
HAL Id: lirmm-00399025
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00399025v1

Submitted on 25 Jun 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Yet Another Matcher
Fabien Duchateau, Remi Coletta, Zohra Bellahsene, Renée J. Miller

To cite this version:
Fabien Duchateau, Remi Coletta, Zohra Bellahsene, Renée J. Miller. Yet Another Matcher. RR-09016,
2009. �lirmm-00399025�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00399025v1
https://hal.archives-ouvertes.fr

Yet Another Matcher∗

ABSTRACT

Discovering correspondences between schema elements is a crucial
task for data integration. Most matching tools are semi-automatic,
e.g. an expert must tune some parameters (thresholds, weights,
etc.). They mainly use several methods to combine and aggre-
gate similarity measures. However, their quality results often de-
crease when one requires to integrate a new similarity measure or
when matching particular domain schemas. This paper describes
YAM (Yet Another Matcher), which is a matcher factory. Indeed,
it enables the generation of a dedicated matcher for a given schema
matching scenario, according to user inputs. Our approach is based
on machine learning since schema matchers can be seen as clas-
sifiers. Several bunches of experiments run against matchers gen-
erated by YAM and traditional matching tools show how our ap-
proach (i) is able to generate the best matcher for a given scenario
and (ii) easily integrates user preferences, namely recall and preci-
sion tradeoff.
Keywords: schema matching, data integration, matcher factory,
machine learning, XML schemas.

1. INTRODUCTION
Discovering correspondences between schema elements is a cru-

cial task for many data integration and data sharing tasks. There
are a plethora of schema matching tools designed to help automate
what can be a painstaking task if done manually. The diversity of
tools hints at the inherent complexity of this problem. Different
tools are designed to overcome different types of schema hetero-
geneity including differences in design methodologies, differences
in naming conventions, and differences in the level of specificity of
schemas, among many other types of heterogeneity. Furthermore,
different matchers may be designed to help with very different inte-
gration tasks. Some are designed to help in automatically matching
web service interfaces for the purpose of wrapping and compos-
ing web services. Others are designed for matching large, complex
legacy schema to facilitate federated querying. The proliferation
of schema matchers and the proliferation of new (often domain-
specific) similarity measures used within these matchers has left

∗Supported by ANR DataRing ANR-08-VERSO-007-04

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$10.00.

data integration practitioners with the very perplexing task of try-
ing to decide which matcher to use for the schemas and tasks they
need to solve.

Most matching tools are semi-automatic meaning that to per-
form well, an expert must tune some (matcher-specific) parameters
(thresholds, weights, etc.) Often this tuning can be a difficult task
as the meaning of these parameters and their effect on matching
quality can only be seen through trial-and-error. Lee et al. [14]
have shown how important (and difficult) tuning is, and that with-
out tuning most matchers perform poorly. To overcome this, they
proposed eTuner, a supervised learning approach for tuning these
matching knobs. However, a user must still commit to one single
matcher and then tune that matcher to their specific domain (i.e.,
set of training schemas with their correct correspondences). If the
user makes a poor choice of matcher to begin with, for example, by
choosing a matcher that does not consider structural schema sim-
ilarity when this is important in the domain, eTuner cannot help.
Furthermore, knowing beforehand whether semantic similarity or
structural similarity or syntactic similarity (or some combination
of these) will be most important in a domain is not an easy task.

In this work, we propose YAM, which is actually not Yet An-
other Matcher. Rather YAM is the first schema matcher generator
designed to produce a tailor-made matcher based on user require-
ments. In YAM, we also use a supervised learning approach. The
novelty of YAM is that unlike eTuner or any other schema matcher,
YAM performs learning over a large set of matchers and a large set
of similarity measures. Over this large search space, using a small
amount of training data, YAM is able to produce a "dedicated" or
tailor-made matcher. The matchers YAM considers are classifiers
(the basis of most matchers). YAM uses a large library of classifiers
and similarity measures, and is extensible in both dimensions. In
particular, new similarity measures custom-made for new domains
or new integration tasks, can easily be added to YAM.

Schema matchers (often implicitly) are designed with one or a
few matching tasks in mind. A matcher designed for automated
web service composition may use very stringent criteria in deter-
mining a match, that is, it may only produce a correspondence if
it is close to 100% confident of the correspondence’s accuracy. In
other words, such a matcher is using precision as its performance
measure. In contrast, a matcher designed for federating large legacy
schema may produce all correspondences that look likely, even if
they are not certain. Such a matcher may favor recall, over preci-
sion, because the human effort in "rejecting" a bad correspondence
is much less than the effort needed to search through large schemas
and find a missing correspondence. This difference can make a
tremendous difference in the usefulness of a matcher for a given

task. In YAM, we let a user specify a preference for precision or
recall, and we produce a dedicated matcher that best meets the users
needs. YAM is the first tool that permits the tuning of this very im-
portant performance trade-off.

Like previous supervised-learning approaches to schema match-
ing [5, 15, 9], YAM requires a knowledge-base containing training
data in the form of pairs of schemas with their (correct) correspon-
dences. Unlike most matchers, YAM can also take as input a subset
of correct correspondences over the new schemas a user wishes to
match. Such "expert correspondences" are often available. For ex-
ample, in matching legacy schemas, the correct correspondence for
some keys of central tables may be known to a user. YAM does not
require such knowledge, but can use it, if available, to produce a
better dedicated matcher.

Contributions. The main interesting features of our approach
are:

• YAM is the first matcher factory capable of generating a ded-
icated matcher for a given scenario and according to user in-
puts. In the experiments, we show YAM has generated, for
200 schema matching scenarios, different dedicated match-
ers (i.e., they are based on different algorithms such as deci-
sion trees, rules, aggregation functions, etc.).

• Our approach integrates a user preference between precision
or recall during the generation process. We demonstrate the
impact of such preference on the matching quality.

• YAM is also able to use correct correspondences when pro-
vided by an user. Indeed, most matchers do not need to focus
on these provided correspondences during generation of the
dedicated matcher. Thus, we observe a strong increase of the
matching quality.

• We finally evaluate our work with traditional matching tools.
YAM achieves comparable results in terms of matching qual-
ity.

Outline. The rest of the paper is organised as follows. Section
2 describes the main notions used in the paper. Section 3 gives
an overview of our approach while Section 4 contains the details.
The results of experiments for showing the effectiveness of our ap-
proach are presented in section 5. Related work is described in
section 6. Finally, we conclude in section 7.

2. PRELIMINARIES
In this section, we define the main notions used in this paper.

Then, we describe our schema corpus and quality measures used
for evaluation.

2.1 Definitions
YAM can be applied to match pairs of edge-labeled trees (a sim-

ple abstraction that can be used for XML schemas, web interfaces,
Jason data types, or other semi-structured or structured data mod-
els). Schema matching task can be divided into three steps. The
first one is named pre-match and is optional. Either the tool or
the user can intervene, for instance to provide resources (dictionar-
ies, expert correspondences, etc.), to set up parameters (tuning of
weights, thresholds, etc.), etc. Secondly, the matching process oc-
curs, during which correspondences are discovered. The final step,
the post-match process, mainly consists in a validation of the dis-
covered correspondences by the user.

Definition 1 (Schema): A schema is a labeled unordered tree S =

(ES , DS , rS , label) where ES is a set of elements; rS is the root

element; DS ⊆ ES × ES is a set of edges; and label ES → Λ
where Λ is a countable set of labels.
Definition 2 (Pair): A pair of schema elements is defined as a tuple
< e1, e2 > where e1 ∈ E1 and e2 ∈ E2 are schema elements.
Definition 3 (Similarity Measure): Let E1 be a set of elements of
schema 1, and E2 be a set of elements of schema 2. A similarity
measure between a pair, denoted as Sim(e1, e2), is a metric value,
the similarity value, which indicates the likeness between both ele-
ments. It is defined by:

Sim : e1xe2 → [0, 1]

where a zero value means total dissimilarity and 1 value stands for
total similarity.
Definition 4 (Correspondence): A correspondence is a pair of
schema elements which have a semantic similarity. Correspon-
dences can be either discovered by similarity measures or given by
an expert. They are defined as follows, < e1, e2, Sim(e1, e2) >.
An expert correspondence has a similarity value equal to 1.
Definition 5 (Schema matching scenario): A schema matching
scenario is a set of schemas (typically from the same domain) that
need to be matched.
Definition 6 (Schema matcher): A schema matcher is an algo-
rithm which combines similarity measures. Given a schema match-
ing scenario, it produces a set of correspondences. In YAM, we
consider schema matchers that are classifiers.

2.2 Running Example
Let us imagine that we would like to match two hotel booking

webforms. These webforms are depicted by figures 1(a) and 1(b).
The expert correspondences between their schemas are shown in
figure 2.

Figure 2: Expert correspondences between the two hotel book-

ing webforms

Figure 3 depicts an extract of the dedicated matcher for this hotel

booking scenario. This schema matcher is based on the Bayes Net

classifier. Each similarity measure is associated with a probabilistic
distribution table. For instance, if the Levenshtein measure returns
a similarity value between −∞ and 0.504386, there is a 99.5%
chance that the current pair of schema elements is not relevant. Us-
ing this dedicated matcher against the hotel booking scenario, we
were able to discover the set of correspondences shown in figure 4.
We notice that 8 out of the 9 relevant correspondences have been
discovered. Two irrelevant correspondences have also been found,
namely (Hotel Location, Hotel Name) and (Children:, Chain).

(a) Webform hotels valued (b) Webform where to stay

Figure 1: Two hotel booking webforms

Figure 3: Extract of the dedicated matcher

2.3 Schema Corpus
To demonstrate the effectiveness of our approach, we used sev-

eral schema matching scenarios:

• university describes university departments and it has been
widely used in the literature [10, 7].

• thalia [13] is a benchmark describing the courses offered by
some American universities.

• travel are schemas extracted from airfare web forms [1].

• currency and sms are popular web services which can be
found at http://www.seekda.com.

• web forms is a set of 176 schema matching scenarios, ex-
tracted from various websites by the authors of [15]. They
are related to different domains, from hotel booking and car

renting to dating and betting.

For all these scenarios, correct (relevant) correspondences are
available, either designed manually or semi-automatically. We use
these schemas, and their correct correspondences as the training
data for YAM.

2.4 Quality measures
To evaluate the matching quality, we use common measures in

the literature, namely precision, recall and f-measure. Precision
calculates the proportion of relevant correspondences extracted among
the discovered ones. Another typical measure is recall which com-
putes the proportion of relevant discovered correspondences among
all relevant ones. F-measure is a tradeoff between precision and re-
call. We also measured the number of user interactions required
to obtain a 100% f-measure given a set of discovered correspon-
dences. This measure is described in section 5.5.

3. OVERVIEW OF YAM
YAM (Yet Another Matcher) is a matcher factory tool, which

generates a dedicated schema matcher according to user prefer-
ences and some expert correspondences.

3.1 Motivations
The motivation for our work is the following:

• There is no schema matching tool which performs best for
all matching scenarios. Although matching tools enable the
user to tune some parameters (strategies, weights, thresholds,

Figure 4: Correspondences discovered using the dedicated

matcher

etc.), the same algorithm, for instance, COMA++’s aggrega-
tion function [2], is always used independently of the schema
matching scenario. eTuner [14] automatically tunes schema
matching tools by tuning the input parameters used by the
matcher. Thus, it mainly depends on their capabilities since it
finds the best parameters configuration. Specifically, eTuner
fined the best parameter settings for a given matching algo-
rithm. On the contrary, YAM is able to produce the dedicated
schema matcher for a given scenario. Each generated schema
matcher has its own features, among which a different algo-
rithm (aggregation functions, Bayes network, decision trees,
etc.). This is the adaptable feature of our approach.

• User intervention is always required, at least to check the
discovered correspondences. In other systems, users are also
asked to edit synonyms list, reduce schema size [8], or tune
various parameters. In the same spirit, YAM uses some user
inputs, but of a different form. Specifically, YAM can op-
tionally use a preference between precision and recall, and
some expert correspondences (that is, a small number of cor-
rect matches). This small amount of input enables the use
of supervised learning to create a dedicated schema matcher.
YAM is able to convert user time spent to give preferences
into better quality results. Indeed, most schema matching
tools focus on a better precision, but this does not seem to
be the best choice in terms of post-matching effort, i.e., the
quantity of work required by an expert to correct discovered
correspondences. Technically speaking, it is easier for the
expert to validate (or not) a discovered mapping than to man-
ually browse two large schemas for new correspondences
that the tool may have missed.

• Some matching tools are said to be extensible, for example
to add new similarity measures. However, this extensibility
is constrained by some parameters, which need to be manu-
ally updated (for instance, adjusting thresholds, re-weighting
values, etc.). Thanks to machine learning techniques and
according to user inputs, YAM automatically learns how to
combine similarity measures into a classifier to produce the
dedicated schema matcher. Thus, our approach is extensible

in terms of similarity measures, but also in terms of classi-
fiers.

Now let us discover what is inside our factory of schema match-
ers.

3.2 YAM Architecture
To the best of our knowledge, our approach is the first to pro-

pose a factory of schema matchers. The intuition which led to our
work is as follows: the algorithms which combine similarity mea-
sures provide different results according to a given schema match-
ing scenario. Thus, YAM aims at generating for a schema matching
scenario a dedicated schema matcher. For this purpose, YAM uses
machine learning techniques during pre-match phase.

Figure 5: YAM architecture

Figure 5 depicts the YAM architecture. Circles represent in-
puts or outputs and the rectangles stand for processes. Note that a
dashed circle means that this input is optional. YAM only requires
one input, the set of schemas to be matched. However, the user can
also provide additional inputs, i.e., some preferences and/or expert
correspondences. The preference consists of a precision and recall
tradeoff. Expert correspondences (from a domain of interest, or for
the schemas to be matched) are only used by the matcher generator
to produce a better dedicated matcher. YAM is composed of two
main components: the matcher generator is in charge of learning
a dedicated matcher for the input schemas (see section 4 for more
details). This component interacts with the Knowledge Base (KB).
This KB stores previously generated matchers, a set of classifiers, a
set of similarity measures, and expert correspondences which have
already been given or validated. Finally, YAM outputs a schema
matcher, either generated or selected and which is then stored in
the KB. It can obviously be used for matching the input schemas,
thus producing a list of discovered correspondences between the
schemas. Note that the matching process is specific to the classifier
that will be used and is not detailed in this paper.

The current version of YAM includes 20 classifiers from the
Weka library [12] and 30 similarity measures, including all the ter-
minological measures from the Second String project1, and some
structural and semantic measures. YAM’s knowledge base con-
tains a large set of 200 schemas from various domains (betting,
hotel booking, dating, etc.) gathered from the web.

4. LEARNING A DEDICATED MATCHER
In this section, we describe YAM’s approach for learning a matcher

(which we call a dedicated matcher) for a given matching scenario.
Any schema matcher can be viewed as a classifier. Given the set
of possible correspondences (the set of pairs of elements in the
schemas), a matcher labels each pair as either relevant or irrel-

evant. Of course, a matcher may use any algorithm to compute

1http://secondstring.sourceforge.net

its result – classification, clustering, an aggregation over similarity
measures, or any number of ad hoc methods including techniques
like blocking to improve its efficiency.

In YAM, we use an extensible library of classifiers (in our ex-
periments including the 20 classifiers from the Weka library [12])
and train them using an extensible library of similarity measures.
(in our experiments including all the measures from the popular
Second String project). The classifiers include decision trees (J48,
NBTree, etc.), aggregator functions (SimpleLogistic), lazy classi-
fiers (IBk, K*, etc.), rules-based (NNge, JRip, etc.) and Bayes Net-
works.

The generation of a dedicated matcher can be split into two steps:
(i) training of matchers, and (ii) final matcher selection.

4.1 Matcher Training
YAM trains each matcher using its knowledge base of training

data and expert correspondences (if available). We begin our ex-
planation with an example.

Example: Let us consider the pair (searchform, search) from
our running example. We computed the similarity values of this
pair with each similarity measure in our library. For our example,
let us assume we have three similarity measures: AffineGap = 14.0,
NeedlemanWunsch = −4.0, JaroWinkler = 0.92. From these val-
ues, a matcher must predict if the pair is relevant or not.

To classify an element pair as relevant or not, a classifier must
be trained. YAM offers two training possibilities: either the user
has provided some expert correspondences, with their relevance,
or YAM uses correspondences stored in a knowledge-base (KB).
Note that if the user has not provided a sufficient number of corre-
spondences, YAM will extract some more from the KB. When the
user has not provided any expert correspondences, the matcher is
learned from the KB, i.e., YAM will use a matcher that provides
the best average results on the KB.

During training, all the thresholds, weights, and other parame-
ters of the matcher are automatically set. Although each matcher
performs differently, we briefly sum up how they work. First, they
select the similarity measures which provides a maximum of cor-
rectly classified correspondences. Then, the similarity measures
that might solve harder cases are taken into account.

Example: If the user has provided the following expert corre-
spondences (* City:, City) and (State:, State), string matching mea-
sures like JaroWinkler or Levenshtein will be first considered by the
machine learning algorithms. Indeed, they enable a correct classi-
fication of both pairs.

In general, these algorithms aim at reducing the misclassification
rate. Two errors can occur while training: classifying an irrelevant
correspondence as relevant (a.k.a. a false positive or extra incorrect
correspondence) and classifying a relevant correspondence as irrel-
evant (a.k.a. a false negative or a missed correct correspondence).
The first error decreases precision while the second one decreases
recall. Many algorithms assign the same penalty to a false positive
(i.e., an irrelevant pair that has been discovered) and to a false nega-
tive (i.e. a relevant pair that has been missed). To increase recall on
a given dataset, we assign a greater penalty to false positives. Thus,
we should obtain a better recall for a given dataset. Note that pro-
moting recall (respectively precision) mainly decreases precision
(respectively recall). Our approach is able to generate matchers
which respect a user specified preference for recall or precision.

At the end of this step, YAM has generated a trained matcher for
each classifier in the KB.

4.2 Selecting a Dedicated Matcher
A dedicated matcher is selected according to its accuracy on the

given training data (KB and possible expert correspondences). If

a user has not provided any expert correspondences, all match-
ers have been trained on the KB. Thus, YAM cross-validates each
matcher with the correspondences stored in the KB. On the con-
trary, if user has provided correspondences, cross validation is per-
formed against the given correspondences. Finally, the matcher
which discovered most of the correspondences and the fewest irrel-
evant ones is selected as the dedicated schema matcher. Note that
these computations correspond to the f-measure (perhaps weighted
by a user preference for recall or precision).

Example: Let us imagine that we have generated 3 matchers,
named NNge, J48 and SMO. They respectively achieve the follow-
ing f-measure during cross-validation: 0.56, 0.72 and 0.30. Thus,
J48 would be chosen as the dedicated matcher.

5. EXPERIMENTS
In these experiments, we first demonstrate that YAM is able to

produce an effective dedicated matcher. Thus, we evaluate the re-
sults of generated matchers against 200 scenarios. Then, we mea-
sure the quality impact according to the number of training scenar-
ios. Our goal is to show that the amount of training data needed to
produce a high performing matcher is not onerous. Next, we study
the impact of a user preference between recall and precision. Then
we consider the performance of YAM with respect to the number of
expert correspondences. Finally, we compare our results with two
matching tools that have excellent matching quality, COMA++ [2]
and Similarity Flooding [16]. These tools are described in more
detail in section 6.

The schema corpus we use was presented in section 2.3. Ex-
periments were run on a 3.6 Ghz computer with 4 Go RAM under
Ubuntu 7.10. Our approach is implemented in Java 1.6. In training,
we used 200 runs to minimize the impact of randomness.

5.1 Comparing generated matchers
We begin with a study of which matchers were selected as for

different matching scenarios. This study highlights how different
the performance of each match can be on different scenarios, and
therefore the importance of matching factory tool such as YAM for
selecting among these matchers to produce an effective matcher.

We have run YAM against 200 scenarios, and we measured the
number of times a given matcher is selected as the dedicated matcher.
For this evaluation, we included no expert correspondences, so all
matchers were trained simply with the KB. The KB contained 20
scenarios, and this process took roughly 1400 seconds to produce
a dedicated matcher for each given scenario. Figure 6 depicts the
number of scenarios (out of 200) for which each matcher was se-
lected as the dedicated matcher. Notice that 2 matchers, VFI and
BayesNet, are selected in half of the scenarios. These two match-
ers can be considered as robust as they provide acceptable results
in most scenarios in our KB. However, matchers like CR or ADT,
which have a very low average f-measure on these 200 scenarios
(5% for CR and 28% for ADT), were respectively selected 3 and
10 times. This shows that dedicated matchers based on these classi-
fiers are effective, in terms of quality, for specific scenarios. Thus,
they can provide benefits to some users. These results support our
hypothesis that schema matching tools have to be flexible. YAM,
by producing different matchers and selecting the best one for a
given scenario, fulfills this requirement.

We also note that aggregation functions, like SLog or MLP, which
are commonly used by traditional matching tools, are only selected
as dedicated matchers in a few scenarios. Thus, they do not provide
optimal quality results in most schema matching scenarios. In the
next section, showing the impact of the parameters, we only keep
the 5 most robust classifiers, namely VFI, BayesNet, NBTree, NNge

and IB1.

 0

 10

 20

 30

 40

 50

 60

VFI BayNet NBTree NNge IB1 ADT SLog JRip MLP VP IBk CR J48graft J48 FT SMO DecTable

N
u

m
b

er
 o

f
E

le
ct

io
n

 a
s

D
ed

ic
at

ed
 M

at
ch

er

Figure 6: Number of selections as dedicated matcher

5.2 Impact of the Training Scenarios
Figure 7 depicts the average f-measure of several matchers as

we vary the number of training scenarios. Note that the average f-
measure has been computed over 40 scenarios (randomly selected,
20 runs each). The training scenarios vary from 10 to 50. We note
that two matchers (VFI, IB1) increase their f-measure of 20% when
they are generated with more training scenarios. This can be ex-
plained by the fact that IB1 is an instance-based classifier2, thus the
more examples it has, the more accurate it becomes. Similarly, VFI

uses a voting system on intervals that it builds. Voting is also ap-
propriate when lots of training examples are supplied. NBTree and
NNge also increases their average f-measure from around 10% as
training data is increased. On the contrary, BayesNet achieves the
same f-measure (60% to 65%) regardless of the number of train-
ing scenarios. Thus, as expected, most matchers increase their f-
measure when the number of training scenarios increases. With
30 training scenarios, they already achieve an acceptable matching
quality.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 10 20 30 40 50

f-
m

ea
su

re

number of training scenarios

VFI
BayesNet

NBTree
NNge

IB1

Figure 7: Average f-measure when varying number of training

scenarios

Note that the number of training scenarios is not a parameter
that the user must manage. Indeed, YAM automatically chooses

2This classifier is named instance-based since the correspondences
(included in the training scenarios) are considered as instances dur-
ing learning. Our approach does not currently use schema in-
stances.

the number of training scenario according to the matchers that have
to be learned. We have run more than 11, 500 experiment results,
from which we deduce the number of training scenarios for a given
classifier. Table 1 shows the conclusion of our empirical analysis.
For instance, when learning a schema matcher based on J48 classi-
fier, YAM ideally chooses a number of training scenarios between
20 to 30.

Number of training scenarios Classifiers

20 and less SLog, ADT, CR

20 to 30 J48, J48graft

30 to NNge, JRip, DecTable
50 BayesNet, VP, FT

50 and VFI, IB1, IBk
more SMO, NBTree, MLP

Table 1: Number of training scenarios chosen by YAM for each

classifier

5.3 Precision vs. Recall Preference
We now present another interesting feature of our tool, the pos-

sibility to choose between promoting recall or precision, by tuning
the weight for false positives. Figures 8(a) and 8(b) respectively
depicts the average recall and f-measure of five matchers for 40
scenarios, when tuning the preference between precision and re-
call. Without any tuning (i.e., weight for false negatives and false
positives is equal to 1), this means that we give as much importance
to recall and precision.

For 2 matchers (NBTree and NNge), the recall increases up to
20% when we tune in favor of recall. As their f-measures does
not vary, it means that this tuning has a negative impact on the
precision. However, in terms of post-match effort, promoting re-
call may be a better choice depending on the integration task for
which matching is being done. For example, let us imagine we
have two schemas of 100 elements: a precision which decreases by
20% means a user has to eliminate 20% of the irrelevant discov-
ered correspondences. But a 20% increase in recall means (s)he
has 20% less correspondences to search through among 10, 000
possible pairs ! Hence, this tuning could have a tremendous effect
on the usability of the matcher for certain tasks.

For the three other matchers (BayesNet, VFI and IB1), tuning in
favor of recall has no significant effect. Note that without any tun-
ing, only one matcher (BayesNet) has an average recall superior to
its precision. Indeed, many of the matchers in our library promote
by default precision. But when setting a weight for false nega-
tives to 2, then four matchers have a higher recall than precision.
And with a weight for false negatives equal to 3, five other match-
ers have reduced the gap between precision and recall to less than
5%. Thus, this shows how YAM is able to take into account this
very important user preference, which directly impacts post-match
(manual) effort.

5.4 Impact of Expert Correspondences
As in Glue [6], the number of expert correspondences is an input

(compulsory for Glue, but optional for YAM) to the system. YAM
can use these expert correspondences to learn better matchers. In
this study, we measured the gain in terms of matching quality when
a user provides these correspondences.

In these experiments, the training phase used 20 scenarios and
expert correspondences were randomly selected. We report the size
of the sets of expert correspondences, providing 5% of expert cor-
respondences means that we only give 1 or 2 correspondences as

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 1 2 3 4 5

re
ca

ll

weight of false negatives

VFI
BayesNet

NBTree
NNge

IB1

(a) Recall

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 1 2 3 4 5

f-
m

ea
su

re

weight of false negatives

VFI
BayesNet

NBTree
NNge

IB1

(b) F-measure

Figure 8: Quality of various matchers when tuning weight of false negatives

input. Figure 9 depicts the average f-measure (on 10 random sce-
narios) for different matchers.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 5 10 15 20

f-
m

ea
su

re

percentage of provided expert correspondences

VFI
BayesNet

NBTree
NNge

IB1

Figure 9: F-measure of various matchers when tuning the input

expert correspondences

With only 5% of the correspondences given as expert correspon-
dences, NNge and IB1 are able to increase their f-measure by 40%.
The classifier NBTree also achieves an increase of 20%. Similarly,
the f-measure of these mathers still increases by as 10% of the cor-
respondences are provided as expert correspondences. On the con-
trary, the VFI and BayesNet matchers do not benefit at all from this
input. Note that providing some expert correspondences does not
require a tiresome effort from the user.3 Yet, this input can improve
the matching quality of most matchers.

5.5 Comparing with Other Matching Tools
We now compare YAM with two matching tools known to pro-

vide an good matching quality: COMA++ and Similarity Flooding
(SF). To the best of our knowledge, these tools are the only ones
publicly available. COMA++ [2] uses 17 similarity measures to

3Some GUIs already exist to facilitate this task by suggesting the
most probable correspondences.

build a matrix between pairs of elements and aggregated their simi-
larity values. Similarity Flooding[16] builds a graph between input
schemas. Then, it discovers some initial correspondences using a
string matching measure. These correspondences are refined us-
ing a structural propagation mechanism. Both matching tools are
described in more detail in section 6.

As explained in the previous section, a user does not need to
choose the number of training scenarios. YAM automatically ad-
justs this number according to the classifier which is going to be
trained. We have trained YAM against 50 random schemas from
the KB to generate a robust matcher for each schema matching
scenario. Neither COMA++ nor Similarity Flooding can take any
expert correspondence as input. Hence, for this comparison, we did
not include expert correspondences. Similarly, no weight for false
negatives has been set because COMA++ and Similarity Flooding
do not have this capability.

5.5.1 Accuracy Comparison

Figures 10(a) and 10(b) depict the F-measure obtained by YAM,
COMA++ and Similarity Flooding on the 10 scenarios. YAM ob-
tains the highest f-measure in 7 scenarios, and reaches 80% f-
measure in 4 scenarios. COMA++ achieves the best f-measure for
currency and university scenarios. SF obtains the best f-measure in
one scenario (travel). In addition, COMA++ is the only tool which
does not discover any correspondence for one scenario (travel).
However, we notice that YAM obtains better results on the web-
forms scenarios since it was trained with webforms. With non-
webforms scenarios, YAM is able to achieve acceptable results.

These results show how our matcher factory relies on the di-
versity of classifiers. Indeed, the dedicated matchers that it has
generated for these scenarios are based on various classifiers (VFI,
BayesNet, J48, etc.) while COMA++ and SF only rely on respec-
tively an aggregation function and a single graph propagation algo-
rithm.

YAM obtains the highest average f-measure (67%) while COMA++
and SF average f-measures are just over 50%. Thus, YAM is a
more robust matching tool, specifically because it is able to gener-
ate matchers based on various classifiers.

5.5.2 Post-match Effort

Most schema matching tools, including most matchers generated
by YAM (without tuning), mainly promote precision to the detri-

(a) Non-webforms scenarios (b) Webform scenarios

Figure 10: Precision, recall and f-measure achieved by the three matching tools on 10 scenarios

ment of recall. However, this is not always the best choice for a
given task. The list of discovered correspondences, provided by
matching tools, have two issues, namely (i) irrelevant discovered
correspondences and (ii) missing correspondences. Users first have
to check each correspondence from the list, either to validate or re-
move it. Then, they have to browse the schemas and discover the
missing correspondences. Thus, we propose to evaluate this user
post-match effort by counting the number of user interactions. A
user interaction is an (in)validation of one pair of schema elements
(either from the list of correspondences or between the schemas).

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 500 1000 1500 2000 2500

f-
m

ea
su

re

number of interactions

YAM
YAM-tuned

COMA++
SF

Figure 11: Number of user interactions needed to obtain a

100% f-measure

Figure 11 shows the importance of recall by comparing four
matching tools (COMA++, SF, YAM and YAM-tuned, which pro-
motes recall with a weight for false negatives set to 2). It depicts
user effort, in number of interactions, to reach a 100% f-measure
after that the four matching tools have discovered a list of corre-
spondences for the sms scenario. Note that this is the worst-case
situation, in which all possible pairs must be checked. For the
user, the first step of the post-match effort consists in (in)validating
discovered correspondences. For instance, YAM-tuned outputs 66
correspondences and thus a user would require 66 interactions to
(in)validate them. At the end of first step, all evaluated matchers
have a 100% precision. During a second step of the post-match
effort, f-measure has the same value distribution for all matchers

(since only recall can be improved). This facilitates comparisons
between matchers. The second step deals with the manual discov-
ery of all missing correspondences. We assume that all pairs which
have not been invalidated yet must be analyzed by the user. Thus,
to discover the 20% correspondences missed by YAM-tuned, a user
requires about 1600 interactions.

Now let us study figure 11 in more detail. We notice that after the
first step, during which a user (in)validates discovered correspon-
dences, YAM, COMA++ and SF only increases their f-measures by
a few percent. In contrast, YAM-tuned’s f-measure increases from
32% to 80% with only 66 interactions. As a comparison, with
the three other matchers, there are at least 1100 user interactions
needed to reach this 80% f-measure. Finally, to achieve a 100%
f-measure, YAM-tuned interacts 1600 times with the user while
other tools requires more than 2100 interactions. Note that these
example schemas from sms scenario still have reasonable size, but
with larger schemas, the post-match effort would require thousands
of user interactions. Thus, promoting recall strongly reduces post-
match effort. In addition, it enables a user to quickly obtain an
acceptable f-measure. Contrary to other matching tools, YAM is
able to take this preference for recall into account.

5.6 Discussion
These experiments support the idea that machine learning tech-

niques are suitable for the matching task. We have shown the im-
pact on the matching quality when tuning several parameters, like
the number of training scenarios, the tradeoff between recall and
precision and the number of input expert correspondences. The first
experiment would tailor YAM to automatically adjust the number
of training scenarios according to the classifier to be generated. The
second study demonstrates how YAM can promote recall (or pre-
cision). And the third study describes how users can improve the
quality of their results by providing some expert correspondences.
We finally compared our approach with two other matching tools
to show that YAM outperforms them in most scenarios.

Time performance. Although matching two or more schemas
is not time consuming, generating all classifiers and selecting the
best one is a time consuming process (up to several hours if the KB
of training data is large). This process could be sped up by only
generating a subset of available matchers, which are the most ap-
propriate according to the features of the schemas to be matched
and user preferences. For instance, if user a wants to promote re-
call, YAM can only generate matchers based on BayesNet, tuned

SMO and tuned JRip which empirically demonstrated good results

for this criterion. Of course, in practice, it is the performance of the
dedicated matcher which is crucial and the matchers produced by
YAM have comparable or better time performance to other match-
ers (including COMA++ and Similarity Flooding).

6. RELATED WORK
Much work has been done both in schema matching and on-

tology alignment. However, we only describe in this section ap-
proaches which are based on machine learning techniques, and the
tools against which we compared our approach. You can refer to
these surveys [11, 17] for more details about other approaches.

In [15], the authors use the Boosting algorithm to classify the
similarity measures, divided into first line and second line match-
ers. The Boosting algorithm consists in iterating weak classifiers
over the training set while re-adjusting the importance of elements
in this training set. An advantage of this algorithm is the important
weight given to misclassified pairs. However, the main drawback
deals with the Boosting machine learning technique. Although it
gives acceptable results, we have noticed in section 5 that several
classifiers might give poor results with some scenarios. Thus, only
relying on one classifier is risky. Contrary to our work, the authors
chose to promote precision and do not accept expert correspon-
dences as input.

MatchPlanner approach [9] makes use of decision trees to select
the most appropriate similarity measures. This approach provides
acceptable results w.r.t other matching tools. However, the decision
trees are manually built, thus requiring an expert intervention. Be-
sides, decision trees are not always the best classifier, as shown in
section 5.

eTuner [14] aims at automatically tuning schema matching tools.
It proceeds as follows: from a given schema, it derives many schemas
which are semantically equivalent. The correspondences between
the initial schema and its derivations are stored. Then, a given
matching tool (e.g., COMA++ or Similarity Flooding) is applied
against the set of correspondences until an optimal parameters con-
figuration of the matching tool is found. eTuner strongly relies on
the capabilities of the matching tools. Conversely, YAM learns a
dedicated matcher for a given scenario. It is also able to integrate
important feature like user preference between recall and precision.
Contrary to eTuner, YAM is extensible in terms of similarity mea-
sures and classifiers, thus enhancing the possibilities of our tool.

COMA/COMA++ [2] is a generic, composite matcher with very
effective match results. It can process the relational, XML, RDF
schemas as well as ontologies. Internally it converts the input schemas
as trees for structural matching. For linguistic matching it utilizes
a user defined synonym and abbreviation tables, along with n-gram
name matchers. Similarity of pairs of elements is calculated into
a similarity matrix. At present it uses 17 element level similarity
measures. For each source element, elements with similarity higher
then than threshold are displayed to the user for final selection. The
COMA++ supports a number of other features like merging, saving
and aggregating match results of two schemas. On the contrary, our
approach is able to learn the best combination of similarity mea-
sures instead of using the whole set. It outperforms COMA++ both
in matching quality and time performance.

S-MATCH/S-MATCH++ [3] takes two directed acyclic graphs
like structures e.g., XML schemas or ontologies and returns se-
mantic correspondences between pairs of elements. It uses external
dictionary Wordnet, to evaluate the linguistic matching along with

its structural matcher to return a subsumption type correspondence.
At present, it uses 13 element level matchers and 3 structural level
matchers. It is also heavily dependent on SAT solvers, which de-
crease its time efficiency.

Similarity Flooding [16] has been used with Relational, RDF and
XML schemas. These schemas are initially converted into labeled
graphs and SF approach uses fix-point computation to determine
correspondences of 1:1 local and m:n global cardinality between
corresponding nodes of the graphs. The algorithm has been imple-
mented as a hybrid matcher, in combination with a name matcher
based on string comparisons. First, the prototype does an initial
element-level name mapping, and then feeds these mappings to the
structural SF matcher for the propagation process. The weight of
similarity between two elements is increased, if the algorithm finds
some similarity between the related elements of the pair of ele-
ments. In a modular architecture, the components of SF, such as
schema converters, the name and structural matchers, and filters,
are available as high-level operators and can be flexibly combined
within a script for a tailored match operation. One of the main
drawback of Similarity Flooding is the matching quality. But this
weak point is compensated by the performance. Our approach goes
further by using different matching techniques selected by a plan-
ner.

Glue [6], and its predecessor LSD, are also based on machine
learning techniques. They have four different learners, which ex-
ploit different information of the instances. The name learner (Whirl,
a nearest-neighbor classifier) makes predictions using word fre-
quency (TF/IDF distance) on the label of the schema elements. The
content learner (also based on Whirl and TF/IDF) applies a simi-
lar strategy on the instances associated to each schema element.
A Naive Bayes classifier considers labels and attributes as a set
of tokens to perform text classification. The XML learner (based
on Naive Bayes too) exploits the structure of the schema (hierar-
chy, constraints, etc.). Finally, a meta-learner, based on stacking, is
applied to return a linear weighted combination of the four learn-
ers. First, the user must give some correspondences between the
schemas that require to be matched. These correspondences are
then used for training the learners, and their combination result-
ing from the meta-learner is performed against the input schemas
to discover the rest of the correspondences. YAM is also based on
machine learning techniques. However, the user correspondences
are optional, since a knowledge base is provided with our tool. Au-
thors of Glue do not detail how many correspondences should be
given by the user. We have shown in section 5.2 that some classi-
fiers require many training scenarios (and thus correspondences) to
be efficient. YAM generates a dedicated matcher, based on a classi-
fier which best combines all similarity measures. On the contrary,
Glue uses classifiers on the same similarity measures. The meta-
learner is a linear regression function, with its drawbacks in terms
of quality and extensibility, as explained in [9].

AUTOMATCH [4] is the predecessor of AUTOPLEX, which
uses schema instance data and machine learning techniques to find
possible correspondences between two schemas. A knowledge base,
called attribute dictionary, contains attributes with a set of possi-
ble instances and their probability. This dictionary is populated
using Naive Bayesian algorithm to extract relevant instances from
Relational schemas fields. A first step consists of matching each
schema element to dictionary attributes, thus computing a similar-
ity value between them according to the number of common in-
stances. Then, the similarity values of two schema elements that
match the same dictionary attribute are summed and minimum cost

maximum flow algorithm is applied to select the best correspon-
dences. The major drawback of this work is the importance of the
data instances. Although this approach is interesting on the ma-
chine learning aspect, that matching is not as robust since it only
uses one similarity function based on a dictionary.

7. CONCLUSION
In this paper, we have presented YAM, a factory of schema match-

ers. During pre-match phase, it generates, thanks to machine learn-
ing algorithms, a dedicated matcher for a given matching scenario.
Experiments have shown that the dedicated matcher obtains accept-
able results with regards to other matching tools. Besides, the pos-
sibility to learn matchers whose algorithm is completely different
enables to efficiently match specific scenarios. In the experiments,
our empirical analysis enables to adjust YAM so that it automat-
ically chooses the number of training scenarios according to the
classifier that it has to generate.

Similarly to other approaches, we enable the user to provide
some initial expert correspondences. As most classifiers are able
to efficiently use this input, generated matchers are better appro-
priate for a given matching scenario. As a result, matching quality
strongly increases, even when providing only 1 or 2 expert corre-
spondences.

Our approach is also the first work to let users choose the promot-
ing of either precision or recall. This choice strongly impacts the
post-match effort, when user (in)validates discovered correspon-
dences and manually browse schemas to find missing ones. We
have demonstrated that promoting recall is more appropriate to re-
duce user post-match interactions.

In the future, we first plan to test more matchers. Indeed, there
exists plenty of machine learning classifiers among which we only
experiment a subset. Another ongoing work consists in reducing
the learning time. To tackle this issue, we explore the possibility to
reuse previously generated matchers, which are stored in the KB.
And we intend to use case-based reasoning techniques to select the
dedicated one among them.

8. REFERENCES

[1] The UIUC web integration repository. Computer Science
Department, University of Illinois at Urbana-Champaign.
http://metaquerier.cs.uiuc.edu/repository, 2003.

[2] D. Aumueller, H. H. Do, S. Massmann, and E. Rahm.
Schema and ontology matching with coma++. In SIGMOD

Conference, Demo paper, pages 906–908, 2005.

[3] P. Avesani, F. Giunchiglia, and M. Yatskevich. A large scale
taxonomy mapping evaluation. In International Semantic

Web Conference, pages 67–81, 2005.

[4] J. Berlin and A. Motro. Database schema matching using
machine learning with feature selection. In CAiSE, 2002.

[5] A. Doan, P. Domingos, and A. Y. Halevy. Reconciling
schemas of disparate data sources: a machine-learning
approach. In SIGMOD, pages 509–520, 2001.

[6] A. Doan, J. Madhavan, R. Dhamankar, P. Domingos, and
A. Y. Halevy. Learning to match ontologies on the semantic
web. VLDB J., 12(4):303–319, 2003.

[7] A. Doan, J. Madhavan, P. Domingos, and A. Halevy.
Ontology matching: A machine learning approach. In
Handbook on Ontologies in Information Systems, 2004.

[8] C. Drumm, M. Schmitt, H. H. Do, and E. Rahm. Quickmig:
automatic schema matching for data migration projects. In
CIKM, pages 107–116. ACM, 2007.

[9] F. Duchateau, Z. Bellahsene, and R. Coletta. A flexible
approach for planning schema matching algorithms. In OTM

Conferences (1), pages 249–264, 2008.

[10] F. Duchateau, Z. Bellahsene, and M. Roche. A context-based
measure for discovering approximate semantic matching
between schema elements. In RCIS, 2007.

[11] J. Euzenat and P. Shvaiko. Ontology matching.
Springer-Verlag, Heidelberg (DE), 2007.

[12] S. R. Garner. Weka: The waikato environment for knowledge
analysis. In In Proc. of the New Zealand Computer Science

Research Students Conference, pages 57–64, 1995.

[13] J. Hammer, M. Stonebraker, , and O. Topsakal. Thalia: Test
harness for the assessment of legacy information integration
approaches. In Proceedings of ICDE, pages 485–486, 2005.

[14] Y. Lee, M. Sayyadian, A. Doan, and A. Rosenthal. etuner:
tuning schema matching software using synthetic scenarios.
VLDB J., 16(1):97–122, 2007.

[15] A. Marie and A. Gal. Boosting schema matchers. In OTM

Conferences (1), pages 283–300, Berlin, Heidelberg, 2008.
Springer-Verlag.

[16] S. Melnik, H. G. Molina, and E. Rahm. Similarity flooding:
A versatile graph matching algorithm and its application to
schema matching. In Data Engineering, pages 117–128,
2002.

[17] E. Rahm and P. A. Bernstein. A survey of approaches to
automatic schema matching. VLDB J., 10(4):334–350, 2001.

