A Bosio
email: bosio@lirmm.fr

G Di

LIFTING: an Open-Source Logic Simulator

This work presents LIFTING, an open-source simulator able to perform both logic and fault simulation for stuck-at faults and single event upset (SEU) on digital circuits described in Verilog.

Introduction

From the test point of view, logic and fault simulations are very important steps. While logic simulation aims at simulate the behavior of a circuits, when some stimuli are applied, fault simulation is performed in order to evaluate the test quality by determining its fault coverage with respect to a given fault model. This work presents LIFTING (LIRMM Fault Simulator), an open-source simulator able to perform both logic and fault simulation for single/multiple stuck-at faults and single event upset (SEU) on digital circuits described in Verilog. LIFTING is based on an event-driven logic simulation engine and performs a fault injection fault simulation. Compared to existing tools, LIFTING provides several features for the analysis of the fault simulation results, meaningful for research purposes. Moreover, as an opensource tool, it can be customized to meet any user requirements especially thanks to its objects oriented architecture [START_REF] Bosio | LIFTING: a Flexible Open-Source Fault Simulator[END_REF]. Experimental results show how LIFTING has been exploited on field research. Eventually, execution time for large circuit simulations is comparable to the one of commercial tools. The Fault Simulator reads two mandatory files: the netlist of the circuit described in verilog (.v), and the input test sequence described in a proprietary format (.ts). An optional third input file is the list of faults that need to be simulated (.fl). In case this file is not specified, LIFTING creates the complete fault list w.r.t. the considered fault model (for instance, for the stuck-at fault model, it includes the entire possible faults of the circuit). Possible fault models are the single/multiple stuck-at and the Single Event Upset (i.e., bit flip in a storing cell, like flip flops, latches, memory elements). The results of the fault simulation are stored in the test report file. We exploit the benefits of the object oriented programming in order to build a very flexible and easy to customize tool.

Fault simulator architecture

Experimental results

In this section we present some experimental results obtained by using the proposed LIFTING fault simulation tool. The aim of these experiments is to show the benefits carried out by using LIFTING w.r.t. commercial tool. Two cases are here presented. The first one aims at provide the feasibility of LIFITNG in terms of required CPU time when performing logic simulation only. The second one highlights the fault simulation facility and show how LIFITNG could be used to obtain more information w.r.t. commercial tool. Let us introduce the two cases on which LIFTING has been used. As a first test bench we consider a complex SoC [START_REF] Appello | On the Automation of the Test Flow of Complex SoCs[END_REF] composed of three cores:

• an 8-bit microcontroller • a 64Kx8 bit SRAM memory • a 16x16 parallel multiplier.

Figure 2: SoC architecture

The architecture of the considered SoC is shown in Fig. 2. The result of the process is actually a simple fault-free simulation, but the usage of the extended symbolic algebra and the flexibility feature the tool provides enable accurate analysis for delay testing. The evaluated test set includes 18 self-test programs, 1 of them targeting 16x16 multiplier coverage and 1 executing a memory test (approaches like this one are normally referred soft-BIST). In the past, these test programs were generated and evaluated by means of commercial tools for the SA fault model. In other words, the result of an encryption is used as the next test vector. We simulated the circuit with a particular initial value and then we just let the circuit encrypts its own output for 2500 clock cycles.

Conclusion

In this work we presented LIFTING (LIRMM Fault Simulator), an open-source simulator able to perform both logic and fault simulation for single/multiple stuck-at faults and single event upset (SEU) on digital circuits described in Verilog. LIFTING provides several features for the analysis of the fault simulation results, meaningful for research purposes. Moreover, as an open-source tool, it can be customized to meet any user requirements especially thanks to its objects oriented architecture. The source code of the tool can be downloaded by the following internet address: http://www.lirmm.fr/∼dinatale/LIFTING/

Fig. 1

 1 Fig. 1 sketches the object oriented fault simulator architecture.

Figure 1 :

 1 Figure 1: Fault simulator architecture

Table 1 :

 1 Table I reports the test set characteristics and required logic simulation times. Logic simulation results

		Patterns	Simulation time
		(#)	(h:m:s.c)
	Test program 01	6,275	1:54.87
	Test program 02	6,671	2:08.55
	Test program 03	7,639	1:48.94
	Test program 04	8,387	2:07.11
	Test program 05	8,519	2:26.07
	Test program 06	10,543	2:47.46
	Test program 07	14,151	4:25.23
	Test program multiplier	21,939	4:37.70
	Test program 08	22,379	6:45.50
	Test program 09	12,787	4:31.44
	Test program 10	25,811	7:40.68
	Test program 11	44,423	10:16.64
	Test program 12	44,907	8:07.90
	Test program 13	54,059	18:02.25
	Test program 14	55,775	33:11.87
	Test program 15	73,903	26:27.00
	Test program 16	96,299	20:48.89
	Test RAM (soft-BIST)	279,559	1:18:42.14
	Experiments were run on an Intel Pentium M working at
	1.73 GHz while primary memory occupation for the SoC
	memorization structure is about 200 MB.	
	The second test bench has been a circuit implementing the
	Advanced Encryption Standard (AES) [3]. For this work we
	propose the following self-test procedure:	
	1. Encrypt an initial message M 0 into
	M 1 =Encryption(M 0)	
	2. Repeat n times : M i+1 = Encryption(M i)
	3. Compare the final cipher M n with the
	expected one E(E(E(…..E(M)…)). If they
	differ, the circuit is faulty otherwise it is
	correct.		

Acknowledgement

The authors would like to thank Paolo Bernardi from Politecnico di Torino (Italy) for his help during the development of the fault simulator.