
HAL Id: lirmm-00395145
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00395145v1

Submitted on 29 Sep 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Using OWA Operators for Gene Sequential Pattern
Clustering

Jordi Nin, Paola Salle, Sandra Bringay, Maguelonne Teisseire

To cite this version:
Jordi Nin, Paola Salle, Sandra Bringay, Maguelonne Teisseire. Using OWA Operators for Gene Se-
quential Pattern Clustering. CBMS: Computer-Based Medical Systems, Aug 2009, Albuquerque, NM,
United States. �10.1109/CBMS.2009.5255363�. �lirmm-00395145�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00395145v1
https://hal.archives-ouvertes.fr

Using OWA Operators for Gene Sequential Pattern Clustering

Jordi Nin1∗
1LAAS-CNRS

jnin@laas.fr

Paola Salle2

2LIRMM
salle@lirmm.fr

Sandra Bringay2,3

3 U. Montpellier 3
bringay@lirmm.fr

Maguelonne Teisseire2,4

4UMR TETIS, Cemagref
teisseire@lirmm.fr

Abstract

Nowadays, the management of sequential patterns data
becomes an increasing need in biological knowledge dis-
covery processes. An important task in these processes is
the restitution of the results obtained by using data min-
ing methods. In a complex domain as biomedical, an effi-
cient interpretation of the patterns without any assistance
is difficult. One of the most common knowledge discov-
ery proces is clustering. But the application of clustering
to gene sequential patterns is far from easy on biomedi-
cal data.In this paper, we introduce a new gene sequential
patterns similarity function and summarization algorithm.

1 Introduction

The DNA microarrays are a technology for gene expres-
sion analysis [3]. It is used to answer a large variety of
biomedical questions such as gene expression profiling,
comparative genomic hybridization and many others.

In order to analyze data produced by the DNA microar-
rays, there are several data mining methods. One of the
most popular is the extraction of sequential patterns [1].
They outline relationships between genes by focusing on
ordered expressions. For instance, the sequential pattern
S75% =< (GA)(GB)(GC) > means that for 75% of the
studied DNA microarrays, the gene GA has an intensity
smaller than the genes GB and GC .

As most of data mining methods, an efficient interpre-
tation of the results is a difficult and challenging task.

∗The reseach done in this work is funded by the European Commu-
nity through the 7th Framework Programme Marie Curie Intra-European
fellowship, contract No 235226. Partial support by the Spanish MEC
(projects ARES – CONSOLIDER INGENIO 2010 CSD2007-00004 –
and eAEGIS – TSI2007-65406-C03-02) is also acknowledged.

Moreover, in many cases, some patterns are very sim-
ilar and they can be grouped together without loos-
ing generality. For example, the patterns M1 =<
(GA)(GB)(GC) > and M2 =< (GD)(GB)(GC) > dif-
fer only by the first gene (GA is replaced by GD) and
it is also the least intense gene. For this reason, a key-
point for supporting the discovery process is to help ex-
perts organizing the large amount of sequential patterns
into a smaller number of groups of meaningful patterns.

In this paper, We propose (1) a new similarity measure,
called OWAGen, based on OWA operators for gene se-
quential pattern clustering; (2) a summarization process to
associate a more general sequential pattern to each group
(or cluster) of gene sequential patterns.

2 OWA Operator Definition

Aggregation functions are functions used for information
fusion. Here, we consider the Ordered Weighted Aggre-
gation (OWA) operator [5].

Definition 1 A function Q : [0, 1] → [0, 1] is a regu-
lar monotonically non-decreasing fuzzy quantifier (non-
decreasing fuzzy quantifiers) if it satisfies: (i) Q(0) = 0;
(ii) Q(1) = 1; (iii) x > y implies Q(x) ≥ Q(y).

An example of family of fuzzy quantifiers is Qα(x) =
xα for α > 0. Such family corresponds to Yager α-
quantifiers. Using fuzzy quantifiers, the OWA operator [5]
is defined as follows.

Definition 2 Let Q be a non-decreasing fuzzy quantifier,
then OWAQ : RN → R is an (OWA) operator if

OWAQ(a1, ..., aN) =
N∑

i=1

(Q(i/N)−Q((i−1)/N))aσ(i)

978-1-4244-4878-4/09/$25.00 ©2009 IEEE

https://www.researchgate.net/publication/3597732_Mining_Sequential_Patterns?el=1_x_8&enrichId=rgreq-704eecf5-ec70-43c0-beb1-2a6fb70399dc&enrichSource=Y292ZXJQYWdlOzIyMTAzMTMxNDtBUzo5OTA1NzkzODczMTAyNEAxNDAwNjI4NjYxODE4
https://www.researchgate.net/publication/3597732_Mining_Sequential_Patterns?el=1_x_8&enrichId=rgreq-704eecf5-ec70-43c0-beb1-2a6fb70399dc&enrichSource=Y292ZXJQYWdlOzIyMTAzMTMxNDtBUzo5OTA1NzkzODczMTAyNEAxNDAwNjI4NjYxODE4
https://www.researchgate.net/publication/3597732_Mining_Sequential_Patterns?el=1_x_8&enrichId=rgreq-704eecf5-ec70-43c0-beb1-2a6fb70399dc&enrichSource=Y292ZXJQYWdlOzIyMTAzMTMxNDtBUzo5OTA1NzkzODczMTAyNEAxNDAwNjI4NjYxODE4
https://www.researchgate.net/publication/7594897_Functional_Genomics_meets_neurodegenerative_disorders_Part_II_Application_and_data_integration?el=1_x_8&enrichId=rgreq-704eecf5-ec70-43c0-beb1-2a6fb70399dc&enrichSource=Y292ZXJQYWdlOzIyMTAzMTMxNDtBUzo5OTA1NzkzODczMTAyNEAxNDAwNjI4NjYxODE4

where σ is a permutation such that aσ(i) ≥ aσ(i+1).

The interest of the OWA operators is that they permit
the user to aggregate the values giving importance to large
(or small) values.

3 Basic Ingredients

Here, we describe our new algorithm for gene sequential
patterns summarization and our new similarity function.

3.1 Gene Sequential Patterns Summary

Aggregation (or summarization) functions combine N
data values into a single one. There are a lot of research
considering this problem for numerical or ordinal values.
But, there is no work about considering the summariza-
tion of a set of gene sequential patterns. In this section,
we introduce a new procedure to combine several gene
sequential patterns into a more general one.

Firstly, one has to decide which information has to be
preserved in the summary. In our case, we want to pre-
serve the following one: (i)Common genes in the same
position. If two gene sequential patterns have the same
genes in the same position, it is telling to us that the in-
tensity of these genes is usually ordered in the same way
in several experiments. Such order can be typical of a
particular biological condition. (ii)Common genes in dif-
ferent positions. This fact is giving us another impor-
tant information, the intensity of these genes is usually
ordered in different ways. However, there is a relation-
ship between these common genes and certain biological
condition. (iii) Non common genes. Clearly, non common
genes are not so important as common ones. However, the
existence of these non common genes has to be denoted in
the summary. For this reason, we replace all non common
genes by a wild-card. These wild-cards indicate to us that
in the aggregated sequences there are several genes that
can appear in the same position.

Our proposal is described in the Algorithm 1. It starts
with an empty summary (line 2) and it extracts all the
genes from the set of gene sequential patterns to be ag-
gregated (line 3), i.e. it computes the union of all the
gene sequential patterns. Following, the annotated set of
the union is calculated (line 4), this makes us possible to

Algorithm 1: Summarization Method
Data: GS: Set of Gene Sequential Patterns
Result: Sum: Gene Sequential Pattern Summary
begin1

Sum = {∅}2

Union = GenesExtraction(GS)3

Counter = GenesCount(Union, GS)4

Pos = GenesPosition(Union, GS)5

for i← 1 to Union.Size do6

if Counter.get(i) = GS.Size then7

Sum.add(Pos.get(i),Union.get(i))8

else9

Sum.add(Pos.get(i),wild-card)10

Sum=resuméWild-cards(Sum)11

return Sum12

end13

know if a concrete gene is stored in all gene sequential
patterns or not. Then, the average relative positions of
genes are computed (line 5), this allows us to know where
the genes have to be placed in the summary. Following,
we build a summary considering the genes union. If a cer-
tain gene is found in all sequences (lines 7-8), it is added
to the summary. Note that, if a gene is placed in all the
sequences in the same position, then it is placed exactly in
this place (function add(p, g) allows us to add gene g in
the position p). If a gene is not stored in all the sequences
(line 10), it is replaced by a wild-card. Finally, all wild-
cards are resumé. Example 1 illustrates this algorithm.

Example 1 Let S =< GA, GB , GC , GD, GF > and
S′ =< GD, GA, GC , GE > be two different gene
sequential patterns. The first step of our summariza-
tion procedure is to compute the union of these two
sequences, S ∪ S′ =< GA, GB , GC , GD, GE , GF >,
following we compute the annotated set of
S ∪ S′ as S ∪ S′ =< 2, 1, 2, 2, 1, 1 > and
the average relative positions as Ŝ ∪ S′ =<
(1/5)+(2/4)

2 , 2/5, (3/5)+(3/4)
2 , (4/5)+(1/4)

2 , 4/4, 5/5 >.
Now, we build the summary adding each gene of
the union in the correct order using the function
add(p, g) and replacing the non common genes (genes
with a value different from 2 in S ∪ S′) by a wild-
card, in this example (∗). Doing this, we obtain

S =< GA, ∗, GD, GC , ∗, ∗ >. Finally, wild-cards are
summarized obtaining S =< GA, ∗, GD, GC , ∗ >.

3.2 OWAGen Similarity Function

Formally, a similarity function f over two sequences S
and S′ has to fulfill the following conditions: (i) Symme-
try: f(S, S′) = f(S′, S), (ii) Positivity: f(S, S′) ≥ 0 for
any S and S′, and (iii) Reflexivity: f(S, S) = 0.

Some similarity measures for sequences of symbols
have been defined. As explained in [4], these similarity
measures are not adapted for gene sequential patterns. For
instance, Hamming distance or Edit (Levenstein) distance
are usually considered [2]. However, such distances are
quite simple when it is necessary to deal with the rela-
tive ordering positions of the symbols in the sequence.
Another drawback of traditional sequence distances is the
difficulty of incorporating user (expert) knowledge.

As we are interested in comparing gene sequential pat-
terns, those distances have been not considered since they
disregard a lot of information that should be taken into
account in order to obtain a more appropriate similarity
value. Specifically, there are two key issues to be consid-
ered: the number of common genes and the order (posi-
tion) among the common genes inside the sequences.

On one hand, the first consideration allows us to eval-
uate the common part of two different sequences, if this
common part is large, then the two sequences have to be
similar, because such sequences show that their share a
large number of genes. On the other hand, the second con-
sideration takes into account whether the genes have been
placed in the same order or not. This second information
is very useful because genes order has several biological
properties. Note that in this latter case, if two sequences
have the same genes placed in the same order, they have
to be more similar than two sequences in which the genes
are placed in different order.

Apart from these two issues, it is also interesting to in-
corporate any user (expert) preferences on the similarity
function. In some scenarios, it is more important to con-
sider as more similar sequences sharing a large number
of genes even though the genes are not in the same order.
On the contrary, in another scenarios, finding the largest
sub-sequences of common genes is more interesting, con-
sidering that two sequences with a few genes in the same

order are more similar than two sequences with a larger
common set of unsorted genes.

OWA operators can be used to introduce the expert
preferences into the computation of the similarity mea-
suse. This allows us to tackle the issues explained before.
Based on this, a new similarity function can be defined,
OWAGene. It is calculated in two steps.

Firstly, partial distances among the genes of the two
sequential patterns are calculated as follows.

Definition 3 Let S and S′ be two gene sequential pat-
terns. Let Gi be the i th gene of the sequence S, then the
gene distance of Gi with respect to S′ is defined as

d(Gi, S
′) =

{
|i−j|
|S∪S′| if Gi ∈ S′ in the j th position

1 otherwise

(1)
where |S ∪ S′| stand for the number of different genes in
sequences S and S′. Note that a gene Gi can only appear
once in each sequence, then the distance d(Gi, S

′) is very
easy and fast to compute.

Example 2 Let S and S′ be the same gene sequen-
tial patterns than Example 1. Let S ∪ S′ =<
GA, GB , GC , GD, GE , GF > be the union of S and S′.
The cardinality |S∪S′| is equal to 6. Now, Let us compute
the partial distance of the gene GA, such gene is placed in
the position number 2 in S, whereas it is placed in the po-
sition number 1 in S′, then, the partial distance d(GA, S′)
is computed as d(GA, S′) = |2−1|

6 = 0.167.

Those partial distances are aggregated using the OWA
operator, which permits to apply different aggregation
policies. Formally, given two gene sequential patterns S
and S′, we compute the gene distances d(Gi, S

′) for all
i = 1, . . . , |S| and d(Gi, S) for all i = 1, . . . , |S′|. Then,
OWAGene is defined as follows.

Definition 4 Let S and S′ be two gene sequential pat-
terns with length |S| and |S′|, respectively, then the
OWAGene similarity function of S and S′ is defined as

OWAGene(Q)(S, S′) = OWAQ(d(G1, S
′), . . . ,

d(G|S|, S′), d(G1, S), . . . , d(G|S′|, S))

where Q is a non-decreasing fuzzy quantifier, d(Gi, S
′)

stands for the gene distance of Gi with regards to S′.

Following Definition 3, all partial genes distances equal
to 1 represents the case of a non common gene in two se-
quences. On the contrary, distances smaller than 1 repre-
sent a shift between a common gene in both sequences.
In this case, the larger the genes distance, the larger the
shift. OWA operators permit the user to aggregate the val-
ues giving more importance to large or small values when
the appropriate quantifier is selected. This stands for con-
sidering as more important non common genes (distance
values equal to 1), common genes (distance values be-
tween 0 and 1) or common genes in the same place (dis-
tance values equal 0).

Example 3 Let us compute the OWAGene(S, S′) be-
tween the same gene sequential patterns than Exam-
ple 1. Firstly, we have to select one quantifier. Here,
we are interested in considering as the most important
criterium that sequences share a large number of com-
mon genes. We use Qα(x) = xα with a small α =
0.5. Following we compute the partial distances be-

tween genes of sequences S and S′ as ̂|S ∪ S′| =<
0.17, 1, 0, 0.5, 1, 1 >. After that, we have to compute the
weighting vector from the selected quantifier Q0.5, that is
w =< 0.41, 0.17, 0.13, 0.10, 0.10, 0.09 >. Finally, we
compute WAGene(Q0.5) = 0.78.

OWAGene can also be applied when sequences have
wild-cards. In this case, the partial distance of a non com-
mon gene is computed as the distance between such gene
and the closest wild-card. This will be used in the cluster-
ing algorithms, for instance in k-means when sequences
have to be associated with the closest centroid.

4 Experiments

For the experiments, we have generated a gene sequen-
tial patterns dataset from the analysis of several microar-
ray Affymetrix DNA U133 plus 2.0. Specifically, we
have 14 chips corresponding to 14 grey mouse lemurs di-
vided into: young/old. In Table 1 we show the parameters
used in our experiments as well as some clustering per-
formance measures. First and second column show the
parameters of the clustering algorithm. In particular, we
show the quantifier used in the OWAGen similarity func-
tion and the type of linkage (Simple, Average and Com-

Q Link Type Path distance Node size Wild-cards

Q0.5
S 2.32 4.68 0.99
A 2.22 4.84 0.96
C 2.24 4.14 0.95

Q2
S 2.32 4.73 1.01
A 2.21 4.92 0.96
C 2.24 4.16 0.95

Table 1: Average results for the hierarchical gene sequen-
tial pattern clustering.

plete) respectively. The quantifier Q0.5 gives more im-
portance to common genes, whereas Q2 gives more im-
portance to common genes in the same order. Third col-
umn presents the average distance between all the leaves
and the root node. Following, fourth column shows the
average size of each node inside the hierarchic tree. Fi-
nally in the last column, we show the average number of
wild-cards inside the nodes of the hierarchic tree.

Observing Table 1, we can deduce that using the com-
plete linkage parameter we obtain smaller intermediate
nodes and with less wild-cards than using the other con-
figurations (simple and average linkage). This is possible
because using the complete linkage configuration we are
enforcing that only gene sequential patterns closer to all
the elements of one cluster are added. The final size of the
cluster determines in some way the number of wild-cards.

5 Conclusions

We have introduced a new similarity function and summa-
rization algorithm for gene sequential patterns. We have
implemented them into a clustering algorithm.

References

[1] R. Agrawal and R. Srikant. Mining sequential patterns. In
Proc. of the 11th ICDM, pages 3–14, 1995.

[2] G. Dong and J. Pei. Sequence Data Mining. Springer, 2007.
[3] F. Hoerndli, D. David, and J. Götz. Functional genomics

meets neurodegenerative disorders: Application and data
integration. P. in Neurobiology, 76(3):169–188, 2005.

[4] H. Saneifar, S. Bringay, A. Laurent, and M. Teisseire.
S2mp: Similarity measure for sequential patterns. In
AusDM, pages 95–104, 2008.

[5] R. R. Yager. Families of OWA operators. Fuzzy Sets and
Systems, 59:125–148, 1993.

