
HAL Id: lirmm-00407166
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00407166

Submitted on 23 Sep 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

LIFTING: an Open-Source Logic Simulator
Alberto Bosio, Giorgio Di Natale

To cite this version:
Alberto Bosio, Giorgio Di Natale. LIFTING: an Open-Source Logic Simulator. DATE 2009 - Design,
Automation and Test in Europe Conference and Exhibition, Apr 2009, Nice, France. �lirmm-00407166�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00407166
https://hal.archives-ouvertes.fr

LIFTING: an Open-Source Logic Simulator

A. Bosio, G. Di Natale

Laboratoire d’Informatique, de Robotique et de Microélectronique de Montpellier Université Montpellier II / CNRS

UMR 5506 161 rue Ada, 34392 Montpellier Cedex 5, France

{bosio, dinatale}@lirmm.fr ; http://www.lirmm.fr

Abstract

This work presents LIFTING, an open-source simulator
able to perform both logic and fault simulation for stuck-at
faults and single event upset (SEU) on digital circuits
described in Verilog.

1. Introduction

From the test point of view, logic and fault simulations are
very important steps. While logic simulation aims at
simulate the behavior of a circuits, when some stimuli are
applied, fault simulation is performed in order to evaluate
the test quality by determining its fault coverage with
respect to a given fault model.
This work presents LIFTING (LIRMM Fault Simulator), an
open-source simulator able to perform both logic and fault
simulation for single/multiple stuck-at faults and single
event upset (SEU) on digital circuits described in Verilog.
LIFTING is based on an event-driven logic simulation
engine and performs a fault injection fault simulation.
Compared to existing tools, LIFTING provides several
features for the analysis of the fault simulation results,
meaningful for research purposes. Moreover, as an open-
source tool, it can be customized to meet any user
requirements especially thanks to its objects oriented
architecture [1].
Experimental results show how LIFTING has been
exploited on field research. Eventually, execution time for
large circuit simulations is comparable to the one of
commercial tools.

2. Fault simulator architecture

Fig. 1 sketches the object oriented fault simulator
architecture.

Figure 1: Fault simulator architecture

The Fault Simulator reads two mandatory files: the netlist
of the circuit described in verilog (.v), and the input test
sequence described in a proprietary format (.ts). An
optional third input file is the list of faults that need to be
simulated (.fl). In case this file is not specified, LIFTING
creates the complete fault list w.r.t. the considered fault
model (for instance, for the stuck-at fault model, it includes
the entire possible faults of the circuit). Possible fault
models are the single/multiple stuck-at and the Single Event
Upset (i.e., bit flip in a storing cell, like flip flops, latches,
memory elements). The results of the fault simulation are
stored in the test report file.
We exploit the benefits of the object oriented programming
in order to build a very flexible and easy to customize tool.

3. Experimental results

In this section we present some experimental results
obtained by using the proposed LIFTING fault simulation
tool. The aim of these experiments is to show the benefits
carried out by using LIFTING w.r.t. commercial tool. Two
cases are here presented. The first one aims at provide the
feasibility of LIFITNG in terms of required CPU time when
performing logic simulation only. The second one
highlights the fault simulation facility and show how
LIFITNG could be used to obtain more information w.r.t.
commercial tool.
Let us introduce the two cases on which LIFTING has been
used. As a first test bench we consider a complex SoC [2]
composed of three cores:

• an 8-bit microcontroller
• a 64Kx8 bit SRAM memory
• a 16x16 parallel multiplier.

Figure 2: SoC architecture

The architecture of the considered SoC is shown in Fig. 2.
The result of the process is actually a simple fault-free
simulation, but the usage of the extended symbolic algebra

and the flexibility feature the tool provides enable accurate
analysis for delay testing.
The evaluated test set includes 18 self-test programs, 1 of
them targeting 16x16 multiplier coverage and 1 executing a
memory test (approaches like this one are normally referred
soft-BIST). In the past, these test programs were generated
and evaluated by means of commercial tools for the SA
fault model. Table I reports the test set characteristics and
required logic simulation times.

 Patterns
(#)

Simulation time
(h:m:s.c)

Test program 01 6,275 1:54.87
Test program 02 6,671 2:08.55
Test program 03 7,639 1:48.94
Test program 04 8,387 2:07.11
Test program 05 8,519 2:26.07
Test program 06 10,543 2:47.46
Test program 07 14,151 4:25.23
Test program multiplier 21,939 4:37.70
Test program 08 22,379 6:45.50
Test program 09 12,787 4:31.44
Test program 10 25,811 7:40.68
Test program 11 44,423 10:16.64
Test program 12 44,907 8:07.90
Test program 13 54,059 18:02.25
Test program 14 55,775 33:11.87
Test program 15 73,903 26:27.00
Test program 16 96,299 20:48.89
Test RAM (soft-BIST) 279,559 1:18:42.14

Table 1: Logic simulation results

Experiments were run on an Intel Pentium M working at
1.73 GHz while primary memory occupation for the SoC
memorization structure is about 200 MB.
The second test bench has been a circuit implementing the
Advanced Encryption Standard (AES) [3]. For this work we
propose the following self-test procedure:

1. Encrypt an initial message M0 into
M1=Encryption(M0)

2. Repeat n times : Mi+1 = Encryption(Mi)
3. Compare the final cipher Mn with the

expected one E(E(E(…..E(M)…)). If they
differ, the circuit is faulty otherwise it is
correct.

In other words, the result of an encryption is used as the
next test vector. We simulated the circuit with a particular
initial value and then we just let the circuit encrypts its own
output for 2500 clock cycles.
The circuit counts up to 10000 logic cells. We used a target
130nm CMOS technology provided by ST [4]. The
simulator needed 8 hours to fully simulate all the input
patterns. Using LIFTING fault simulator provided us the
possibilities to understand the minimum number of clock
cycles required to fully test the circuit (with commercial
tools we were not able to automate this process).

4. Conclusion

In this work we presented LIFTING (LIRMM Fault
Simulator), an open-source simulator able to perform both
logic and fault simulation for single/multiple stuck-at faults

and single event upset (SEU) on digital circuits described in
Verilog.
LIFTING provides several features for the analysis of the
fault simulation results, meaningful for research purposes.
Moreover, as an open-source tool, it can be customized to
meet any user requirements especially thanks to its objects
oriented architecture.
The source code of the tool can be downloaded by the
following internet address:
http://www.lirmm.fr/∼dinatale/LIFTING/

5. References

[1] A. Bosio, G. Di Natale, "LIFTING: a Flexible Open-

Source Fault Simulator", IEEE Asian Test
Symposium, 2008, pp. 35-40.

[2] D. Appello et al. “On the Automation of the Test Flow
of Complex SoCs”, IEEE VLSI Test Symposium,
2006, pp. 166-171

[3] M. Doulcier, M.L. Flottes, B. Rouzeyre, “AES-Based
BIST: Self-Test, Test Pattern Generation and Signature
Analysis”, 4th IEEE International Symposium on
Electronic Design, Test and Applications, 2008
(DELTA 2008), pp. 314-321.

[4] http://www.st.com

Acknowledgement

The authors would like to thank Paolo Bernardi from
Politecnico di Torino (Italy) for his help during the
development of the fault simulator.

