaced with a single one.
Note also that the historical definition of a Beneš network [2] is not in terms of
butterflies, but that ours is topologically equivalent thanks to classical results
(see [1] and [3] for instance), and hence they are equivalent in terms of mappings
performed.

From the above definitions, an in situ program of signature i(1), . . . , i(m) cor-
responds to a routing in Ai(1) | . . . |Ai(m) . Figure 1 gives an example for the Beneš
network, with corresponding in situ program f1, f2, f3, g2, g1 (with shortened
notation). Routing this network is exactly specifying these mappings.

3 Bijective and General Mappings on Finite Sets

The classical property of the Beneš network is that it is rearrangeable, that is for
any permutation of {0, 1}n, there exists a routing performing the permutation
(note that a routing performs a permutation when it defines disjoint directed
paths). This result corresponds to the particular case S = {0, 1} of the next
theorem, providing the rearrangeability property for a Beneš-type network with
out-degree generalized from 2 to s. This generalization is presumably not new
but the authors did not find such a statement in the literature.

90 S. Burckel, E. Gioan, and E. Thomé

Theorem 1. Let E be a bijective mapping on Sn. There exists an in situ pro-
gram for E of length 2n − 1 and signature 1 . . . n . . . 1. Equivalently, R

(s)
n |B(s)

n

has a routing performing E.

Proof. Observe that one can permute the ordering of the variables in the above
statement and obtain in situ programs with other signatures. We build such an
in situ program fn, fn−1, . . . , f2, f1, g2, . . . , gn−1, gn for E by induction on n. For
n = 1, it is obvious since X := E(X) is computed by the program x1 := f1(x1)
with f1 = E. Assume n > 1. Let G = (X, Y, A) be the bipartite multi-edges
graph defined by: X = Y = Sn−1, and (x, y) ∈ X × Y is in A with label
(xn, yn) ∈ S2, if and only if E(x, xn) = (y, yn).

Since E is bijective, any vertex of G has exactly degree s = |S|. Then the edges
of G are colorable with the s elements of S (see [8]). Now, define s mappings
E0, E1, . . . , Es−1 on Sn−1 and two mappings fn, gn from Sn to S as follow. For
each color i ∈ S and every edge (x, y) with color i and label (xn, yn), define:
Ei(x) = y, fn(x, xn) = i, and gn(y, i) = yn.

So, after the first step of the program and until the step before last, the
component xn equals a color i. Any mapping Ei being bijective on Sn−1 is
computed by induction in 2(n − 1) − 1 steps: f i

n−1, . . . , f i
2, f i

1, gi
2, . . . , gi

n−1.
Now, define for every i ∈ S and x ∈ Sn−1: fn−1(x, i) = f i

n−1(x), ..., f1(x, i) =
f i
1(x), g2(x, i) = gi

2(x), ..., gn−1(x, i) = gi
n−1(x). After the step before last, we

have x = y. And after the last step, we have xn = yn.

Observe that the computational complexity of our decomposition algorithm for
building an in situ program for a bijective mapping E on {0, 1}n given by a table
of t = n.2n boolean entries is in DTIME(t.log(t)). Indeed, defining E0, E1 takes
n.2n steps. Then, each Ei is decomposed in Ei0, Ei1 in (n − 1).2n−1 steps, and
so on... The total number of steps is bounded by n.2n + 2.(n− 1).2n−1 + 4.(n−
2).2n−2 + ... + 2n−1.1.21 < 2n.n2.

Corollary 1. If Π is an in situ program of a bijection E on {0, 1}n, then the
reversed sequence of assignments is an in situ program of the inverse bijection
E−1.

Proof. First, we show that operations in the program Π are necessarily of
the form xi := xi + h(x1, .., xi−1, xi+1, ..., xn). One can assume without loss
of generality that i = 1. Let x1 := f(x1, ..., xn) be an operation of Π . De-
note h(x2, . . . , xn) = f(0, x2, . . . , xn). We necessarily have f(1, x2, . . . , xn) =
1+h(x2, . . . , xn). Otherwise two different vectors would map to the same image.
This yields f(x1, . . . , xn) = x1 + h(x2, . . . , xn). As a consequence, performing
the operations in reverse order will compute the inverse bijection E−1.

Now, in order to build a program for a general mapping E on Sn, for which
different vectors may have same images, we will use a special kind of mappings
on Sn, that can be computed with n assignments.

Definition 2. Denote [sn] the interval of integers [0, . . . , sn − 1]. The index of
a vector (x1, x2, . . . , xn) is the integer x1 + s.x2 + · · · + sn−1.xn of [sn]. For

Mapping Computation with No Memory 91

every i ∈ [sn], denote by Xi the vector of index i. The distance of two vectors
Xa, Xb is the integer Δ(Xa, Xb) = |b − a|. A mapping I on Sn is distance-
compatible if for every x, y ∈ Sn, Δ(I(x), I(y)) ≤ Δ(x, y), which is equivalent to
Δ(I(Xa), I(Xa+1)) ≤ 1 for every a with 0 ≤ a < sn − 1.

Proposition 1. Every distance-compatible mapping I on Sn is computed by an
in situ program p1, p2, . . . , pn. Hence, for I(x1, . . . , xn) = (y1, . . . , yn) and for
each i = 1, 2, . . . , n: pi(y1, . . . , yi−1, xi, . . . , xn) = yi.

Proof. Since each component is modified one time, necessarily each function pi

must give its correct final value to each component xi. It remains to prove that
this unique possible method is correct, that is the mappings pi are well defined
by the property above (note that this definition is partial, but sufficient for
computing the image of any x). Assume that p1, ..., pi are well defined. Assume
that, after step i, two different vectors x, x′ are given the same image by the
process whereas their final expected images I(x) and I(x′) were different. The
components xj , j > i, of x and x′ have not been modified yet. Hence, they
are equal and we deduce Δ(x, x′) < si. On the other hand, the components yj ,
j ≤ i, of I(x) and I(x′) are equal but I(x) �= I(x′). Hence Δ(I(x), I(x′)) ≥ si: a
contradiction. So pi+1 is also well defined by the property above.

Definition 3. We call partition-sequence of Sn a sequence

P = (P0, P1, . . . , Pk)

of subsets of Sn such that the non-empty ones form a partition of Sn. Then, we
denote by IP the mapping on Sn which maps X0, . . . , Xsn−1 respectively to

|P0|
︷ ︸︸ ︷

X0, . . . , X0,

|P1|
︷ ︸︸ ︷

X1, . . . , X1, . . . ,

|Pk|
︷ ︸︸ ︷

Xk, . . . , Xk .

Observe that IP is well defined since the sum of sizes of the subsets equals sn, and
that IP depends only on the sizes of the subsets and their ordering. Observe also
that if no subset is empty, then IP is distance-compatible since, by construction,
Δ(I(Xa), I(Xa+1)) ≤ 1 for every a.

Let E be a mapping on Sn, and P = (P0, P1, . . . , Pk) be a partition-sequence
of Sn whose underlying partition of Sn is given by the inverse images of E: if
Pi �= ∅, then Pi = E−1(yi) for some yi ∈ Sn. Then, a P -factorisation of E is a
triple of mappings (F, I, G) on Sn where: G is bijective and maps Pi to I−1(Xi);
I is the mapping IP ; and F maps Xi to yi and is arbitrarily completed to be
bijective. By construction

E = F ◦ I ◦ G.

Using this construction with no empty subset in the sequence P , we obtain the
following theorem, which significantly improves the result of [5] where boolean
mappings on {0, 1}n are computed in n2 steps.

92 S. Burckel, E. Gioan, and E. Thomé

Theorem 2. For every finite set S, every mapping E on Sn is computed by
an in situ program of signature 1 . . . n . . . 1 . . . n . . . 1 . . . n and length 5n − 4.
Equivalently, R

(s)
n |B(s)

n |R(s)
n |B(s)

n |R(s)
n has a routing performing E.

Proof. Consider any P -factorisation (F, I, G) of E with no empty subset in the
sequence P . Then the mapping I is distance compatible. By Theorem 1, G (resp.
F) can be computed by a program of signature 1 . . . n . . . 1 (resp. n . . . 1 . . . n). By
Proposition 1, I is computed by a programof signature 1 . . . n. By composition and
contracting two successive assignments of the same variable in one, E is computed
by a sequence of 5n − 4 assignments of signature 1 . . . n . . . 1 . . . n . . . 1 . . . n.

Remark. To end this section, let us remark that, due to the fact that successive
assignments operate on consecutive components, successive assignements of type
Smn → S can be grouped in assignments of fewer variables on a larger base set
Sm defining successive mappings Smn → Sm:

fnm, . . . , fn.(m−1)+1
︸ ︷︷ ︸

f̃n

, . . . , fm, . . . f2, f1, g2, . . . , gm
︸ ︷︷ ︸

f̃1

, . . . , gn.(m−1)+1, . . . , gnm
︸ ︷︷ ︸

g̃n

.

Hence, for instance, the case S = {0, 1}m can be reduced to the case S = {0, 1}.
This is a particular case of the register integrability property described in [4].

4 General Mappings on the Boolean Set

In this section, we will fix S = {0, 1}. The more involved method for general
boolean mappings is a refinement of the method for general mappings on finite
sets and provides a smaller number of assignments. It is valid when S = {0, 1},
and, by extension, when S = {0, 1}m. We still use a P -factorisation (F, I, G) but
the sequence P will possibly contain empty sets, and will be suitably ordered with
respect to the sizes of its elements, in order to satisfy some boolean arithmetic
properties. So doing, the intermediate mapping I = IP will have the property
that its composition with the first n steps of the in situ program of the bijection
F can also be computed with n assignments.

Lemma 1. Every sequence of 2n non negative integers whose sum is 2n can be
ordered in a block-sequence [v0, v1, . . . , v2n−1] such that, for every i = 0 . . . n,
the sum of values in consecutive blocks of size 2i is a multiple of 2i, that is, for
all 0 ≤ j < 2n−i:

∑

j2i≤l<(j+1)2i

vl = 0[2i].

Proof. The ordering is built inductively. Begin at level i = 0 with 2n blocks of
size 1 having each value in the sequence. At level i+1, form consecutive pairs of
blocks [B, B′] that have values v, v′ of same parity and define the value of this
new block to be (v + v′)/2. Each new level doubles the size of blocks and divides
their number by 2. The construction is valid since the sum of values of blocks at
level i is 2n−i.

Mapping Computation with No Memory 93

Example. We illustrate below the process described in the proof of Lemma 1
(n = 4 and each block has its value as an exponent):

[4]4, [1]1, [1]1, [1]1, [1]1, [1]1, [1]1, [3]3, [3]3, [0]0, [0]0, [0]0, [0]0, [0]0, [0]0, [0]0

[4, 0]2, [1, 1]1, [1, 1]1, [1, 1]1, [3, 3]3, [0, 0]0, [0, 0]0, [0, 0]0

[4, 0, 0, 0]1, [1, 1, 3, 3]2, [1, 1, 1, 1]1, [0, 0, 0, 0]0

[4, 0, 0, 0, 1, 1, 1, 1]1, [1, 1, 3, 3, 0, 0, 0, 0]1

[4, 0, 0, 0, 1, 1, 1, 1, 1, 1, 3, 3, 0, 0, 0, 0]1

Definition 4. For a vector (x1, . . . , xn), we call prefix of order k, resp. suffix of
order k, the vector (x1, . . . , xk), resp. (xk, . . . , xn). A mapping I of {0, 1}n is called
suffix-compatible if, for every 1 ≤ k ≤ n, if two vectors X, X ′ have same suffixes
of order k, then their images I(X), I(X ′) also have same suffixes of order k.

Lemma 2. Let P = (P0, P1, . . . , P2n−1) be a partition-sequence of {0, 1}n such
that [|P0|, |P1|, . . . , |P2n−1|] is a block-sequence. Then the mapping IP on {0, 1}n

is suffix-compatible.

Proof. The sketch of the proof is the following. First, define the j-th block of
level i of {0, 1}n as the set of vectors with index j2i ≤ l < (j + 1)2i. Observe
that the inverse image by IP of a block is a union of consectutive blocks of same
level. The result follows.

Let us now detail the proof. For 0 ≤ i ≤ n and j ∈ [2n−i], define the j-th
block at level i of {0, 1}n as

Vi,j = {Xl : l ∈ [j2i, (j + 1)2i − 1]}.
(i) First, we prove that, for every i, j as above, there exists k, k′ ∈ [2n−i], such

that
I−1
P (Vi,j) =

⋃

k≤l≤k′
Vi,l.

Let us call interval of {0, 1}n the set of vectors Xl for l belonging to an interval
of [2n]. First, notice that the inverse image by IP of an interval of {0, 1}n is an
interval of {0, 1}n. By definition of IP , we have

∣

∣I−1
P (Vi,j)

∣

∣ =
∑

j2i≤l<(j+1)2i vl.
Remark that I−1

P (Vi,j) may be empty, when vl = 0 for all l ∈ [j2i, (j + 1)2i].
Since [v0, . . . , v2n−1] is a block sequence, we have

∑

j2i≤l<(j+1)2i vl = 0 mod 2i.
Hence,

∣

∣I−1
P (Vi,j)

∣

∣ = 0 mod 2i.
For a fixed i, we prove the result by induction on j. If j = 0 then

∣

∣I−1
P (Vi,0)

∣

∣ =
k.2i for some k ∈ [2n−i]. If I−1

P (Vi,0) is not empty, then it is an interval of {0, 1}n

containing (0, ..., 0) by definition of IP . Since this interval has a size k.2i multiple
of 2i, it is of the form

⋃

0≤l≤k Vi,l.
If the property is true for all l with 0 ≤ l < j, then I−1

P

(⋃

0≤l<j Vi,l) =
⋃

0≤l≤j′ Vi,l. Since
∣

∣I−1
P (Vi,j)

∣

∣ = k.2i for some k ∈ [2n−i], we must have
I−1
P

(⋃

0≤l≤j Vi,l) =
⋃

0≤l≤j′+k Vi,l, hence I−1
P (Vi,j) =

⋃

j′<l≤j′+k′ Vi,l.

(ii) Now, we prove the Lemma itself.

94 S. Burckel, E. Gioan, and E. Thomé

Assume a = (a1, ..., an) and b = (b1, ..., bn) have same suffix of order i. For
all l ≥ i we have al = bl. Let c ∈ Sn be defined by cn = an = bn, . . . , ci =
ai = bi, ck−1 = 0, . . . , c1 = 0. Let φ(x) denote the index of vector x. We have
φ(c) = 0 mod 2i−1, that is φ(c) = j.2i−1 for some j ∈ [2n−i+1]. And φ(a)
and φ(b) belong to the same interval [j.2i−1, (j + 1).2i−1 − 1] whose elements
have same components for l ≥ i. That is a and b belong to Vi−1,j . By (i), the
inverse images of intervals of type Vi−1,k by IP are unions of such consecutive
intervals. Hence the image of an interval Vi−1,j by Ip is an interval contained
in an interval Vi−1,k for some k ∈ [2n−i+1]. Hence IP (a) and IP (b) have same
components l ≥ i.

Proposition 2. Let I be a suffix-compatible mapping. Let B be a bijective map-
ping on {0, 1}n computed by a program b1, . . . , bn. The mapping B ◦ I is com-
puted by a program p1, p2, . . . , pn. Hence, for B ◦ I(x1, . . . , xn) = (y1, . . . , yn):
pi(y1, . . . , yi−1, xi, . . . , xn) = yi.

Proof. Just as for Proposition 1, assume that p1, ..., pi are well defined by the
necessary property above, and that, after step i, two different vectors x, x′ are
given the same image by the process whereas their final expected images y =
B ◦ I(x) and y′ = B ◦ I(x′) were different (hence I(x) �= I(x′)). By construction,
y, y′ have a same prefix P of order i and x, x′ have a same suffix Q of order
i + 1. Moreover, since I is suffix-compatible, the vectors I(x), I(x′) also have a
same suffix R of order i + 1. Let Bi be the mapping computed by b1, . . . , bi. We
obtain that Bi(I(x)) = Bi(I(x′)) = (P, R). Since Bi is necessarily bijective, then
I(x) = I(x′): a contradiction.

Now, given a mapping E of Sn, using a P -factorisation of E for a sequence P
whose sequence of cardinalities is a block-sequence, we can improve the result of
Section 3.

Theorem 3. Every mapping E on {0, 1}n is computed by an in situ program of
length 4n− 3 and signature 1 . . . n . . . 1 . . . n . . . 1. Equivalently, the gluing of two
Beneš networks has a routing performing E.

Proof. Let (F, I, G) be a P -factorisation of E for a sequence P = (P0, P1, . . . ,
P2n−1) such that [|P0|, |P1|, . . . , |P2n−1|] is a block-sequence (it exists thanks to
Lemma 1). By Theorem 1, G (resp. F) can be computed by a program of signa-
ture 1 . . . n . . . 1 (resp. 1 . . . n . . . 1). By Lemma 2, the mapping I = IP on {0, 1}n

is suffix-compatible. Call B the mapping computed by the n first assignments
b1, ..., bn of the program of F . By Proposition 2, B ◦ I is also computed by a pro-
gram of signature 1 . . . n. Then, by composition and contracting two successive
assignments of the same variable in one, E is computed by a sequence of 4n− 3
assignments of signature 1 . . . n . . . 1 . . . n . . . 1.

Example. Figure 2 gives an example for the construction of this section. The
elements of {0, 1}3 are grouped by the bijection G at column 6, accordingly with
the block sequence [1, 3, 2, 2] induced by E−1. Then, at column 9 all elements

Mapping Computation with No Memory 95

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

G F I

reduced in one

B I

Fig. 2.

with same final image have been given a same image by B◦I. At last, the second
part of the bijection F allows to finalize the mapping E.

Remark. Finally, to illustrate the importance of block-sequences and of S =
{0, 1} for this section, let us give two small significant examples.

First, consider the partition-sequence P = ({00}, {10, 01}, {11}) of {0, 1}2

whose sequence of cardinalities (1, 2, 1, 0) is not a block-sequence. The mapping
IP is not suffix-compatible, since IP (01) = 10 and IP (11) = 01 have distinct x2

coordinate whereas 01 and 11 have same x2 coordinate.
Second, the result of Lemma 1 building a block-sequence does not generalize

to arbitrary S. For instance, with s = 3, and the integer values 1,2,2,4 whose sum
equal 32, one cannot find [a, b, c] within these values such that a + b + c = 0[3].

5 Linear Mappings on Suitable Ring Powers

This last section takes advantage of the structure provided by linear mappings
Sn → Sn. The results of Section 3 show that O(n) assignments are sufficient
to compute such a mapping. Here, we achieve a stronger result: the number of
required mappings is bounded by 2n − 1, and all intermediary assignments are
linear. In [6], a similar result is obtained in the particular case of linear boolean
mappings.

Here, S only needs to be a (non-necessarily finite) quotient of an Euclidean
domain R by an ideal I. Classical examples for S are: any field (the result of this
paragraph for S being a field is easier, since most technicalities can be skipped),
the rings Z/sZ, or K[x]/(P) for some polynomial P with coefficients in a field
K. In the sequel, S is assumed to satisfy this property; R and I are defined
accordingly, and S∗ denotes the invertible elements of S.

Lemma 3. Let x1, . . . , xn be coprime elements of R. Let i0 ∈ [1 . . . n]. There
exists multipliers λ1, . . . , λn such that λi0 = 1, and

∑

i λixi ∈ S∗.

96 S. Burckel, E. Gioan, and E. Thomé

Proof. This a consequence of the Chinese Remainder Theorem. We treat the
case where the ideal I is generated by a prime power pv. If xi0 is itself coprime
to p, the result holds with λi = δi0

i . Otherwise, the integers xi being coprime,
there exists an integer i1(p) such that xi1(p) is coprime to p. Therefore xi0 +xi1(p)

is coprime to p, hence we may set λi = δi0
i + δ

i1(p)
i .

Theorem 4. Every linear mapping E on Sn is computed by an in situ program
of length 2n− 1 and signature 1, 2, ..., n, n− 1, ..., 1 made of linear assignments.
Furthermore, if E is bijective, then the inverse mapping E−1 is computed by the
in situ program defined by the sequence of assignments in reversed order together
with the following transformation: [xi := A(xi) + F] �→ [xi := A−1(xi − F)].

Proof. The proof proceeds by induction. Let M be a matrix representing a map-
ping which leaves the first k− 1 variables unchanged (we initially have k = 1 for
the starting matrix). Hence the first k − 1 rows of M equal those of the identity
matrix. We explore the possibility of rewriting M as a product LkM ′Rk, where
the first k rows of M ′ match those of the identity matrix.

Let g be the greatest common divisor of (arbitrary representatives in R of) the
coefficients of column k in M . A favorable situation is when mk,k is in gS∗. Should
this not be the case, let us see how we can transform the matrix to reach this sit-
uation unconditionally. Assume then for a moment that mk,k /∈ gS∗. Lemma 3
gives multipliers λ1, . . . , λn such that

∑

� λ�m�,k ∈ gS∗, with the additional con-
straint that λk = 1. Let us now denote by T the n×n matrix defined by ti,j = δj

i

for i �= k, and tk,j = λj . Clearly T is an invertible assignment matrix, and the
product T ∗ M has a coefficient at position (k, k) which is in gS∗.

Now assume mk,k ∈ gS∗. Let G be the diagonal matrix having Gk,k = g as
the only diagonal entry not equal to 1. Let M ′′ = MG−1 (M ′′ has coefficients
in R because g is the g.c.d. of column k). We have m′′

k,k ∈ S∗. We form an
assignment matrix U defined by ui,j = δj

i for i �= k, and uk,j = m′′
k,j . The

matrix U is an invertible assignment matrix (its determinant is m′′
k,k). The k

first rows of the matrix M ′ = M ′′ ∗ U−1 match the k first rows of In, and we
have M = T−1 ×M ′ × (UG). Our goal is therefore reached with Lk = T−1 and
Rk = UG.

Repeating the procedure, our input matrix is rewritten as a product
L1L2 . . . Ln−1Rn . . . R1, where all matrices are assignment matrices. No left mul-
tiplier Ln is needed for the last step. Finally, the determinant of M is invertible if
and only if all the matrices Rk are invertible, hence the reversibility for bijective
mappings.

We digress briefly on the computational complexity of building the in situ pro-
grams for the linear mappings considered here. The matrix operations performed
here all have complexity O(n2) because of the special shape of the assignment
matrices. Therefore, the overall computational complexity of the decomposition
is O(n3).

The procedure above can be illustrated by a small example. Assume we want
to decompose the mapping in Z/12Z given by the matrix

Mapping Computation with No Memory 97

M =
(

4 5
6 4

)

.

Our first step is the left multiplication, which gives
(

1 −1
0 1

)

M =
(−2 1

6 4

)

.

Then, the common divisor 2 can be set aside, and the matrix U appears:
(

1 −1
0 1

)

M =
(−1 1

3 4

)(

2 0
0 1

)

=
(

1 0
−3 7

)(−1 1
0 1

)(

2 0
0 1

)

M =
(

1 1
0 1

)(

1 0
−3 7

)(−2 1
0 1

)

=
(

1 1
0 1

)(

1 0
9 7

)(

10 1
0 1

)

This corresponds to the following sequence of assignments:

x1 := 10x1 + x2; x2 := 9x1 + 7x2; x1 := x1 + x2.

References

1. Agrawal, D.P.: Graph theoretical analysis and design of multistage interconnection
networks. IEEE Trans. Computers C32, 637–648 (1983)

2. Beneš, V.E.: Optimal Rearrangeable Multistage Connecting Networks. Bell System
Technical J. 43, 1641–1656 (1964)

3. Bermond, J.C., Fourneau, J.M., Jean-Marie, A.: A graph theoretical approach to
equivalence of multi-stage interconnection networks. Discrete Applied Maths. 22,
201–214 (1988)

4. Burckel, S., Gioan, E.: In situ design of register operations. In: IEEE Proceedings
of ISVLSI 2008 (2008)

5. Burckel, S., Morillon, M.: Quadratic Sequential Computations. Theory of Comput-
ing Systems 37(4), 519–525 (2004)

6. Burckel, S., Morillon, M.: Sequential Computation of Linear Boolean Mappings.
Theoretical Computer Science serie A 314, 287–292 (2004)

7. Cooley, J.W., Tukey, J.W.: An algorithm for the machine calculation of complex
Fourier series. Math. Comput. 19, 297–301 (1965)

8. König, D.: Uber Graphen und ihre Anwendung auf Determinantentheorie und Men-
genlhere. Math. Ann. 77, 453–465 (1916)

9. Nussbaumer, H.J.: Fast Fourier transform and convolution algorithms, 2nd edn.
Springer Series in Information Sciences, vol. 2. Springer, Heidelberg (1982)

10. Ravikumar, C.P., Aggarwal, R., Sharma, C.: A graph theoretic approach for regis-
ter file based synthesis. In: Proceedings of VLSID 1997, Tenth International Con-
ference on VLSI Design (1997)

	Mapping Computation with No Memory
	Introduction
	Multistage Interconnection Networks
	Bijective and General Mappings on Finite Sets
	General Mappings on the Boolean Set
	Linear Mappings on Suitable Ring Powers

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

