, Number Models for class "positive" Number Models for class "negative" 2289 V

V. ,

V. ,

V. ,

V. ,

V. ,

V. ,

A. ,

A. ,

V. ,

V. ,

V. ,

V. ,

N. ,

N. ,

V. ,

A. ,

A. ,

N. ,

V. ,

R. Agrawal, T. Imielinski, and A. N. Swami, Mining association rules between sets of items in large databases, SIGMOD, pp.207-216, 1993.

R. Agrawal and R. Srikant, Mining sequential patterns, ICDE, pp.3-14, 1995.

M. Antonie and O. R. Zaiane, Text document categorization by term association, ICDM, pp.19-26, 2002.
DOI : 10.1109/icdm.2002.1183881

URL : http://www.cs.ualberta.ca/~zaiane/postscript/icdm02-1.pdf

F. Benamara, C. Cesarano, and D. Reforgiato, Sentiment analysis: Adjectives and adverbs are better than adjectives alone, ICWSM, 2007.

A. Budanitsky and G. Hirst, Evaluating wordnet-based measures of lexical semantic relatedness, Computational Linguistics, vol.32, issue.1, pp.13-47, 2006.

, WordNet: A lexical database for the english language

K. Dave, S. Lawrence, and D. M. Pennock, Mining the peanut gallery: Opinion extraction and semantic classification of product reviews, WWW, pp.519-528, 2003.

G. Dong and J. Li, Interestingness of discovered association rules in terms of neighborhood-based unexpectedness, PAKDD, pp.72-86, 1998.

A. Esuli and F. Sebastiani, PageRanking WordNet synsets: An application to opinion mining, ACL, pp.424-431, 2007.

J. Gracia and E. Mena, Web-based measure of semantic relatedness, WISE, pp.136-150, 2008.

M. Hu and B. Liu, Mining and summarizing customer reviews, KDD, pp.168-177, 2004.

, TreeTagger: A language independent part-of-speech tagger

S. Jaillet, A. Laurent, and M. Teisseire, Sequential patterns for text categorization, Intelligent Data Analysis Journal, vol.10, issue.3, pp.199-214, 2006.
URL : https://hal.archives-ouvertes.fr/lirmm-00135010

S. Jaroszewicz and T. Scheffer, Fast discovery of unexpected patterns in data, relative to a bayesian network, KDD, pp.118-127, 2005.

J. Kamps, R. J. Mokken, M. Marx, and M. De-rijke, Using WordNet to measure semantic orientation of adjectives, LREC, pp.1115-1118, 2004.

D. D. Lewis, Naive (Bayes) at forty: The independence assumption in information retrieval, ECML, pp.4-15, 1998.

D. H. Li, A. Laurent, and P. Poncelet, Mining unexpected sequential patterns and rules, 2007.
URL : https://hal.archives-ouvertes.fr/lirmm-00193679

D. H. Li, A. Laurent, M. Roche, and P. Poncelet, Extraction of opposite sentiments in classified free format text reviews, DEXA, pp.710-717, 2008.
URL : https://hal.archives-ouvertes.fr/lirmm-00324582

W. Li, J. Han, and J. Pei, CMAR: Accurate and efficient classification based on multiple class-association rules, ICDM, pp.369-376, 2001.

B. Liu, W. Hsu, and Y. Ma, Integrating classification and association rule mining, KDD, pp.121-128, 1998.

A. Markov, M. Last, and A. Kandel, Fast categorization of Web documents represented by graphs, WEBKDD, pp.56-71, 2006.

A. K. Mccallum, Bow: A toolkit for statistical language modeling text retrieval, classification and clustering, 1996.

K. Mcgarry, A survey of interestingness measures for knowledge discovery, The Knowledge Engineering Review, vol.20, issue.1, pp.39-61, 2005.

B. Padmanabhan and A. Tuzhilin, A belief-driven method for discovering unexpected patterns, KDD, pp.94-100, 1998.

B. Padmanabhan and A. Tuzhilin, On characterization and discovery of minimal unexpected patterns in rule discovery, IEEE Transactions on Knowledge and Data Engineering, vol.18, issue.2, pp.202-216, 2006.

B. Pang and L. Lee, A sentimental education: Sentiment analysis using subjectivity summarization based on minimum cuts, ACL, pp.271-278, 2004.

B. Pang, L. Lee, and S. Vaithyanathan, Thumbs up? Sentiment classification using machine learning techniques, EMNLP, pp.79-86, 2002.

S. P. Ponzetto and M. Strube, Knowledge derived from Wikipedia for computing semantic relatedness, Journal of Artificial Intelligence Research, vol.30, pp.181-212, 2007.

G. Salton and C. Buckley, Term-weighting approaches in automatic text retrieval, Information Processing and Management, vol.24, issue.5, pp.513-523, 1988.

H. Schmid, Probabilistic Part-of-Speech tagging using decision trees, NeMLaP, 1994.

F. Sebastiani, Machine learning in automated text categorization, ACM Computing Surveys, vol.34, issue.1, pp.1-47, 2002.

A. Silberschatz and A. Tuzhilin, On subjective measures of interestingness in knowledge discovery, KDD, pp.275-281, 1995.

Y. Song, D. Zhou, J. Huang, I. G. Councill, H. Zha et al., Boosting the feature space: Text classification for unstructured data on the Web, ICDM, pp.1064-1069, 2006.

M. Spiliopoulou, Managing interesting rules in sequence mining, PKDD, pp.554-560, 1999.

W. Su, J. Wang, and F. H. Lochovsky, Automatic hierarchical classification of structured deep Web databases, WISE, pp.210-221, 2006.

P. D. Turney, Mining the Web for synonyms: PMI-IR versus LSA on TOEFL, ECML, pp.491-502, 2001.

P. D. Turney, Thumbs up or thumbs down? Semantic orientation applied to unsupervised classification of reviews, ACL, pp.417-424, 2002.

T. Wilson, J. Wiebe, and P. Hoffmann, Recognizing contextual polarity in phrase-level sentiment analysis, HLT/EMNLP, 2005.

T. Wilson, J. Wiebe, and R. Hwa, Recognizing strong and weak opinion clauses, Computational Intelligence, vol.22, issue.2, pp.73-99, 2006.

X. Yan, J. Han, and R. Afshar, CloSpan: Mining closed sequential patterns in large databases, SDM, pp.166-177, 2003.

Y. Yang and C. G. Chute, An example-based mapping method for text categorization and retrieval, ACM Transactions on Information Systems, vol.13, issue.3, pp.252-277, 1994.

H. Yu, J. Han, and K. Chang, PEBL: Web page classification without negative examples, IEEE Transactions on Knowledge and Data Engineering, vol.16, issue.1, pp.70-81, 2004.

H. Yu and V. Hatzivassiloglou, Towards answering opinion questions: Separating facts from opinions and identifying the polarity of opinion sentences, EMNLP, pp.129-136, 2003.

T. Zesch, C. Müller, and I. Gurevych, Using wiktionary for computing semantic relatedness, AAAI, pp.861-866, 2008.