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Abstract

With Next Generation Sequencers, sequence based transeigor epigenomic assays
yield millions of short sequence reads that need to be mabaeki on a reference genome.
The upcoming versions of these sequencers promise eveertighuencing capacities; this
may turn theread mappingtask into a bottleneck for which alternative pattern maighi
approaches must be experimented. We present an algorittintsamplementation, called
MPSCAN, which uses a sophisticated filtration scheme to match aadttrps/reads exactly
on a sequencavuPSCANcan search for millions of reads in a single pass througheheme
without indexing its sequence. Moreover, we show thasCAN offers an optimal average
time complexity, which is sublinear in the text length, miegrthat it does not need to exam-
ine all sequence positions. Comparisons with BLAT-likel$aand with six specialised read
mapping programs (like 8wTIE or ZOOM) demonstrate thatPSCANalso is the fastest al-
gorithm in practice for exact matching. Our accuracy andbbility comparisons reveal that
some tools are inappropriate for read mapping. Moreovempreide evidence suggesting
that exact matching may be a valuable solution in some regubimg applications. As most
read mapping programs somehow rely on exact matching puoegtb perform approximate
pattern mapping, the filtration scheme we experimented reesat useful in the design of
future algorithms. The absence of genome index gitesCANits low memory requirement
and flexibility that let it run on a desktop computer and agadtime-consuming genome
preprocessing.

1 Introduction

Next-generation sequencers (NGS), able to yield milliohsemuences in a single run, are
presently being applied in a variety of innovative ways teeas crucial biological questions:
to interrogate the transcriptome with high sensitivity, [tt) assay protein-DNA interactions at
a genome wide scale [2], or to investigate the open chromatiicture of human cells [3, 4].
Due to their wide applicability, cost effectiveness, andardemand in biological material,
these techniques become widespread and generate massiveetia[5]. These experiments
yield small sequence reads, also callags which need to be positioned on the genome. For
instance, one transcriptomics experiment delivereimillion different 27 bp tags, which were
then mapped back to the genome. Only the tags mapping to aaigenomic location served
to predict novel transcribed regions and alternative tapts [6]. Generally, further analyses
concentrate on those tags mapped to a unig_ue genomic Ing¢dtio



The goal of tag mapping is to find for each tag the best matchérgmic position. The
ELAND program, which belongs to the bioinformatic pipeline detied with the Solexa/lllumirfa
1G sequencer, reports first an exact matching location ifi@f@eund, and otherwise seeks for
locations that differ by 1 or 2 mismatches.

In the vast pattern matching literature, numerous guaeardaggorithms have been described
to match exactly or approximately a pattern in a téxt. @ read in a sequence), but only a few
have been implemented to process efficiently tens of thalssahpatterns [8]. In the context
of read mapping, tools must be able to process millions afs@ad thus, programs that exploit
a precomputed genome index often prove more efficient [9,11012]. Read mapping tools
offer possibilities of approximate matching up to a limitegmber of differences (generally a
few mismatches). However, they usually trade off a guasthéecuracy for efficiency [13, 10,
11, 12].

Another specificity of read mapping applications is thattfar processing considers only
reads mapping to a unique position in the genome [7]. Fromtesstal viewpoint, exact match-
ing of a 20 bp read is sufficient to identify a unique positiotie human genome [14, 15]. This
implies that, instead of approximately matching full ldmgeads, it may be as adequate to
match,i.e. read prefixes, exactly. This would allow to keep the 100% ez while still being
efficient. Thus, it is desirable to further investigate Wisgtexact set pattern matching algo-
rithms can be adapted to meet the requirements of read ntagpam instance, it remains open
whether an efficient pattern matching algorithm able to essduge read sets without indexing
the genome exists.

To perform the mapping task, the user chooses either fast&tlke similarity search
programs (BLAT [16], MEGABLAST [17], or SSAHA [18]), or specialised mapping tools
(ELAND, TAGGER[19], RMAP [11], SEQMAP[13], SOAP [10], MAQ [9], BowTIE [12], and
ZOOM [20]). ELAND is probably the most used one [6, 3, 2]. While mappers werigjaed
to process the huge tag sets output by NGS and allow only affewbstitutions and/or indels,
similarity search tools were intended to find local aligntseior longer query sequences, but
can be twisted to map tags [3, 21]. To speed up the search chttgories of tools follow a
filtration strategy that eliminates quickly non-matchirgions. The filtration usually requires
to match exactly or approximately a short piece of the secgi¢ng, BLAT or SEQMAP). All
mappers but one [20] use variants of PEX filter (as called in [8]), which consists in splitting
the tag ink+ 1 adjacent pieces, knowing that at least one will match éxadten a maximum
of k errors are allowed. Logically to accelerate the filtratiteps several of these tools exploit
an index of the genome’s words of lengii{or g-mers) [16, 18, 19, 12] which is stored on
disk, loaded in memory once before all searches, and rexj@icemputer intensive preprocess-
ing of the genome [12]. The construction of a human genomexinasts several hours even
on powerful servers [12]. Among mapping tools, ZOOM distirshes itself with a filtration
relying on spaced seeds. matching subsequences instead of pieces [20].

Here we present a computer programs AN, short for Multi-Pattern Scan, that is able to
locate multiple reads in a single pass through the seardweeace and study its average time
complexity (Section 2). In Section 3, we comparesCAN with the fastest of BLAST-like tools
and mapping programs in terms of speed and scalability ge &g sets, and also evaluate the
accuracy of similarity search tools for this task. We codelby discussing the practical and
algorithmical implications of our findings.

2 MPSCAN algorithm

MPSCAN, short for Multi-Pattern Scan, is a program for set patteataming: it searches si-

1As well as the version 2.0 of SOAP
2MPscaNis freely available for academic users and can be downloatleit p: / / ww. at gc- mont pel lier.fr/
npscan.
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multaneously in a text for a set of wordse( tags) on a single computer (no parallelisation, no
special hardware). To enable fast matching of large tagwetsombine diltration/verification
approach with a search procedure based on bitwise compayiand a compact representation
of the tag set. The tags are loaded in memory at the start aleckeid in a trie-like structure,
while the text is scanned on-the-fly by pieces.

The filtration strategy, which was explored for sets of up @®,000 patterns in [22], is
the clue ofpscaAN efficiency. Filtration aims at eliminating most positiohsit cannot match
any tag with an easy criterion. Then, verification checkstiviethe remaining positions truly
match a tagMPSCAN can handle a tag set in which tags differ in length. Howeber filtration
strategy works with tags of identical length; thus, it cesanternally a set in which all tags are
cut to the size of the smallest one (call this size The verification tests whether a complete
tag matches. Filtration has been extensively applied tedspp similarity search algorithms, as
in BLAST or BLAT [16]. MPSCANS criterion relies on the fact that a matching window must
share subwords of lengthwith the tags. Subwords of lengthare calledy-mers

For verification purposes we index the tag set with a trieT8]save space, we prune the trie
at nodes where the remaining suffixes can be stored in appabely 512 bytes. The suffixes are
sorted for easier access during the verification phase. fitree trie allows for efficient lookup
speed and memory usage with patterns sharing common predindshe remaining suffixes
are efficiently packed, without compromising efficiency.tNdiut pruning, the trie alone would
result in unacceptably huge memory usage, as a single tiie ta&kes up dozens of bytes in the
form of pointers alone.

2.1 Filtration strategy

Let us explain the filtration scheme with an example. Assursetaf 3 tags of length= 8:
{P1,P2,P3} = {accttggcgtcttggcaccttceg, and setg to 5. The overlapping 5-mers of each
pattern are given in Figure 2. For a text windewof length 8 to matchP;, we need that the
subword starting at positioin W matches thé&" g-mer of P, for all possible, and conversely.
Now, we want to filter out windows that do not match any tagh& subword starting at position
i in W does not match thé" g-mer of neitheiPy, P,, nor Ps, then we are suré/ cannot match
any of the tags. Thus, our filtration criterion to surely etiate any non-matching window is

to find if there exists a positionsuch that the previous condition is true.

From a set of tagsyiPSCAN builds a singleg-mer generalised pattern (Fig. 2). A gener-
alised pattern allows several symbols to match at a podjiiemin a PROSITE pattern where a
positione.g. [DENQ matches symbols D, E, N, or Q). However, here egcher is processed
as a single symbol. ThemjpscAN searches for this generalised pattern in the text with the
Backward Nondeterministic DAWG Matching (BNDaMgorithm [8], which efficiently uses bit-
parallelism. The basic idea of the algorithm is to recogn@&ersed factors (or substrings) of
the pattern when scanning a window backward. When the sdasuffix of a window matches
a prefix of the pattern, we store this position as a potentat sf the next window. When we
reach a point in the backward sscanning where the suffix afthéow is not a factor of the pat-
tern, we shift the window forward based on the longest reizaghprefix of the pattern except
for the whole pattern. If no prefix was recognized, the leraftie shift isl — g+ 1. To achieve
this efficiently, we initialize during preprocessing a béctorB[s| for eachg-mers, where the
i bit in the bit vector is one if the-mer appears in the reversed pattern in positioBuring
searching the algorithm maintains a state veEtarvhere thé™ bit is one if the scannegrmers
match the pattern starting at positiodWWhen we read a negrmers, the state vector is updated
as follows:

E=(E<1) &BJg ,

where< shifts the bits to the left and & performs a bitwise and of tlie bit vectors. If the first
bit in E is one, we have read a prefix of the pattern, and if all the biEs&re zero, the scanned
3



Li—l—-qg+1
2: whilei <n—q+1do

3 j=1last—1—-qgq+1

4. E =B[s]{s is thei" g-mer of the scanned sequence}

5. whiletruedo

6: if first bit in E is onethen

7 {the scanned window is a prefix of the pattern}

8: if j=1—q+ 1then

9: verify an occurrence; break

10: end if

11: last«— I —q+1—j

12: end if

13: if E=0then

14: break {the scanned window is not a factor of the pattern}
15: end if

16: E« (E<1)&B[s_j]{s_j is the(i — j)! g-mer of the scanned sequence}
17: j—j+1

18: end while

19: i+ i+last

20: end while

Figure 1: Pseudo code for the filtration phaseiefscAN.

suffix of the window does not match any factor of the patterigufe 1 gives the pseudo code
for the filtration phase.

2.2 Optimal average complexity of MPSCAN

For a single pattern, BNDM has a sublinear average complaiih respect to the text length
n; in other words, it does not examine all characters of the fexe combination of the BNDM
algorithm withg-mers was first studied in [22], where it was shown sublinékate we prove
that, if one sets the value gfrelatively to the total number of tags MPSCAN average time
complexity is not only sublinear with respectripbut optimal. Indeed, the average complexity
of the set pattern matching problem(¢nlog.(rl)/I) (cf. [23]) and we prove:

Theorem 1 The average time complexity ofPSCAN for searching r patterns of size | in a text
of length n over an alphabet of size cdgnlog,(rl)/I1) if g = ©(log,(rl)).

Proof: We want to prove that the average time complexityiescAN for searching pat-
terns of sizé in a text of lengtm over an alphabet of sizeis O(nlog,(rl)/1) if = ©(log.(rl)).
Practically,c equals 4 for DNA sequences.

Remember thatPSCAN processes the text in windows and it always reads the windows
from right to left. We will call a windowgoodif the lastg-mer of the window does not match
any pattern in any position. All other windows are calleatl In a good windowMPSCAN
reads only the lagf-mer and then shifts the window bby- g+ 1 characters. In a bad window
MPSCANreads up td characters and then shifts the window by at least one podiiot often
more than that).

For the purposes of the proof, the filtering phaseeftcAN is divided into subphases that
we define as follows. L&M,i=1,2,... be the windows scanned W ScAN. The first subphase
starts withW. Let Ws be the first window of a subphase. Only a good window can end a
subphase, but not all of them do. Indeed, the first good winddie series of windows indexed
with i := s+qk, i.e. W, gk, with k=0, 1,...15 the last window of that subphase. The next



{P1,P2,P3} = {accttggcgtcttggcaccttccad
@

2345678 2345678 2345678
Praccttggec PPgtcttggc Psaccttcca
ccttg tcttg ccttec
cttgog cttagog cttcec

ttggc ttggc ttcca

(b)

[ ; ][ccttg tettg, cettd|cttgg ctted[ttgge tteed
(©)
Figure 2: Filtration scheme ofPSCAN. (a) A set of 3 tags of length= 8. (b) The overlapping

5-mers starting at position 1 to 4 (resp. in light, dark, nakmery dark gray) of each tag. (c)
The generalised 5-mers pattern for the set of tags.

bad goodgood good bad badbad goodgood bad badgood ...
—_—

Figure 3: Dividing the search phase into subphases weher?. The windows, whose type
influences the division, are shown in boldface.

window starts a new subphase. It follows that each subploassgsts ofX groups ofg windows
and one good window, witK > 0 being a random variable. Each of tkeroups ofg windows
starts with a bad window and the rest- 1 windows may be of any type. Figure 3 shows an
example of dividing the windows into subphases.

The type of a window following a group af windows is independent of the first window
of the group, because the pattern has been shifted by ag@asitions between them and the
type of a window is determined solely by the lasmer of the window. Ifq <|—q+1, the
type of a window after a good window is also independent ofgibed windowi.e. the g-mer
determining the type of the next window contains only chiemacthat have not been previously
read. Because each subphase contains at least one goodwiineldext of length will surely
be covered afteO(n/(l — g+ 1)) subphases.

The probability that a randomrmer matches any of the patterns in any position is at most
rl /cY, because there ar? differentg-mers and at most of these can occur in the patterms (
patterns each of length. This is also the probability that a window is bad. In a baddaw
MPSCANreads the-mers from right to left. It surely stops when it encountegsraer that does
not match anyg-mer in any of the patterns. In the worst cagescAN reads the whole window
and compares it against all the patterns takingl ) time. Note that this a very pessimistic
estimate. In practise, verification is not triggered in a@tbwindows and even thewmpSCAN
compares the window against only a few patterns.

In a good windowMPSCAN readsq characters. Therefore in one subphase of filtering, the
number of characters read M sCANis less than

0

0(q) - P(X = 0)+'Z(0(Q)+i -q-0())-P(X =1)
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- o+ 3 o) px=i <o +a-0mm 3i(%).

This sum will converge ifl /c9 < 1 or equally ifq > log.(rl ) and then

s rl-cd

7 = O(Q)JFQ'O(”)W

|
(1-&)
If we chooseg > alog,(rl ), wherea > 1 is a constant, theef! > r2|2. Becausa > 1,c%—rl =

Q(cY) and therefore
1 _ (1
cd—rl " \cd)’

Now, the work done by the algorithm in one subphase takeghess

w00 (o)) -o(e ) o

if a> 2. There areO(n/(l — g+ 1)) = O(n/l) subphases and the average complexity of one
subphase i®(q). Overall the average case complexity of filteringiRSCAN s thus

ota)-+a-0) 315 ) =0t +a- ()

0(3-a) = O(nloge(rf)/m)

if q=alog,(rl) <1 —-qg+1 for a constana > 2. The conditiorg < | —q+ 1 is equivalent to
q < (I1+1)/2. Such ajcan be found if 2log(rl) < (I +1)/2 or equally ifr < ci(*1 /. —

The above proof predicts that a good choicedarould be 2log(rl ), but in practice a good
choice forg seems to be roughly lg¢rl ). If we analysed the complexity of bad windows and
verification more carefully, we could bring the theoretiegult closer to the practical one.

3 Comparison

The mpscAN algorithm offers a good theoretical average complexity,Hmw does it behave
in practice and compare to other solutions? We perform be@sis to investigat®PSCAN
behavior and to compare it to either ultra-fast similaridaich tools used for this task (BLAT,
MEGABLAST, and SSAHA) or to mapping tools. For each tool, we set itsipatars to let it
search only for exact matches (which is for instance imppbssvith MAQ). ELAND could not
be included in the comparison for we do not have a copy of tbgrnam.

Let us first recall some distinguishing features of thoselarnity search programs. They
were designed to search for highly similar sequences ftster BLAST and exploit this high
level of similarity to speed up the search. All are heurjdtiat are by design better and faster
than BLAST for searching exact occurrences of reads in amgen®EGABLAST proceeds like
BLAST: it scans the genome with the query read, which takas firoportional to the genome
size. BLAT and SSAHA both use an index of the genome that dscthre occurrence positions
of g-mers in the genome for some lengthThen, they search for adf mers of the query in the
index to determine which regions of the genome likely contaicurrences. This requires a time
proportional to the read size. Note tlgs the key parameter to balance between sensitivity and
speed. Hence, BLAT and SSAHA avoid scanning repeatedly tiiderngenome, but require to
precompute an index.



3.1 Speed and memory with respect to text length

First, we compared the running timessofscaN and of all similarity search programs with a set
of 200 K-tags and texts of increasing length (Fig. 6, timeoig $cale). For all programs except
BLAT, the running time increases less than linearly withtérd length (but BLAT follows the
same trend above 50 Mbps). For instaneesCANtakes 11 sec to search in 10 Mbps of Human
chromosome 1, but only.6 sec in 247 Mbps: a 5-fold increase of the running time for a 25
fold increase in length. This illustrates well the sublingae complexity ofuPSCAN (Th. 1),
which proves to be faster than the reference methods. Thevlmehs logical: MEGABLAST
andMPscAN first build their search engine, and then scan the text byegie@he time spent
for initialisation of the engine is better amortised witmdger texts. This also explains why the
memory used byiPSCAN s independent of the text length.

Second, we measured the time and memory footprint needei@ g AN and mapping tools
to search the complete human genome with one million 27 b @ OM requires 17 minutes
and 09 GigabytesrMAP takes 30 min and.6 Gb,seQMAPperforms the task in 14 min with 9
Gb, BowTIE runs in> 6 min with 14 Gb andvPSCAN needs< 5 min using 03 Gb. MPSCAN
runs faster than BwTIE although the latter uses a precomputed index, and it is thmes faster
thanseEQMARP, the third most efficient tool.

3.2 Scalability with respect to number of patterns

The central issue is the scalability in terms of number o$td@ investigate this issue, we plot
their running times when searching for increasing tag $ets4). The comparison with simi-
larity search tools is shown in Figure 4a. BLAT is by far thevebst tool, while MEGABLAST’s
time increases sharply due an internal limitation on theimaknumber of tags searched at
once, which forces it to perform several scans. SSAHA takBsflvantage of its index with
large pattern sets, and becomes 10 times faster the@ABLAST. However,MPSCAN runs
always faster than BLAT, MGABLAST, and SSAHA. Especially for more than 400 K-tags, it
outperforms other programs by almost an order of magnit@@es(for 700 K-tags instead of 78
for SSAHA, 670 for MEGABLAST and 4234 s for BLAT). Importantly, the times needed by
other programs increase more sharply with the number oftteagsthat ofuPSCAN, especially
after 100K, auguring ill for their scalability beyond a riolh tags.

Beyond that, we consider specialised mapping tools whobawier is illustrated in Fig-
ure 4b. For this, we used.®M 27 bp RNA Polymerase Il ChiP-seq tags sequenced in an
erythroleukemia cell line (HK652, GEGSM32593% and took increasing subsets every million
tags. All tools exhibit a running time that increases ligavith the number of tags: a much
better scalability than similarity search tools. Compawedimilarity search tools, all mappers
behave similarly, probably due to the resemblance of thgiation algorithm.

Both BowTIE and SOAPv2 use a Burrows-Wheeler-Transform index with a similar ¢xac
matching algorithm, but it benefits more®/TIE than SOAPY 2, making BOwTIE the faster of
mapping tools. This emphasises how much implementatiaessmfluence efficiency. Among
non-index based programs, ZOOM exhibits a behavior clogieatioof BowTIE above 3M tags,
showing that ultrafast running times are not bound to anxnd®r moderate tag setsc(4M
tags)MPSCAN is two to four times faster than ZOOM, its fastest competitothis category.
Even if MPSCAN'S running time increases from 4 to 5M tags due to a multipiccaby 5 of
the number of matches, it remains the fastest of all tool®fact matching. This shows that
exact set pattern matching can be highly efficient even witlogenome index and answers
the question asked in the introductionPScANSs filtration strategy is logically sensitive to the
ratio #reads/49, which suggests that using longer computer-words (on 6g+bicessors) will
improve its efficiency and scalability.



3.3 Accuracy

ThempPscAN algorithm is guaranteed 100% accurate (and extensivetiasesshown that the
MPSCAN program also is): it reports all patterns’ occurrences a@ensitive) and only these
(100% selective) [22, 8].

Despite the availability of specialised mapping tools,udapheuristic similarity search pro-
gram like BLAT are still used for read mapping [21], for thegndind distant alignments. How-
ever to our knowledge, their accuracy has never been aslsiesttgs context. We performed a
thorough comparison of their exact matching capacity,esinshould be the easiest part of the
task. Our results show it is a complex matter: especiallyr sensitivity is influenced by the
numbers of occurrences, the relative length of seeds cadparmatches, the parameters set
for both building the index and searching.

While all tools (SSAHA, BLAT, and MGABLAST) achieve their best accuracy for long
patterns (for> 60 bp,i.e. when the seed is guaranteed to fall in each occurrencenatiumter
problems finding short patterns 30 bp). Index and parameters must be adapted to gain sensi-
tivity at the expense of time and flexibility (one cannot eipthe same index for different tag
lengths), which is an issue for digital transcriptomic artdfEseq data< 25 bp in [1, 3, 2]).
For instance, with 30 bp patterns, all are less than 50% tsensviith pattern sets> 10,000
(Fig. 4). For both parameter sets used with BLAT, its sevigitremains below B whatever
the tag length. The number of tags also has a negative infuemthe sensitivity of similarity
search tools (data not shown). However, it is logical thatilairity search tools have limited
accuracy, since they were not designed for exact patterchimat

The accuracy of mapping tools that allow both exact and agprate matching should be
evaluated globally and their dependence to several paeasngag length, error types, tag num-
ber, genome length) should be investigated. Indeed, therlymag definitions of a read best
match, the strategies for finding it, as well as the notionpgraximation differ among tools,
hampering this comparison. This is beyond the scope of thgep Nevertheless, we have
analysed the accuracy ofLEND. Although, we do not have access to the program, some of
ELAND’s raw results can be downloaded from public repositories GEO. EAND searches
for exact and approximate matches with? mismatches. We analysed the subset of mapped
tags in the EAND output of the NRSF ChlP-seq data set [2].ARID finds only approximate
matches for 442766 tags, whileuPsSCAN locates an exact match for &¥1 of these tags (13%
of them).

Such an inaccuracy may impact the final positioning of prodéding or DNA modification
sites. This comparison illustrates the difficulty of seamgtor large tag sets in sequences and
the benefit of using a guaranteed pattern matching algoffibhnhis task.

3.4 Relevance of exact vs approximate mapping

Currently, new sequencers yield short tags. (< 30 bp) in Digital Gene Expression, RNA-
Seq, and ChlP-seq experiments (14, 20, and 27 bp in [1, 3,spectively). Technological

developments aim at increasing the tag length to improvetbbability of a read to match a
unique genomic location. However, the error probabiligoehcreases with tag length [21, 15].
Altogether, the tag length has an opposite influence on tblegtilities of a tag to be mapped
and to be mapped at a unique location.

To evaluate the relevance of exact versus approximate imgtckie did the following exper-
iment with a Pol-Il ChlP-seq set of 34 bp tags (GEGM325933. If one maps withMPSCAN
the full length tags, 86% remain unmapped and 11% are unjigqunapped. With at most two
mismatches, EAND finds 14% of additional uniquely mapped tags (categories hl 32),
while mapping the 20 bp prefix of each tag witPSCAN allows to map 25% of all tags at
unigue positions (14% more sites than with full length tags)

This result suggests that optimising the final output of aueeqe census assay in terms
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of number of uniquely mapped locations is a complex issugaréximate mapping is seen as
a solution to detect more genomic sites, but it often maps &gnultiple locations [24]. In
fine, exact matching may turn out to be a relevant alternatiagegy compared to approximate
matching. Thus, the proposed filtration algorithm may bduisie read mapping applications,
especially if one considered mapping a substring of themalgeads. A more in-depth investi-
gation of this issue is exposed in [15].

4 Discussion

Key biological questions can be investigated at genome sdéh new sequencing technologies.
Whether in genomic, transcriptomic or epigenomic assaykions of short sequence reads
need first to be mapped on a reference genome. This is a campsatep in the bioinformatic
analysis. We presented an efficient programRscAN, for mapping tags exactly on a genome,
evaluated its relevance for read mapping, and comparetivtalasses of alternative solutions:
i) ultrafast similarity search tools and ii) specificallysittned mapping tools. We summarise
below some valuable evidence and take-home messages blguiis study.

Similarity search tools are inappropriate for mapping éyashort patterns< 40 bp, since
their sensitivity remains too low<( .5 for 30 bp long tags). Whatever the number of seeds
required to examine a hit, BLAT is the least sensitive amdwegtésted similarity search tools.
Its sensitivity never reaches@) even with patterns up to 100 bp. In other words, similarity
search tools miss many exact matching locations, which @nsidered to be the most secure
locations in many applications [3, 2]. In general, the doiits of similarity search tools is not
satisfactory for tag mapping: both the speed of processidgtlae sensitivity suffer when the
number of tags becomes large.

Mapping tools are adequate for this task. They enable thetasmap up to millions of
tags fast on the human genome, and scale up well. Nevershel®rences in speed can be
important:e.g, an order of magnitude for mapping 2M tags betws@sCcAN and SOAPv2.

If most algorithms are similar, from the user viewpoint thiegrams are not equivalent: neither
in flexibility, ease of use, speed, options, nor in accuracy.

From the algorithmic viewpoint, our results suggest thdeiing is not required to perform
exact mapping of tags on long sequences. In the class obsitypitearch tools, the superiority
in speed of SSAHA compared to BLAT andeMABLAST is due to its index, but also to its
lack of verification, which induces a poor specificity. In @amparison of seven programs (the
largest we are aware of), BVTIE seems the fastest among mapping tools, but never beats the
performance oMPSCANfor exact mapping.

ZOOM, which exploits spaced seeds in its filtration schememares favorably in speed
to tools using the splitting strategy or PEX filter, suclsa®Map, RMAP, SOAP. This suggests
the superiority of spaced seeds. However, this superibatya price in terms of flexibility:
sets of spaced seeds are specifically designed for a ceagilerigth and maximum number
of mismatches, and different sets corresponding to diffeparameter combinations are hard
coded in ZOOM. For instance, a set of 4 spaced seeds of weBglvad manually designed to
search for 33 bp tags [20]. Hence, adaptation of ZOOM to a re@upsrequires the design of
specific seeds, which is a theoretically hard and pracyichficult problem [25, 26, 27]. The
present limitation of ZOOM to patterns up to 64 bp is certathlie to this bottleneck.

In conclusion, we presented an exact set pattern matchagggm mpPSCAN, which is based
on a filtration scheme that had never been applied to readim@ppur current implementation
has pushed the limit on the number of tags by two orders of rfhadmg compared to previ-
ous pattern matching algorithms [8, 22]. We conducted thgihocomparisons with similarity
search algorithms and mapping tools in term of speed andlstigl. Our experiments revealed
that BLAT-like tools are inadequate for short read mappionthkin terms of scalability and
of sensitivity, which, to our knowledge, hasgnever been rigbbefore. From the algorithmic



viewpoint, we demonstrated the average running time opitiynved MPSCAN, which turns out to
be very efficient in practice. Compared to mapping tools facé mappingMPSCAN runs faster
and scales well: it can even compete in efficiency with prograsing a sophisticated genome
index, like BOowTIE. Since it uses no indexjPSCAN combines flexibility, low memory foot-
print, and high efficiency, while avoiding a time consumingdeéx precomputation (cf. building
times in [12]). Finally, we provide evidence that exact nhiaitg approaches can be relevant for
read mapping applications, especially in the perspecfil@enger reads. It remains open to find
filtration strategies that achieve efficient “near exactppiag.

With future generation of sequencers, which promise fulithereases in sequencing capac-
ity, read mapping may become a bottleneck. Further res@athioretical and practical pattern
matching will be needed to tackle this challenging question
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Figure 4: Evaluation of scalability. Search times on chreome 1 (247 Mbp) for increasing
tag sets. (a) Comparison with similarity search tools. &eéimes of BLAT, MEGABLAST,
SSAHA, MPSCANIn seconds for 21 bp LongSAGE tags, for sets of 10, 50, 100, 200, 400,
and up to 700 Kilo-tags (K-tags). Both axes have logarithssigles. The curve afirSCAN
running time is almost flat: for instance doubling the tagfsain 200 to 400 K-tags yields a
small increase from.b to 64 s Its time increases in a sublinear fashion with the number o
tags. For all other tools, the increase of thé tag set giwestd a proportional growth of the
running time.E.g, SSAHA needs 23 s for 200 K-tags and 54 s for 400 K-tags. (b)@2oison
with mapping tools: Search times RMAP, SEQMAP, SOAP (v1 & v2), ZOOM, BOwTIE and
MPSCAN in seconds (log scale) for increasing subsets of 27 bp CadRegys. All tools behave
similarly and offer acceptable scalabiliypscAN remains the most efficient of all and can be
10 times faster than tools likeeQMAP or RMAP. Times do not include the index construction
time.
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Figure 5: Sensitivity of MGABLAST, BLAT, and SSAHA compared tmPSCAN as the per-
centage of found matches after filtering. Influence of tagtleion sensitivity (withr = 10,000
tags). BLAT-m1 and BLAT-m2 gives BLAT’s sensitivity whendfiiltration criterion asks for
one or two seed matches, respectively; BLAT-m1 found necégsnore matches than BLAT-
m2. However, here their curves are superimposed. The séysitf similarity search tools is
low (< 0.5) for tags< 30 bp and reaches a maximum foreRABLAST and SSAHA at> 60

bp.
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Figure 6: Search times of BLAT, EGABLAST, SSAHA, MPSCAN in seconds for 200 Kilo-
tags (LongSAGE tags of 21 bp), on increasing pieces of lehgii®, 50, 100, and 247 Mbp of
Human chromosome 1. Both axes have logarithmic scales eTdweses illustrate the sublinear
increase of time with respect to text length for all toolsepicBLAT, and the superiority of

MPSCAN N running time. 1
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