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Abstract. We start a general study of counting the number of occur-
rences of ordered patterns in words generated by morphisms. We consider
certain patterns with gaps (classical patterns) and that with no gaps
(consecutive patterns). Occurrences of the patterns are known, in the
literature, as rises, descents, (non-)inversions, squares and p-repetitions.
We give recurrence formulas in the general case, then deducing exact
formulas for particular families of morphisms. Many (classical or new)
examples are given illustrating the techniques and showing their interest.
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1 Introduction

In algebraic combinatorics, an occurrence of a pattern p in a permutation π is a
subsequence of π (of the same length as that of p) whose elements are in the same
relative order as those in p. For example, the permutation π = 536241 contains
an occurrence of the pattern p = 2431. Babson and Steingŕımsson introduced
generalized patterns where two adjacent elements of a pattern must also be
adjacent in the permutation [2].

In combinatorics on words, an occurrence of a pattern p in a word u is a
factor of u having the same shape as p. For example the word u = abaabaaabab
contains an occurrence of the pattern p = ααβααβ.

Burstein [4] realized a “mixing” of these two notions by considering ordered
alphabets. An occurrence of an (ordered) pattern in a word is a factor or a
subsequence having the same shape, and in which the relative order of the letters
is the same as that in the pattern. In [5] one computed the number of occurrences
of many of ordered patterns in the Peano words. In the present paper we start
a general study of counting the number of occurrences of ordered patterns in
words generated by morphisms.



2 Preliminaries

2.1 Definitions and notations

We refer to [7] for standard definitions in combinatorics on words.

Let n be a non-negative integer. The incidence matrix of fn is the k × k
matrix M(fn) = (mn,i,j)1≤i,j≤k where mn,i,j is the number of occurrences of
the letter ai in the word fn(aj), i.e., mn,i,j = |fn(aj)|ai

.

Property 1 For every n ∈ IN, M(f)n = M(fn).

2.2 Ordered patterns

Let A be a totally ordered alphabet and let ℵ be the ordered alphabet whose
letters are the first n positive integers in the usual order (thus ℵ = {1, 2, . . . , n}).

An ordered pattern is any word over ℵ∪{#}, # 6∈ ℵ, without two consecutive
#. If a pattern contains at least one #, not at the very beginning or at the very
end, it is an ordered pattern with gaps; otherwise it is an ordered pattern with no
gaps. Moreover, in this paper the four ordered patterns u, #u, u#, and #u# are
considered to be the same (but of course u#u is not the same pattern as uu). In
particular, if x is a word over ℵ, we will write (x#)ℓ or (#x)ℓ to represent the
ordered pattern x#x# · · ·#x containing l occurrences of the word x.

A word v over A contains an occurrence of the ordered pattern

u = u1#u2# · · ·#un,

ui ∈ ℵ+ and n ≥ 1, if v = w0v1w1v2w2 · · ·wn−1vnwn and there exists a literal
morphism f : ℵ∗ → A∗ such that f(ui) = vi, 1 ≤ i ≤ n, and if x, y ∈ ℵ, x < y ⇒
f(x) < f(y). Thus the word v contains an occurrence of the ordered pattern u
if v contains a subsequence v′ which is equal to f(u′) where u′ is obtained from
u by deleting all the occurrences of #, with the additional condition that two
adjacent (not separated by #) letters in u must be adjacent in v. The number
of different occurrences of u as an ordered pattern in v is denoted by |v|u.

Example. Let A = {a, b, c, d, e, f} with a < b < c < d < e < f. The word
v = eafdbc contains one occurrence of the ordered pattern 2#31, namely the
subsequence efd (|e afd b c|2#31 = 1). In v, the ordered pattern 2#3#1 occurs in
three occurrences: efd, ef b, and efc (|e afd b c|2#3#1 = 3); the ordered pattern
231 does not occur in v (|e afd b c|231 = 0).

3 Ordered patterns with gaps and morphisms

Let k be an integer (k ≥ 2) and A the k-letter ordered alphabet A = {a1 < a2 <
· · · < ak}. Let f be any morphism on A: for 1 ≤ i ≤ k, f(ai) = ai1 . . . aipi

with
pi ≥ 0 (pi = 0 if and only if f(ai) = ε).



3.1 Inversions, non-inversions, and repetitions with gaps of fn

In what follows we are interested in some particular forms of ordered patterns.
In accordance with permutations theory, an inversion (resp. non-inversion) is
an occurrence of the ordered pattern 2#1 (resp. 1#2). Repetitions with gaps of
one letter are occurrences of the ordered patterns (1#)p, p ≥ 1.

Inversions and non-inversions Let n be a non-negative integer.
The vector RG(fn) of non-inversions (resp. vector DG(fn) of inversions) of

fn is the k vector whose i-th entry is the number of occurrences of the ordered
pattern 1#2 (resp. 2#1) in the word fn(ai), i.e.,

RG(fn) = (|fn(ai)|1#2)1≤i≤k DG(fn) = (|fn(ai)|2#1)1≤i≤k.

Our goal is to obtain recurrence formulas giving the entries of RG(fn+1) and
DG(fn+1). Since fn+1 = fn ◦f = f ◦fn, we have two different ways to compute
RG(fn+1) and DG(fn+1).

Let ℓ be an integer, 1 ≤ ℓ ≤ k. Either |fn+1(aℓ)|1#2 (resp. |fn+1(aℓ)|2#1)
will be obtained from the word f(aℓ) and the entries of RG(fn) (resp. DG(fn))
(see 1. below), or it will be computed from the values of RG(f) (resp. DG(f))
and fn(aℓ) (see 2. below).
1. From fn+1 = fn ◦ f :
Since f(aℓ) = aℓ1 . . . aℓpℓ

, the number of occurrences of the ordered pattern 1#2

in fn+1(aℓ) = fn(f(aℓ)) = fn(aℓ1 . . . aℓpℓ
) is obtained by adding two values:

• The number of occurrences of the ordered pattern 1#2 in each fn(aℓi
),

1 ≤ i ≤ pℓ. Since the ℓ-th column of the incidence matrix of f indicates which
letters appear in f(aℓ) (and how many times), this number is obtained by mul-
tiplying the vector RG(fn) by the ℓ-th column of M(f), i.e., it is equal to
∑k

t=1 |f
n(at)|1#2 · m1,t,ℓ.

• The number of occurrences of the ordered pattern 1#2 in each of the
fn(aℓi

aℓj
), 1 ≤ i < j ≤ pℓ, where the letter corresponding to 1 is in fn(aℓi

) and
the letter corresponding to 2 is in fn(aℓj

). In what follows we will call such an
occurrence of 1#2 in fn(aℓi

aℓj
) an external occurrence of the ordered pattern

1#2 in fn(aℓi
aℓj

), and denote it |fn(aℓi
aℓj

)|ext
1#2.

The value of |fn(aℓi
aℓj

)|ext
1#2 is obtained by adding, for all the integers r,

1 ≤ r ≤ k − 1, the product of the number of occurrences of the letter ar in
fn(aℓi

) (|fn(aℓi
)|ar

) by the number of occurrences of all the letters of fn(aℓj
)

greater than ar (|fn(aℓj
)|as

, r + 1 ≤ s ≤ k). This gives

k−1
∑

r=1

(mn,r,ℓi
·

k
∑

s=r+1

mn,s,ℓj
).

The number of external occurrences of 1#2 in all the fn(aℓi
aℓj

), 1 ≤ i < j ≤
pℓ, is thus given by

∑

1≤i<j≤pℓ

|fn(aℓi
aℓj

)|ext
1#2 =

∑

1≤i<j≤pℓ

(

k−1
∑

r=1

(mn,r,ℓi
·

k
∑

s=r+1

mn,s,ℓj
)).



2. From fn+1 = f ◦ fn.
Let qℓ = |fn(aℓ)| : fn+1(aℓ) = f(fn(aℓ)) = f(aℓ′

1
. . . aℓ′qℓ

). Here the number of

occurrences of the ordered pattern 1#2 in fn+1(aℓ) is obtained by adding:
• The number of occurrences of the ordered pattern 1#2 in each fn(aℓ′

i
),

1 ≤ i ≤ qℓ. As above it is equal to
∑k

t=1 |f(at)|1#2 · mn,t,ℓ.
• The number of external occurrences of the ordered pattern 1#2 in each of

the f(aℓ′
i
aℓ′

j
), 1 ≤ i < j ≤ qℓ. As above, this number is given by

∑

1≤i<j≤qℓ

|f(aℓ′
i
aℓ′

j
)|ext

1#2 =
∑

1≤i<j≤qℓ

(

k−1
∑

r=1

(m1,r,ℓ′
i
·

k
∑

s=r+1

m1,s,ℓ′
j
)).

The same reasoning applies for calculating the entries of DG(fn+1), replacing
1#2 by 2#1 and “greater” by “smaller”. Thus we have the following.

Proposition 1. For each letter aℓ ∈ A, let pℓ and qℓ be such that f(aℓ) =
aℓ1 . . . aℓpℓ

and fn(aℓ) = aℓ′
1
. . . aℓ′qℓ

. Then, for all n ∈ IN,

|fn+1(aℓ)|1#2 =
∑

1≤i<j≤qℓ

(

k−1
∑

r=1

(m1,r,ℓ′
i
·

k
∑

s=r+1

m1,s,ℓ′
j
))+

k
∑

t=1

|f(at)|1#2 ·mn,t,ℓ, (1)

|fn+1(aℓ)|2#1 =
∑

1≤i<j≤qℓ

(

k
∑

r=2

(m1,r,ℓ′
i
·

r−1
∑

s=1

m1,s,ℓ′
j
))+

k
∑

t=1

|f(at)|2#1 ·mn,t,ℓ . (2)

Of course, the analysis we have done above could be realized to compute
more complex ordered patterns with gaps, such as 1#23, 1#2#3, · · · The only
difficulty is to adapt the computation of external inversions and non-inversions.

Repetitions of one letter Let n be a non-negative integer and p a positive
integer. The vector of p-repetitions with gaps of one letter of fn is the k vector
whose i-th entry is the number of occurrences of the ordered pattern (1#)p in
the word fn(ai), i.e., RpG(fn) = (|fn(ai)|(1#)p)1≤i≤k. The following is obvious.

Proposition 2. For each letter aℓ ∈ A and for all n ∈ IN,

|fn(aℓ)|(1#)p =

k
∑

t=1

(

mn,t,ℓ

p

)

. (3)

3.2 Some examples in the binary case

The Thue-Morse morphism The Thue-Morse morphism µ ([10],[9],[8]) is
defined by µ(a1) = a1a2, µ(a2) = a2a1. It generates the famous Thue-Morse
sequence t = µω(a1) which has been widely studied.



For every positive integers n, the incidence matrix of µn is

M(µn) =

[

2n−1 2n−1

2n−1 2n−1

]

.

Thus, from equations (1), (2), and (3) we obtain

|µn+1(a1)|1#2 = |µn+1(a2)|1#2 = 22(n−1) + |µn(a1)|1#2 + |µn(a2)|1#2,

|µn+1(a1)|2#1 = |µn+1(a2)|2#1 = 22(n−1) + |µn(a1)|2#1 + |µn(a2)|2#1,

|µn(a1)|(1#)p = |µn(a2)|(1#)p = 2 ·
(

2n−1

p

)

.

Since RG(µ) =
[

1 0
]

and DG(µ) =
[

0 1
]

, Proposition 1 gives the following
well known result.

Corollary 1. For any integer n ≥ 2,

RG(µn) = DG(µn) =
[

22n−3 22n−3
]

and RpG(µn) =
[

2 ·
(

2n−1

p

)

2 ·
(

2n−1

p

)

]

.

The Fibonacci morphism The Fibonacci morphism ϕ is defined by ϕ(a1) =
a1a2, ϕ(a2) = a1. It generates the well known Fibonacci sequence f = ϕω(a1)
which is the prototype of a Sturmian word (see, e.g., [7]).

Let (Fn)n≥−1 be the sequence of Fibonacci numbers: F−1 = 0, F0 = 1,
Fn = Fn−1 + Fn−2 for n ≥ 1. The following property of Fibonacci numbers will
be useful below.

Property 2 For every positive integer n, Fn ·Fn−2 = F 2
n−1 +

{

1 if n is even,
−1 if n is odd.

An easy computation gives that, for every positive integer n, the incidence

matrix of ϕn is M(ϕn) =

[

Fn Fn−1

Fn−1 Fn−2

]

.

The vector of non-inversions of ϕ is RG(ϕ) =
[

1 0
]

. Moreover equation (1)
(see Property 2) gives, for n ≥ 1

|ϕn+1(a1)|1#2 = mn,1,1 · mn,2,2 + |ϕn(a1)|1#2 + |ϕn(a2)|1#2

= Fn · Fn−2 + |ϕn(a1)|1#2 + |ϕn(a2)|1#2

= F 2
n−1 + |ϕn(a1)|1#2 + |ϕn(a2)|1#2 +

{

1 if n is even,
−1 if n is odd

The vector of inversions of ϕ is DG(ϕ) =
[

0 0
]

. Moreover, equation (2) gives,
for n ≥ 1

|ϕn+1(a1)|2#1 = mn,2,1 · mn,1,2 + |ϕn(a1)|2#1 + |ϕn(a2)|2#1

= F 2
n−1 + |ϕn(a1)|2#1 + |ϕn(a2)|2#1.

Now, |ϕn+1(a2)|1#2 = |ϕn(a1)|1#2 and |ϕn+1(a2)|2#1 = |ϕn(a1)|2#1 because
ϕ(a2) = a1.

From this we obtain formulas to compute, for every n ≥ 0, |ϕn+2(a1)|1#2

and |ϕn+2(a1)|2#1 from the sequence of Fibonacci numbers.



Corollary 2. For every integer n ≥ 0,

|ϕn+2(a1)|2#1 =
∑n

p=0 FpF
2
n−p ,

|ϕn+2(a1)|1#2 = |ϕn+2(a1)|2#1 + Fn +

{

1 if n is odd,
−1 if n is even.

Regarding repetitions of one letter, RpG(ϕ) =
[

(

1
p

)

+
(

1
p

) (

1
p

)

]

and, for n ≥ 0,

the vector RpG(ϕn+2) is obtained from equation (3).

Corollary 3. For any integer n ≥ 0, RpG(ϕn+2) =
[

(

Fn+2

p

)

+
(

Fn+1

p

) (

Fn+1

p

)

+
(

Fn

p

)

]

.

4 A particular family of morphisms

Let k be an integer (k ≥ 2) and A the k-letter ordered alphabet A = {a1 < a2 <
· · · < ak}. In this section we are interested in morphisms f having the following
particularities:

1. there exists a positive integer m such that |f(a1)|ai
= m, 1 ≤ i ≤ k ,

2. there exists a positive integer d such that |f(a2 . . . ak)|ai
= d, 1 ≤ i ≤ k ,

3. for every i, j, 1 ≤ i, j ≤ k, |f(aiaj)|
ext
1#2 = |f(ajai)|

ext
1#2.

(Conditions 1. and 2. are particular cases of the more general situation, consid-
ered in Theorem 1 below, in which the alphabet A is partitioned in sets A1, A2,
. . ., An such that, for each Ai, the sum of the number of occurrences of each
letter in the images of letters of Ai is the same.) In this case we are able to give
direct formulas to compute |fn+1(a1)|1#2 and others from m, d, and n.

Proposition 3. For every positive integer n,

|fn+1(a1)|1#2

= m(d + m)n−1
k
∑

i=1

|f(ai)|1#2 + [m(d+m)n−1−1]m(d+m)n−1

2

k
∑

j=1

|f(ajaj)|
ext
1#2

+m2(d + m)2n−2
∑

1≤i<j≤k

|f(aiaj)|
ext
1#2 ,

|fn+1(a2 . . . ak)|1#2

= d(d + m)n−1
k
∑

i=1

|f(ai)|1#2 + [d(d+m)n−1−1]d(d+m)n−1

2

k
∑

j=1

|f(ajaj)|
ext
1#2

+d2(d + m)2n−2
∑

1≤i<j≤k

|f(aiaj)|
ext
1#2 .

Now the same reasoning can be applied for

|fn+1(a1)|2#1 and |fn+1(a2 . . . ak)|2#1,

because of the following obvious property.

Property 3 Let f be a morphism on A. For every non-negative integer n, and
for every integers i, j, 1 ≤ i, j ≤ k, |fn(aiaj)|

ext
1#2 = |fn(ajai)|

ext
2#1.



Thus, using equation (2), we have the following.

Proposition 4. For every positive integer n,

|fn+1(a1)|2#1

= m(d + m)n−1
k
∑

i=1

|f(ai)|2#1 + [m(d+m)n−1−1]m(d+m)n−1

2

k
∑

j=1

|f(ajaj)|
ext
2#1

+m2(d + m)2n−2
∑

1≤i<j≤k

|f(aiaj)|
ext
2#1 ,

|fn+1(a2 . . . ak)|2#1

= d(d + m)n−1
k
∑

i=1

|f(ai)|2#1 + [d(d+m)n−1−1]d(d+m)n−1

2

k
∑

j=1

|f(ajaj)|
ext
2#1

+d2(d + m)2n−2
∑

1≤i<j≤k

|f(aiaj)|
ext
2#1 .

The previous reasoning can of course be applied if conditions 1. and 2. are
verified for any partition of the alphabet (in Propositions 3 and 4 the partition is
in two sets A = {a1}∪ {a2 . . . ak}). Then we obtain the following general result.

Theorem 1. Let k be an integer (k ≥ 2), and A the k-letter ordered alphabet
A = {a1 < a2 < . . . < ak}. Let f be a morphism on A fulfilling the following
conditions:

– there exist a positive integer p and a set of p positive integers {m1, . . . , mp}
such that A can be partitioned into p subsets A1, . . . , Ap with

∑

a∈Aℓ
|f(a)|ai

=
mℓ, 1 ≤ i ≤ k,

– for every i, j, 1 ≤ i, j ≤ k, |f(aiaj)|
ext
1#2 = |f(ajai)|

ext
1#2.

Let M = m1 + . . . + mp and let u = 1#2 or u = 2#1. For every integer n ≥ 1
and for each Aℓ, 1 ≤ ℓ ≤ p,

∑

a∈Aℓ

|fn+1(a)|u = mℓM
n−1

k
∑

i=1

|f(ai)|u + (mℓMn−1−1)mℓMn−1

2

k
∑

j=1

|f(ajaj)|
ext
u

+m2
ℓM

2n−2
∑

1≤i<j≤k

|f(aiaj)|
ext
u .

5 Examples

In this section we give a series of examples of application of Theorem 1.

5.1 The Thue-Morse morphism

The Thue-Morse morphism (see Section 3.2) is the simplest example of a mor-
phism fulfilling conditions 1. to 3. above. Indeed m = d = 1, and

|µ(a1a2)|
ext
1#2 = |a1a2a2a1|

ext
1#2 = 1 = |a2a1a1a2|

ext
1#2 = |µ(a2a1)|

ext
1#2,

|µ(a1a1)|
ext
1#2 = |µ(a2a2)|

ext
1#2 = 1. Since |µ(a1)|1#2 = |µ(a2)|2#1 = 1, and

|µ(a1)|2#1 = |µ(a2)|1#2 = 0, we obtain from Propositions 3 and 4 that

|µn+1(a1)|1#2 = |µn+1(a1)|2#1 = |µn+1(a2)|1#2 = |µn+1(a2)|2#1 = 22n−1.



5.2 The Prouhet morphisms

Let k ≥ 2, and let A be the k-letter ordered alphabet A = {a1 < · · · < ak}. The
Prouhet morphism πk ([9]) is defined on A by πk(ai) = aiai+1 . . . aka1 . . . ai−1, 1 ≤
i ≤ k. As above we obtain a corollary of Theorem 1.

Corollary 4. For every i, 1 ≤ i ≤ k, and for every positive integer n,

|πn+1
k (ai)|1#2 =

(k − 1)kn

12

(

3kn+1 + k − 2
)

,

|πn+1
k (ai)|2#1 =

(k − 1)kn

12

(

3kn+1 − k + 2
)

.

5.3 The Arshon morphisms

Let k be any even positive integer. The morphism βk ([1]) is defined, for every
r, 1 ≤ r ≤ k/2, by

a2r−1 7→ a2r−1a2r . . . ak−1aka1a2 . . . a2r−3a2r−2,
a2r 7→ a2r−1a2r−2 . . . a2a1akak−1 . . . a2r+1a2r.

Corollary 5. Let k be any even positive integer. For every i, 1 ≤ i ≤ k, and
for every positive integer n,

|βn+1
k (ai)|1#2 = kn−1

4

[

kn+2 · (k − 1) + 2k
]

,

|βn+1
k (ai)|2#1 = kn−1

4

[

kn+2 · (k − 1) − 2k
]

.

Example. For every i, 1 ≤ i ≤ k, and for every n ≥ 1,

|βn+1
6 (ai)|1#2 = 6n−1 · (45 · 6n + 3), |βn+1

6 (ai)|2#1 = 6n−1 · (45 · 6n − 3).

5.4 Three other examples

1. Let A be the four-letter ordered alphabet A = {a1 < a2 < a3 < a4}. Define the
morphism f on A by f(a1) = a1a3a2a4, f(a2) = ε, f(a3) = a1a4, f(a4) = a2a3.

The morphism f fulfills the conditions of Theorem 1. Here we choose p = 3,
A = A1∪A2∪A3 with A1 = {a1}, A2 = {a2}, A3 = {a3, a4}, and m1 = m3 = 1,
m2 = 0, thus M = 2.

Corollary 6. For every positive integer n,

|fn+1(a1)|1#2 = |fn+1(a3a4)|1#2 = 3 · 2n−1 · (2n+1 + 1),

|fn+1(a1)|2#1 = |fn+1(a3a4)|2#1 = 3 · 2n−1 · (2n+1 − 1),

|fn+1(a2)|1#2 = |fn+1(a2)|2#1 = 0.



2. Let A be the five-letter ordered alphabet A = {a1 < a2 < a3 < a4 < a5}.
Define the morphism g on A by g(a1) = a1a3a5a4a2, g(a2) = a4a2a3, g(a3) =
a5a1, g(a4) = a1a5, g(a5) = a2a3a4.

The morphism g fulfills the conditions of Theorem 1. Here we choose p = 3,
A = A1 ∪ A2 ∪ A3 with A1 = {a1}, A2 = {a2, a4}, A3 = {a3, a5}, and m1 =
m2 = m3 = 1, thus M = 3.

Corollary 7. For every positive integer n,

|gn+1(a1)|1#2 = |gn+1(a2a4)|1#2 = |gn+1(a3a5)|1#2 = 3n−1 · (5 · 3n+1 + 2),
|gn+1(a1)|2#1 = |gn+1(a2a4)|2#1 = |gn+1(a3a5)|2#1 = 3n−1 · (5 · 3n+1 − 2).

3. Let A be the three-letter ordered alphabet A = {a < b < c}. Define the
morphism h on A by h(a) = aba cab cac bab cba cbc, h(b) = aba cab cac bca bcb abc,
h(c) = aba cab cba cbc acb abc.
This morphism was proved square-free by Brandenburg in [3]. It fulfills the
conditions of Theorem 1 with p = 3, A = A1∪A2∪A3 with A1 = {a}, A2 = {b},
A3 = {c}, and m1 = m2 = m3 = 6, thus M = 18.

Corollary 8. For every x ∈ A and for every positive integer n,

|hn+1(x)|1#2 = 6 · 18n−1 · (9 · 18n+1 + 40),
|hn+1(x)|2#1 = 6 · 18n−1 · (9 · 18n+1 − 40).

6 Ordered patterns with no gaps and morphisms

6.1 Rises, descents, and squares of fn

Let k be an integer (k ≥ 2) and A the k-letter ordered alphabet A = {a1 < a2 <
· · · < ak}. Let f be any morphism on A: for 1 ≤ i ≤ k, f(ai) = ai1 . . . aipi

with
pi ≥ 0 (pi = 0 if and only if f(ai) = ε).

The vector of rises (resp. vector of descents, resp. vector of squares of one
letter) of fn is the k vector whose i-th entry is the number of occurrences of the
ordered pattern 12 (resp. 21, resp. 11) in the word fn(ai), i.e.,

R(fn) = (|fn(ai)|12)1≤i≤k, D(fn) = (|fn(ai)|21)1≤i≤k,
R2(f

n) = (|fn(ai)|11)1≤i≤k.

We define two sequences of k vectors, (F (fn))n∈IN and (L(fn))n∈IN, where
F (fn)[i] is the first letter of fn(ai) and L(fn)[i] is the last letter of fn(ai) if
fn(ai) 6= ε, and F (fn)[i] = L(fn)[i] = 0 if fn(ai) = ε. Of course these two
sequences take their values in a finite set: they are ultimately periodic. Thus
they can be computed a priori from f.

Given a non-negative integer n, let ℵ′ be the subset of ℵ such that, for each
i ∈ ℵ, fn(ai) 6= ε if and only if i ∈ ℵ′. We associate to the two vectors F (fn)
and L(fn) an application C12

n : ℵ′ × ℵ′ → {0, 1} defined by

C12
n (i, j) =

{

1, if L(fn)[i] < F (fn)[j]
0, if L(fn)[i] ≥ F (fn)[j].



Similarly we define

C21
n (i, j) =

{

1, if L(fn)[i] > F (fn)[j]
0, if L(fn)[i] ≤ F (fn)[j],

C11
n (i, j) =

{

1, if L(fn)[i] = F (fn)[j]
0, if L(fn)[i] 6= F (fn)[j].

For any morphism f on A, there exists a least integer Mf (Mf ≤ k and
Mf depends only on f) such that, for every positive integer n and every a ∈ A,
fn(a) = ε if and only if fMf (a) = ε. By convention, if f is a nonerasing morphism
then Mf = 0. The integer Mf is known in the literature about L-systems as the
mortality exponent of f ([6]).

Now let ℓ be an integer, 1 ≤ ℓ ≤ k. One has f(aℓ) = aℓ1 . . . aℓpℓ
and we denote

by ℓ′1 . . . ℓ′p′

ℓ
the subsequence of ℓ1 . . . ℓpℓ

such that fn+1(aℓ) = fn(aℓ′
1
. . . aℓ′

p′

ℓ

)

for every n ≥ Mf . This means that, for every n ≥ Mf , a letter aℓi
appears in

aℓ1 . . . aℓpℓ
but not in aℓ′

1
. . . aℓ′

p′

ℓ

if and only if fn(aℓi
) = ε. Of course p′ℓ ≤ pℓ,

and if Mf = 0 then p′ℓ = pℓ for each 1 ≤ ℓ ≤ k.

Here also, as in Section 3, the number of occurrences of the ordered pattern
12 in fn+1(aℓ) = fn(aℓ1 . . . aℓpℓ

) = fn(aℓ′
1
. . . aℓ′

p′

ℓ

) (n ≥ Mf ) is obtained by

adding two values: (1) the number of occurrences of the ordered pattern 12
in each fn(aℓi

), 1 ≤ i ≤ pℓ. As in the previous case, this number is equal to
∑k

t=1 |f
n(at)|12 ·m1,t,ℓ, and (2) the number of external occurrences of the ordered

pattern 12 in fn(aℓ′
i
aℓ′

j
) for each subsequence aℓ′

i
aℓ′

j
of f(aℓ), 1 ≤ i < j ≤ p′ℓ.

But the only possibility for 12 to be an external occurrence in fn(aℓ′
i
aℓ′

j
) is that

j = i + 1 and the last letter of fn(aℓ′
i
) is smaller than the first letter of fn(aℓ′

j
).

Thus, the number of occurrences of such patterns is only the number of times
L(fn)[i] < F (fn)[i+1] with i+1 ≤ p′ℓ, i.e., the number of times C12

n (ℓ′i, ℓ
′
i+1) = 1

for 1 ≤ i ≤ p′ℓ − 1.

We proceed similarly with the patterns 21 and 11. Consequently we have the
following proposition.

Proposition 5. For each letter aℓ ∈ A, f(aℓ) = aℓ1 . . . aℓpℓ
, and for all n ≥ Mf ,

let ℓ′1 . . . ℓ′p′

ℓ
be the subsequence of ℓ1 . . . ℓpℓ

such that fn+1(aℓ) = fn(aℓ′
1
. . . aℓ′

p′

ℓ

)

and fn(aℓ′
i
) 6= ε, 1 ≤ i ≤ p′ℓ. Then

|fn+1(aℓ)|12 =

k
∑

t=1

|fn(at)|12 · m1,t,ℓ +

p′

ℓ−1
∑

i=1

C12
n (ℓ′i, ℓ

′
i+1), (4)

|fn+1(aℓ)|21 =
k

∑

t=1

|fn(at)|21 · m1,t,ℓ +

p′

ℓ−1
∑

i=1

C21
n (ℓ′i, ℓ

′
i+1), (5)

|fn+1(aℓ)|11 =

k
∑

t=1

|fn(at)|11 · m1,t,ℓ +

p′

ℓ−1
∑

i=1

C11
n (ℓ′i, ℓ

′
i+1). (6)



6.2 Some examples

No external rises, no external descents, no external squares Let us
suppose that the morphism f is such that, for all i and j, L(f)[i] ≥ F (f)[j]
(there are no external rises). According to equation (4), in this case, for each
letter aℓ ∈ A, f(aℓ) = aℓ1 . . . aℓpℓ

, and for all n ≥ Mf ,

|fn+1(aℓ)|12 =
k

∑

t=1

|fn(at)|12 · m1,t,ℓ.

Moreover, if the above inequality is strict then, according to equation (5),

|fn+1(aℓ)|21 =
k

∑

t=1

|fn(at)|21 · m1,t,ℓ + p′ℓ − 1.

Now if we suppose that, conversely to the previous case, the morphism f is
such that, for all i and j, L(f)[i] ≤ F (f)[j] (there are no external descents) then
we obtain the same result by switching 12 and 21 in the above formulas.

To end, if we suppose that the morphism f is such that, for all i and j,
L(f)[i] 6= F (f)[j] then, according to equation (6), for each letter aℓ ∈ A, f(aℓ) =
aℓ1 . . . aℓpℓ

, and for all n ≥ Mf ,

|fn+1(aℓ)|11 =

k
∑

t=1

|fn(at)|11 · m1,t,ℓ.

The Thue-Morse morphism Since R(µ) =
[

1 0
]

, D(µ) =
[

0 1
]

and R2(µ) =
[

0 0
]

we obtain again a well known result.

Corollary 9. For any integer n ≥ 0,

R(µ2n) =
[

4n−1
3

4n−1
3

]

= D(µ2n) = R2(µ
2n)

R(µ2n+1) =
[

2(4n−1)
3 + 1 2(4n−1)

3

]

D(µ2n+1) =
[

2(4n−1)
3

2(4n−1)
3 + 1

]

R2(µ
2n+1) =

[

2(4n−1)
3

2(4n−1)
3

]

.

The Fibonacci morphism Since R(ϕ) =
[

1 0
]

and D(ϕ) = R2(ϕ) =
[

0 0
]

we have again a well known result.

Corollary 10. For any integer n ≥ 1,

R(ϕn) =
[

Fn−1 Fn−2

]

D(ϕ2n) =
[

F2n−1 F2n−2 − 1
]

= R2(ϕ
2n+1)

R2(ϕ
2n) =

[

F2n−2 − 1 F2n−3

]

= D(ϕ2n−1).



Erasing morphisms Let A be the four-letter ordered alphabet A = {a1 <
a2 < a3 < a4}.

1. Here we consider the erasing morphism f , given in Section 5.4, defined on A
by f(a1) = a1a3a2a4, f(a2) = ε, f(a3) = a1a4, f(a4) = a2a3. One has Mf = 1.

Starting from R(f) =
[

2 0 1 1
]

, we obtain the following corollary of Propo-
sition 5.

Corollary 11. For any integer n ≥ 1, R2(f
n) =

[

0 0 0 0
]

and

if n is even







R(fn) =
[

2n 0 2n+1+1
3

2n
−1
3

]

D(fn) =
[

2n − 1 0 2n+1−2
3

2n−4
3

]

,

if n is odd







R(fn) =
[

2n 0 2n+1−1
3

2n+1
3

]

D(fn) =
[

2n − 1 0 2n+1−4
3

2n−2
3

]

.

2. Now we consider the erasing morphism g defined on A by g(a1) = a1a2a4a3,
g(a2) = a3, g(a3) = ε, g(a4) = a1a2a4. Here we have Mf = 2.

Corollary 12. R(g) =
[

2 0 0 2
]

, D(g) =
[

1 0 0 0
]

, R2(g) =
[

0 0 0 0
]

, and,
for any integer n ≥ 2,

R(gn) =
[

2n 0 0 2n
]

, D(gn) =
[

2n−1 + 2n−2 − 1 0 0 2n−1 + 2n−2 − 1
]

R2(g
n) =

[

2n−2 0 0 2n−2
]

.
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