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Foreword

Scalability is one of the main problems practitioners have to cope with when grasping a real-world
application in data management or information analysis. The size of databases and data warehouses,
associated with incompleteness of information and missing values has been a major difficulty from the
early beginning of their studies. Modern digital devices, Internet possibilities, and distributed networks
are among the most powerful means of storing, retrieving, and sharing information. The amounts of
documents and data available for the users are continuously increasing, whatever their nature may be:
text, video, music, images, multimedia, Web. The ways to access these documents and data are also di-
verse: exchanges within communities, social networks and peer to peer communications have increased
the complexity of transfers from data repositories to users.

To increase the efficiency of existing algorithms is a necessity. Dimension reduction or dynamic treat-
ment of data avoiding their storage is for instance a solution to large scale learning systems. Moreover,
alternative approaches to classic information retrieval, knowledge discovery and data analysis need to be
created, in order to cope with the complexity of the problem to solve, due to the size, the heterogeneity,
the incompleteness of data and their access paths. Thinking differently is also a necessity since classic
statistics or machine learning methods have their limits. System science provides interesting paradigms
for the handling of complex systems, always taking the user into account, in a holistic involvement of
all components of the system. Active learning involving the user is for example a solution to the dif-
ficulty of using supervised learning in huge training sets. Another lesson from systems science is the
exploitation of synergies between components of the system, and this capacity is well understood in the
complementarity between medias, for instance between text and image.

Fuzzy knowledge representation and logic are among the efficient tools for the management of complex
systems, since they bring solutions to the incompleteness, inaccuracy and uncertainty, inherent to large
scale and heterogeneous information reservoirs, taking into account synthetic descriptions of isolated
elements and reducing individual treatments. Providing an interface between numerical data represen-
tations by computers and symbolic representations well understood by humans, fuzzy logic fills in the
gap between technological needs and usability requirements. Concepts such as fuzzy categories, fuzzy
quantifiers, fuzzy prototypes, fuzzy aggregation methods, fuzzy learning algorithms, fuzzy databases,
and fuzzy graphs have proved their utility in the construction of scalable algorithms.

The present book is certainly of particular interest for the diversity of addressed topics, covering a
large spectrum in scalability management. Anne Laurent and Marie-Jeanne Lesot are experts in theoretical
and methodological study of fuzzy techniques, and they have moreover coped with various real world
large-scale problems. The group of experts they have gathered to prepare this volume is unquestionably
qualified to provide solutions to researchers and practitioners in search of efficient algorithms and models
for complex and large dataset management and analysis.



XV

Scalability is understood in this book from several points of view. The first one is the size of avail-
able data implying difficulties in their tractability, with regard to memory size or computation time. This
aspect is strongly related to the complexity of involved algorithms.

The second point of view regards the form of the algorithm results and the capability of human us-
ers to understand and grasp these results, through summaries and visualization solutions. This aspect is
more related to a cognitive framework.

The scalability of knowledge representation is at the crossroads of these points of view, dealing with
ontologies or formal languages, as well as a variety of concepts in a fuzzy setting.

The classic scalability problem in hardware is another point of view, revisited here in the light of
modern electronic solutions and fuzzy computation.

This book deals with all these aspects under a fuzzy logic based perspective. A sample of applications
is also presented as a showcase, pointing out the efficiency of fuzzy approaches to the construction of
scalable algorithms. Potential applications of such approaches go far beyond the domains tackled here
and this book opens the door to a vast spectrum of forthcoming works.

Bernadette Bouchon-Meunier
LIP6 / UPMC / CNRS, France

Bernadette Bouchon-Meunier is the head of the department of Databases and Machine Learning in the Computer Science
Laboratory of the University Paris 6 (LIP6). Graduate from the Ecole Normale Superieure at Cachan, she received the degrees
of B.S. in Mathematics and Computer Science, Ph.D. in Applied Mathematics and D. Sc. in Computer Science from the Univer-
sity of Pierre and Marie Curie. Editor-in-Chief of the International Journal of Uncertainty, Fuzziness and Knowledge-based
Systems, she is a co-founder and co-executive director of the International Conference on Information Processing and Manage-
ment of Uncertainty in Knowledge-based Systems (IPMU) held every other year since 1986. She is an IEEE senior member
and chair of the IEEE French Chapter on Computational Intelligence.. Her present research interests include approximate
and similarity-based reasoning, as well as the application of fuzzy logic and machine learning techniques to decision-making,
data mining, risk forecasting, information retrieval and user modeling.
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Preface

The fuzzy logic and the fuzzy set theory have been proposed by Lotfi Zadeh in 1965, and largely de-
veloped since, in various directions, including reasoning, control, data representation and data mining.
They now provide numerous tools to handle data in a very relevant and comprehensive way, in particular
offering theoretically well founded means to deal with uncertainty and imprecision. Furthermore, they
constitute an interface between numerical and linguistic representations, increasing the interpretability
of the developed tools and making it possible to compute with words, using the expression proposed by
L. Zadeh in 1996.

Despite these advantages, fuzzy approaches often suffer from the opinion that they cannot address
huge amounts of data and are inappropriate because of scalability difficulties: a high computational
complexity or high memory requirements are feared, that might hinder their applications to very large
datasets, as occur more and more frequently nowadays. Now this is not the case, as many applications,
including industrial success stories, have shown that fuzziness and scalability are not antagonistic con-
cepts. This book aims at highlighting the relevance of fuzzy methods for huge datasets, considering both
the theoretical and practical points of view and bringing together contributions from various fields.

This book gathers up-to-date methods and algorithms that tackle this problem, showing that fuzzy
logic is a very powerful way to provide users with relevant results within reasonable time and memory.
The chapters cover a wide range of research areas where very large databases are involved, considering
among others issues related to data representation and structuring, in particular in data warehouses, as
well as the related querying problems, and the extraction of relevant and characterizing information
from large datasets, to summarize them in a flexible, robust and interpretable way that takes into account
uncertainty and imprecision. The book also includes success stories based on fuzzy logic that address
real world challenges to handle huge amounts of data for practical tasks. The databases considered in the
various chapters take different forms, including data warehouses, data cubes, tabular or relational data,
and different application types, among which multimedia, medical, bioinformatics, financial, Semantic
Web or data stream contexts.

The book aims at providing researchers, master students, engineers and practitioners the state-of-the-
art tools to address the new challenges of current applications that must now both remain scalable and
provide user-friendly and actionable results. The readers will get a panorama of the existing methods,
algorithms and applications devoted to scalability and fuzziness. They will find the necessary material
concerning implementation issues and solutions, algorithms, evaluation, case studies and real applica-
tions. Besides, being the very first reference gathering scalable fuzzy methods from various fields, this
book contributes to bridging the gap between research communities (e.g., databases, machine learning)
that are not always enough combined and mixed.
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The book is organized in four complementary sections: after two introductory chapters that provide
general overviews on fuzziness and scalability from two different points of view, the second section,
entitled “Databases and Queries,” is devoted to methods that consider data structuring as the core of the
approach and propose either flexible representations, through the incorporation of fuzzy components in
the data, or flexible queries that make interactions of the user with the database easy and intuitive thanks
to linguistic formulations. The third section, called “Summarization,” tackles the complexity of huge
datasets through the extraction of relevant and characteristic information that provide summaries of the
whole data. In this context, fuzzy approaches offer a linguistic interface to increase the interpretability of
the results, flexibility and tools to handle imprecision and uncertainty. Lastly, the fourth section, entitled
“Real-World Challenges,” presents success stories involving fuzzy approaches, considering various do-
mains such as stream, multimedia and biological data. In the following, we detail each section in turn.

The first two chapters of the book introduce general overviews, respectively from the hardware point
of view, and from a machine learning perspective.

The chapter “Electronic Hardware for Fuzzy Computation,” by Koldo Basterretxea and Inés del Campo,
presents a comprehensive synthesis of the state of the art and the progress in the electronic hardware
design for the fuzzy computation field over the past two decades, in particular for the implementation
of fuzzy inference systems. The authors show how fuzzy hardware has evolved, from general purpose
processors (GPPs) to high performance reconfigurable computing (HPRC), as well as the development of
the hardware/software codesign methodology. They discuss their relationships with the scalability issue,
and the new trends and challenges to be faced. The last part of the chapter, dedicated to the architectures
proposed to speed up fuzzy data mining processing specifically, constitutes a promising research direc-
tion for the development and improvement of implementation of fuzzy data mining algorithms.

Chapter 2, entitled “Scaling Fuzzy Models” by Lawrence O. Hall, Dmitry B. Goldgof, Juana Canul-
Reich, Prodip Hore, Weijian Cheng and Larry Shoemaker, considers the scalability issue from the machine
learning and data mining point of view, to extract knowledge from huge amounts of data, studying in
turn both supervised and unsupervised learning. It focuses on ensemble based approaches that basically
consist in learning classifiers on subsets of data, to reduce the amount of data that must be fit in com-
puter memory at any time. This approach is also used in chapter 15 in the case of fuzzy random forests
to handle large multimedia datasets. In the unsupervised learning case, the authors concentrate on data
streams that are more and more common nowadays and can lead to very large datasets to be handled
incrementally. They offer an overview of existing algorithms to deal with such data and propose an on-
line variant of the classic fuzzy c-means. Their experimental results, performed on datasets containing
up to 5 millions magnetic resonance images, illustrate the possibility to apply fuzzy approaches to data
mining from huge datasets.

The chapters of the second section, chapters 3 to 7, address the topic of databases and queries coupled
with fuzzy methods: they consider the scalability issue from the point of view of data structuring and
organization, as well as for the querying step. Chapters 3, 4 and 5 mainly focus on the data storing is-
sue, respectively considering data warehouses adapted to fuzzy set representation (chapter 3), fuzzy
data cubes following the OLAP model (chapter 4) and fuzzy description logic to both represent and
exploit imprecise data in a logical reasoning framework (chapter 5). Chapters 6 and 7 concentrate on
queries, considering two different types: chapter 6 considers linguistic data queries and more specifically
quantified linguistic queries, proposing a framework to model and answer them. Chapter 7 focuses on
the results provided by queries submitted to search engines and tackles the problem of managing them
through a flexible exploratory language.



xviii

More precisely, chapter 3, entitled “Using Fuzzy Song Sets in Music Warehouses” by Frangois Deli¢ge
and Torben Bach Pedersen, considers data warehouses used to manage large collections of music data,
in the purpose of designing music recommendation systems. The authors introduce a fuzzy representa-
tion through the concept of fuzzy songs and study several solutions for storing and managing fuzzy sets
in general, considering three options, namely tables, arrays and compressed bitmaps. They construct
theoretical estimates for the cost of each solution that are also studied experimentally and compared for
various data collection sizes. Furthermore, they discuss the definition of an algebra to query the built data
cubes and examine the operators both from a theoretical and practical point of view. Thus this chapter
provides both an insight on theoretical works on scalability issues for storing and managing fuzzy sets,
and an example of a real world challenge.

In the same framework of data warehouses and OLAP systems, the chapter “Mining Association
Rules from Fuzzy DataCubes,” by Nicolas Marin, Carlos Molina, Daniel Sanchez and M. Amparo Vila,
investigates the particular topic of on-line analytical mining (OLAM) which aims at coupling data mining
and OLAP, bridging the gap between sections II and III of the book. The authors consider association
rules which are one of the most used data mining techniques to extract summarized knowledge from
data, focusing on the particular framework of data cubes for which they must be further studied. The
authors propose methods to support imprecision which results from the multiple data sources handled
in such applications and constitutes a challenge when designing association rule mining algorithms. The
chapter studies the influence of the fuzzy logic use for different size problems, both in terms of the cube
density (number of records) and topology (number of dimensions), comparing the results with a crisp
approach. Experiments are performed on medical, financial and census data.

Inchapter 5, entitled “Scalable Reasoning with Tractable Fuzzy Ontology Languages,” Giorgos Stoilos,
Jeff Z. Pan, and Giorgos Stamou consider another data model that is in particular adapted to databases in
the form of ontology, namely the fuzzy description logic format. The latter offers the possibility to both
model and reason with imprecise knowledge in a formal framework that provides expressive means to
represent and query information. It is of particular use to handle fuzziness in Semantic Web applications
whose high current development makes such works crucial. The authors show that the increased expres-
sivity does not come at the expense of efficiency and that there exist methods capable of scaling up to
millions of data. More precisely, the authors study the scalability of the two main inference services in
this enriched data description language, which are query answering and classification (i.e., computation
of the implied concept hierarchy). To that aim, they consider two languages: on one hand, they show
how Fuzzy DL-Lite provides scalable algorithms for expressive queries over fuzzy ontologies; on the
other hand, they show how Fuzzy EL+ leads to very efficient algorithms for classification and extend
it to allow for fuzzy subsumption.

Focusing on the issue of query formulation, in particular for expressive queries, chapter 6, entitled
“A Random Set and Prototype Theory Model of Linguistic Query Evaluation” by Jonathan Lawry and
Yongchuan Tang, deals with linguistic data queries, that belongs to the computing with words domain
introduced by Zadeh in 1996. More precisely the authors consider quantified data queries, for which a
new interpretation based on a combination of the random set theory and prototype theory is proposed:
concepts are defined as random set neighborhood of a set of prototypes, which means that a linguistic
label is deemed appropriate to describe an instance if the latter is sufficiently close to the prototypes of the
label. Quantifiers are then defined as random set constraints on ratios or absolute values. These notions
are then combined to a methodology to evaluate the quality of quantified statements about instances, so
as to answer quantified linguistic queries.
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The chapter “A Flexible Language for Exploring Clustered Search Results,” by Gloria Bordogna,
Alessandro Campi, Stefania Ronchi and Giuseppe Psaila, considers specific types of queries, namely
those submitted to search engines: they tackle the more and more crucial problem of managing the results
from search engines that can be very large, and automatically extracting hidden relations from them.
Assuming that the set of documents retrieved by a search engine is given in the form of a set of clusters,
the authors propose a flexible exploratory language for manipulating the groups of clustered documents
returned by several engines. To that aim, they define various operators among which refinement, union,
coalescing and reclustering and propose several ranking criteria and functions based on the fuzzy set
theory. This makes it possible to preserve the interpretability of the retrieved results despite the large
amount of answers obtained for the query.

The chapters in the next section, chapters 8 to 13, consider a different approach on the problem of
scalability and fuzziness and address the topic of exploiting fuzzy tools to summarize huge amounts of
data to extract from them relevant information that captures their main characteristics. Several approaches
can be distinguished, referring to different types of data mining tools, as detailed below. Chapter 8 con-
siders linguistic summaries, and uses fuzzy logic to model the linguistic information, Chapter 9 proposes
an aggregation operator relevant to summarize statistics in particular. Chapters 10 and 11 consider the
association rules to summarize data. Chapters 12 and 13 belong to the fuzzy clustering framework. It
must be underlined that chapter 4 also considers association rules, in the case where data are stored in
a structure as fuzzy cubes.

More precisely, chapter 8, entitled “Linguistic Data Summarization: A High Scalability through the
Use of Natural Language?” by Janusz Kacprzyk and Stawomir Zadrozny, studies user-friendly data
summaries through the use of natural language, and a fuzzy logic based model. The focus is laid on the
interpretability of the summaries, defining scalability as the capability of algorithms to preserve under-
standable and intuitive results even when the dataset sizes increase, at a more perceptual or cognitive
level than the usual “technical scalability.” The authors offer a general discussion of the scalability
notion and show how linguistic summaries answer its perceptual definition, detailing their automatic
extraction from very large databases.

The summarization process is also the topic of chapter 9, “Human Focused Summarizing Statistics
Using OWA Operators” by Ronald R. Yager, that provides a description of the order weighted averaging
operator (OWA). This operator generates summarizing statistics over large datasets. The author details
its flexibility derived from weight generating functions as well as methods to adapt them to the data
analysts, based on graphical and linguistic specifications.

Another common way to summarize datasets consists in extracting association rules that underline
frequent and regular relations in the data. Chapter 10, entitled “(Approximate) Frequent Item Set Mining
Made Simple with a Split and Merge Algorithm” by Christian Borgelt and Xiaomeng Wang, considers
this framework and focuses on its computationally most complex part, namely the problem of mining
frequent itemsets. In order to improve its scalability, the authors propose efficient data structures and
processing schemes, using a split and merge technique, that can be applied even if all data cannot be
loaded into the main memory. Approximation is introduced by considering that missing items can be
inserted into transactions with a user-specified penalty. The authors study the behavior of the proposed
algorithm and compare it to some well-known itemsets mining algorithms, providing a comprehensive
overview of methods.

The chapter “Fuzzy Association Rules to Summarise Multiple Taxonomies in Large Databases,” by
Trevor Martin and Yun Shen, also considers the domain of association rules learning when huge amounts
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of data are to be handled, focusing on the case where the data are grouped into hierarchically organized
categories. The aim is then to extract rules to describe relations between these categories; fuzziness allows
avoiding the difficulties raised when crisp separations must be defined. They propose a new definition
of fuzzy confidence to be consistent with the framework addressed in the chapter.

Chapter 12, entitled “Fuzzy Cluster Analysis of Larger Data Sets” by Roland Winkler, Frank Klawonn,
Frank Hoppner and Rudolf Kruse, explores another method for data summarization, namely fuzzy clus-
tering. The authors propose to combine two approaches to decrease the computation time and improve
the scalability of the classic fuzzy c-means algorithm, based on a theoretical analysis of the reasons
for the high complexity, both for time and memory, and on an efficient data structure. Indeed the high
computational cost of the fuzzy c-means is basically due to the fact that all data belong to all clusters:
the membership degrees can be very low, but do not equal 0, which also implies that all data have an
influence on all clusters. The authors combine a modification of the fuzzifier function to avoid this effect
with a suitable data organization exploiting a neighborhood representation of the data to significantly
speed up the algorithm. The efficiency of the proposed method is illustrated through experiments.

Chapter 13, entitled “Fuzzy Clustering with Repulsive Prototypes” by Frank Rehm, Roland Winkler
and Rudolf Kruse, also considers fuzzy clustering, focusing on the selection of the appropriate number
of clusters: the latter is classically determined in a procedure that consists in testing several values and
choosing the optimal one according to a validation criterion. This process can be very time consuming,
the authors propose to address this problem as an integrated part of the clustering process, by making the
algorithm insensitive to too high values for this parameter. To that aim, they modify the update equations
for the cluster centers, to impose a repulsive effect between centers, rejecting the unnecessary ones to
locations where they do not disturb the result. Both the classic fuzzy c-means and its Gustafson-Kessel
variant are considered.

The last section of the book, chapters 14 to 16, is dedicated to real world challenges that consider
the scalability of fuzzy methods from a practical point of view, showing success stories in different do-
mains and using different techniques, both for supervised and unsupervised data mining issues. Chapter
14 consider massive stream data describing car warranty data. Chapter 15 addresses the indexation of
huge amounts of multimedia data using random forest trees, following the same approach as the one
presented in chapter 2. Chapter 16 belongs to the bioinformatics domain that is among the domains
that currently give rise to the largest datasets to handle, it more precisely focuses on micro-array data.
Chapter 3 that describes a data warehouse used to manage large collections of music data also belongs
to this real world challenges section.

Chapter 14, entitled “Early Warning from Car Warranty Data using a Fuzzy Logic Technique” by
Mark Last, Yael Mendelson, Sugato Chakrabarty and Karishma Batra, addresses the problem of detecting
as early as possible problems on cars by managing data stored in a warranty database which contains
customer claims recording information on dealer location, car model, car manufacturing and selling dates,
claim date, mileage to date, complaint code, labor code, and so on. Warranty databases constitute massive
stream data that are updated with thousands of new claims on a daily basis. This chapter introduces an
original approach to mine these data streams by proposing a fuzzy method for the automatic detection
of evolving maintenance problems. For this purpose, the authors propose to study frequency histograms
using a method based on a cognitive model of human perception instead of crisp statistical models. The
obtained results reveal significant emerging and decreasing trends in the car warranty data.

The problem of video mining is tackled in chapter 15, entitled “High Scale Fuzzy Video Mining” by
Christophe Marsala and Marcin Detyniecki, where the authors propose to use forests of fuzzy decision
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trees to perform automatic indexing of huge volumes of video shots. The main purpose of the chapter is
to detect high-level semantic concepts such as “indoor,” “map,” or “military staff” that can then be used
for any query and treatment on videos. This data mining problem requires addressing large, unbalanced
and multiclass datasets and takes place in the highly competitive context of the TRECVid challenge or-
ganized by NIST. The authors report the success of the fuzzy ensemble learning approach they propose,
that proves to be both tractable and of high quality. They also underline the robustness advantage of the
fuzzy framework that improves the results as compared to other data mining tools.

Chapter 16, entitled “Fuzzy Clustering of Large Relational Bioinformatics Datasets” by Mihail Popescu
considers a practical problem of fuzzy clustering with very large relational datasets, in the framework of
bioinformatics to extract information from micro-array data. It describes the whole process of how such
problems can be addressed, presenting the theoretical machine learning methods to be used as well as
the practical processing system. The considered three-step approach consists in subsampling the data,
clustering the sample data and then extending the results to the whole dataset. The practical system
describes the methods applied to select the appropriate method parameters, including the fuzzifier and
the number of clusters, determined using a cluster validity index. It also describes the adjustments that
appear to be necessary to handle the real dataset, in particular regarding the sampling step. The experi-
ments are performed with real data containing around 37,000 gene sequences.

The book thus gathers contributions from various research domains that address the combined issue
of fuzziness and scalability from different perspectives, including both theoretical and experimental
points of view, considering different definitions of scalability and different topics related to the fuzzy
logic and fuzzy set theory use. The variety of these points of view is one of the key features of this book,
making it a precious guide for researchers, students and practitioners.

Anne Laurent and Marie-Jeanne Lesot
Editors
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ABSTRACT

This chapter describes two decades of evolution of electronic hardware for fuzzy computing, and dis-
cusses the new trends and challenges that are currently being faced in this field. Firstly the authors
analyze the main design approaches performed since first fuzzy chip designs were published and until
the consolidation of reconfigurable hardware: the digital approach and the analog approach. Secondly,
the evolution of fuzzy hardware based on reconfigurable devices, from traditional field programmable
gate arrays to complex system-on-programmable chip solutions, is described and its relationship with
the scalability issue is explained. The reconfigurable approach is completed by analyzing a cutting
edge design methodology known as dynamic partial reconfiguration and by reviewing some evolvable
fuzzy hardware designs. Lastly, regarding fuzzy data-mining processing, the main proposals to speed
up data-mining workloads are presented: multiprocessor architectures, reconfigurable hardware, and
high performance reconfigurable computing.

INTRODUCTION

Electronic hardware development for fuzzy inference-based computing systems (fuzzy hardware) has
been an active research area almost since the first papers on successful fuzzy logic applications, mainly
fuzzy controllers, were published in the early eighties. Although historically, due to the greater flexibility
and compatibility, as well as the advantages and easiness of using high level languages, the majority of
fuzzy inference system (FIS) implementations have been software developments to be run on general
purpose processors (GPP), only concurrent computation architectures with specific processing units
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can take greatest advantage of fuzzy computation schemes. The development of fuzzy hardware has
been mainly motivated by real-time operation demands, or by low power and/or small area occupation
requirements. In this sense, the first fuzzy hardware researchers basically tried to design fuzzy chips
capable of processing fuzzy control laws in a more efficient manner in terms of processing speed, oc-
cupied area and consumed power. But not only is computing efficiency a concern for fuzzy hardware
designers; system programmability, compatibility of input/output signals and scalability at various levels
(word-length, partition of the input and output domains, number of rules, or overall throughput gain)
are also important features to be considered.

Design of fuzzy hardware is strongly conditioned by the target application it is addressed to. In
consequence, many different application-specific designs have been reported, each of them showing
characteristic features, strengths and weaknesses. The choice of the development platform and imple-
mentation technology is closely linked with this issue, and may itself bias the obtainable final features.
Despite this, implementation of a general purpose fuzzy ASIC (Application Specific Integrated Circuit)
suitable for any fuzzy rule-based application has been somehow sought but never achieved by fuzzy
hardware designers, both in academic and in commercial contexts. It has been the arrival of high capac-
ity reconfigurable hardware and the drastic changes in the design processes of complex digital systems
associated with this technology that has finally made obsolete the general purpose fuzzy hardware
objective. Last generation reconfigurable hardware platforms allow the implementation of optimized
complex hardware/software codesigned adaptive and on-the-fly reconfigurable systems for application
specific computation. The combination of reconfigurable hardware with the use of standardized hardware
description languages (HDL) has entailed the transference of the task of achieving desirable features
such as flexibility, scalability, reusability, etc from the hardware itself to the description or modeling of
this hardware.

Fuzzy data management and analysis methods do not rest normally on a rule-based inference scheme,
so the development of hardware for fuzzy data-mining has usually little to do with what is referred to as
“fuzzy hardware”. In fact, fuzzy data-mining algorithms have been traditionally implemented by software
applications running on GPPs, since there were not usually tight requirements for computation time,
occupied silicon area or consumed power. On the contrary, flexibility, scalability and good interaction
with data base storage systems were the only concerns. Nonetheless, nowadays, due to the increasing
complexity of data-mining algorithms and the growing amount of data to be processed by them, some-
times with time constraints, more attention is being paid to the hardware acceleration of this kind of
application. This field can be considered, together with scientific computation, a natural target for high
performance computing (HPC). Consequently, specific hardware development for parallel processing
or coprocessing of data-mining algorithms has been gaining relevance in recent years.

The chapter is organized as follows: Section 2 introduces the main hardware implementation variants
performed since first fuzzy hardware chips were published and until the consolidation of reconfigu-
rable hardware for complex digital system implementation. First of all, the distinctive characteristics of
fuzzy inference-based computation that pushed researchers to find specifically designed hardware are
described. Secondly we summarize the general pros and cons of the two main design approaches used
for fuzzy hardware realizations, the digital approach and the analog approach; the performance indexes
used for fuzzy hardware characterization are also briefly discussed. The bulk of the section follows by
analyzing the different solutions proposed by hardware designers both for digital and analog approaches
in a taxonomical way, giving examples of the most representative publications in the area. In Section 3
the evolution of fuzzy hardware implementations based on reconfigurable hardware and its relationship
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with the scalability issue are explained. A short description of the FPGA (Field Programmable Gate Ar-
ray) technology and the repercussions of the development of hardware description languages are given,
and the fruitful synergism between FISs and FPGAs are enumerated. The section continues with the
description of the hardware/software codesign methodology and its contribution to the fuzzy hardware
design, and introduces the associated concept of System on Programmable Chip (SoPC), giving examples
of reported designs in this area. The Section is completed by analyzing the cutting edge design meth-
odology known as Dynamic Partial Reconfiguration and by reviewing some evolvable fuzzy hardware
designs, and is closed by highlighting the new trends and challenges to be faced by the reconfigurable
hardware technology. Lastly, Section 4 is devoted to the hardware implementation proposals for fuzzy
data-mining processing, as it presents very distinct characteristics and requirements compared to fuzzy
rule-based inference systems. Section 5 concludes this chapter summing up the described main concepts
and giving some concluding remarks.

HARDWARE IMPLEMENTATION OF FUZZY INFERENCE SYSTEMS

As mentioned in the introduction, design and implementation of a FIS strongly depends on the require-
ments of the target application. When the hardware implementation of a FIS is considered, this is due to
the special requirements of computation time, occupied area and/or power consumption that the application
to be performed may demand. Each application field of FISs has its own characteristics which condition
the system design: process control, industrial automation, embedded control, signal processing, pattern
recognition, or data analysis and decision making —when making use of fuzzy rule-based schemes— all
share a common computational scheme but all show specific processing and interfacing requirement,. In
order to understand the reasons that have pushed researchers to investigate new hardware architectures
for fuzzy systems, it is worth to briefly analyzing the specificities of fuzzy computation.

Distinctive Characteristics of Fuzzy Computation

There are three main aspects of fuzzy computation that have motivated the design of ad-hoc hardware
to overcome the limits imposed by the processing on general purpose processors: parallelism, use of
specific non-standard operators, and the intensive computation of non-linear functions.

Parallelism: The typical three processing stages of a fuzzy inference, that is, fuzzification, inference,
and defuzzification, are performed sequentially (see Figure 1). However, at each stage internal operations
can be carried out in parallel. At the fuzzification stage parallelism is possible because several member-
ship degrees at a time must be computed for an input value, and there may be more than one input. At
the inference stage the computation of the degrees of truth of several rules are performed in parallel,
since more than one rule may be activated at the same time. Finally, to compute the output value, which
is usually crisp, the partial conclusions of the rules must be obtained from the consequents, and these
values are combined to obtain the final general conclusion and the defuzzified value. GPPs are sequential
machines, so all these operations are performed serially. It is obvious that the more input variables in the
input domain and the more rules defined in the inference engine, the more time-consuming is a fuzzy
inference in a sequential processor and the more worthwhile it is to parallelize it.

Specific non-standard operators: Fuzzy computing requires intensively performing some basic
operations that cannot be efficiently executed by GPPs. Maximum and minimum operations and de-
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Figure 1. Basic computational scheme of a fuzzy rule-based system
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fuzzification functions, for instance, are very time-consuming on GPPs. While some software solutions
have been proposed by adding new instructions implemented as microprograms to the microproces-
sors, implementation of dedicated fuzzy functional blocks is the most efficient solution regarding the
computation time.

Computation of non-linear functions: Any fuzzy computing system is based on fuzzy logic theory,
and the core concept of this logic is the concept of membership degree to a given set. To represent the
membership degrees, fuzzy logic uses membership functions (MF), which are, in the most general case,
monotone smooth non-linear functions such as sigmoidal functions, Gaussians, generalized bells and
so on. The computation of such functions is very demanding for any processor and hence this has been
one of the most analyzed aspects of fuzzy hardware design. In fact, to overcome this problem, many
fuzzy hardware designs rested on simple triangular or trapezoidal membership function representations.
This is a valid approach, as it is demonstrated that FISs keep their universal approximation property
even when simple piecewise-linear (PWL) MFs are used (Castro, 1996), but this is a property based on
an existence theorem that does not consider quantitative implications. For a given number of MFs and
rules, the system’s plasticity —capability of representing information— is degraded when using simple
PWL MFs, so simpler MFs imply a more complex rule base (Basterretxea et al., 2007).

Hardware implementations must always be oriented to achieve maximum simplicity. There are of
course some “tricks” thathardware designers have developed to adapt the computation of fuzzy algorithms
to the characteristics of hardware technologies. Hardware engineers have often modified mathematical
operations or other computational features to produce more hardware-friendly algorithms. Sometimes
this means reducing the accuracy, in the sense that produced processing does not replicate exactly the
underlying mathematical functions. This is the case of the diverse circuits designed for approximating the
non-linear functions used to represent MFs, or the reduction of quantization levels when memory-based
solutions are implemented. At other times accuracy is not affected but some limitations are imposed
on the system, such as the allowed maximum overlapping degree of MFs or their configurability, for
instance. Sometimes however, a closer and more detailed study of how an electronic circuit processes
data can lead to discovering regularities that can be exploited, or ways to avoid useless or repetitive
calculations, with no impact on computational accuracy or system flexibility. One example of this is
the use of register files to store truth tables obtained from the computation of the degree of truth of
an antecedent, since the same antecedent is usually repeated in several rules (Ascia & Catania, 1998).
Another common example is a technique consisting in the implementation of “active rule detectors”,
that is, for each input, detecting which rules will be activated and which rules will produce no output
(not active), so only those rules with a positive degree of truth in their antecedents are processed (see
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Hamzeh et al., 2009 and references herein). Sometimes the search for hardware-friendly algorithms
has pushed researchers to work on the mathematical basis of fuzzy logic, hence inducing the definition
of new operators such as the operators used for piecewise-linear or -multilinear (PWM) fuzzy systems
(Rovatti & Borgatti, 1997; Sasaki & Ueno, 1994), as well as parameterized defuzzification methods
such as the height method, weighted fuzzy mean, Yager’s method, etc. (Baturone et al, 2000). In the
next subsection we examine some of these design strategies, described by fuzzy hardware researchers
in papers and books, the most significant of which are referenced in the text.

Hardware Design Strategies and Implementation Technologies

Traditionally there have been two main approaches to the implementation of FISs: using GPP based
machines and the development of dedicated hardware. Obviously, using pure software solutions run-
ning on GPPs —microprocessors, microcontrollers or digital signal processors— is the least expensive
and more flexible procedure, but generally it is the slowest one. On the contrary, the development of
ad-hoc hardware for high performance fuzzy processing implemented in ASIC technology requires a
longer design time and much more effort, in order to culminate in a faster system, although very often
with poor generality. Halfway approaches are also possible though. One option is to customize GPPs by
introducing fuzzy dedicated instructions, which sometimes is referred to as software expansion. Another
option consists in splitting fuzzy operations from the CPU instruction-set and developing an external
fuzzy coprocessor to execute those operations faster, which is called hardware expansion. The main
problem in using fuzzy coprocessors is that the I/O signal transmission between the processor and the
coprocessor is usually a bottleneck that impedes fast operation. This section is devoted to describing the
most representative design solutions for dedicated fuzzy hardware reported in the last two decades, leav-
ing the GPP-based approaches and the direct memory mapping-based implementations aside. However,
each reported hardware design is unique, generally differing the ones from the others in various aspects,
so it is not possible to make a complete catalogue of developed fuzzy processors over the years. Yet there
are some common characteristics of different reported solutions that can be, and will be, emphasized
and that allow us to make a somewhat taxonomical description of fuzzy hardware design.

The first fuzzy processing device was implemented in 1985 by Togai and Watanabe (1986), from the
AT&T Bell laboratories. It was a digital VLSI chip with one input and one output capable of executing
250,000 FRPS (Fuzzy Rules Per Second) with no defuzzification. Previously Yamakawa had built the
first analog fuzzy circuits based on bipolar transistors, but it was not until 1988 that he reported the first
analog fuzzy controller chip (Yamakawa, 1988). The controller was implemented in bipolar technology
and was capable of evaluating 1 Mega FIPS (Fuzzy Inference Per Second) including defuzzification, or
10 MFIPS without it. These two works represent, respectively, the beginning of the race to produce the
fastest, smallest and/or the least power-consuming fuzzy chip in the two main design methodologies.
These are directly linked to implementation technology: the analog hardware and the digital hardware.
Both approaches have their own pros and cons, which are summed up below.

Digital FIS Hardware vs. Analog FIS Hardware
When facing the designing of fuzzy hardware, both in the analog and the digital approaches, some

designers have developed very specific dedicated architectures with the aim of achieving the higher
processing speed together with an efficient use of silicon for a given application. Other designers have
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tried to make more flexible, general purpose fuzzy chips. The more dedicated circuits implement quite
simple computation algorithms on simple architectures. The more general application targeted circuits
include programmability options by implementing different MF shape and/or inference method selec-
tion capabilities, various defuzzification methods and also scalability features to some extent (bit level
scalability, MF level scalability, selectable number of rules etc.). In any case, the selection of the digital
or the analog approach itself may bias the achievable features. The main characteristics of both ap-
proaches are:

Digital Hardware

. Use of well known and well characterized target technology.

. Structured and systematic design process and availability of EDA (Electronic Design Automation)
tools to obtain reliable and lower cost integrated circuits.

. Connectivity to other digital processing conventional units.

. More flexible devices with easy programmability and external parameter selection.

. Adjustable accuracy and resolution.

e High area occupation. This is due to the big quantity of transistors required to implement fuzzy
operators (max, min, etc.), the coded representation of the membership functions by bit sequenc-
es, and the probable need of A/D (Analog to Digital) and D/A (Digital to Analog) converters to
transform the input and output signals.

Analog Hardware

. Better speed/area ratio.

. No need for A/D and D/A interfaces (controllers).

e Lower power dissipation.

. Analog design is a costly long-cycle, generally manual process, although some automated design
tools have been developed (Lemaitre et al., 1993; Manaresi et al., 1996).

*  Lower precision due to noise and temperature drifts.

. Lower flexibility.

Characterization of Fuzzy Hardware Performance

When referring to the performance of fuzzy hardware implementations we have used the term speed,
but we have not defined exactly what the term speed means in this context. We have even used the more
specific terms FIPS and FRPS, as the majority of authors do, in order to characterize their designs.
However, different authors may use different performance indexes, and sometimes these indexes can
be misleading when employed to compare the performance of systems with different architectures and
functionalities. The most used performance indexes in the related literature are:

*  Maximum clock frequency (digital and mixed signal designs).
. Number of fuzzy logic inferences per second (FLIPS) or fuzzy inferences per second (FIPS),
where the concept fuzzy inference is fuzzy itself or ill-defined.
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. Number of fuzzy rules per second (FRPS).
. Number of basic fuzzy operations per second.

None of these terms is a reliable measure of the real system performance, especially in the digital
approach, as far as other factors such as the parallelism, the on-chip fuzzification or defuzification opera-
tions and others may be involved. In (Patyra et al., 1996) a more realistic speed measure is proposed to
characterize any fuzzy hardware design. This index is the input/output delay time of the system —which
is often used in analog designs—, defined as the total delay time from the moment of providing the input
variable to the FIS device until the generation of a crisp action at the output!. But in order to make a
performance comparison of different designs, more performance indexes have to be added to the bare
processing speed. The author proposes the following set of index parameters:

. Number of inputs.

. Number of outputs.

e Number of linguistic rules in the knowledge base.

. Number of MFs in the input universe of discourse.

. Number of MFs in the output universe of discourse.

*  Number of binary vectors characterizing the membership function (resolution of the input uni-
verse of discourse for digital designs).

*  Number of bits in a single binary vector (resolution of the membership degree for digital
designs).

. Input-to-output time delay.

This set of parameters, which was defined to make a comparative study of the state-of-the-art dedicated
digital fuzzy logic controllers at the time of publication, summarizes perfectly the main architectural
characteristics to be considered in the design of a fuzzy chip. To complete the picture, dissipated power
should be also considered.

Digital Implementations

The first digital hardware realizations, such as the above mentioned pioneering work of Togai and
Watanabe, used parallel rule processing architectures by providing a data path for each rule (Figure 2).
This configuration allows fast operation but is very area consuming and imposes a maximum number
of rules, so its scalability, in this sense, is limited. The provided fuzzy inference method was the max-
min inference rule, so circuits for maximum and minimum operators were implemented. Max and min
operations were performed serially to save silicon area, since the max-min operator structure had to
be replicated for each rule. Membership functions were implemented by storing the function values in
memory look-up tables. By using memories any membership function shape can be stored, but occupied
memory grows exponentially with the resolution, and hence memories are only used with low resolu-
tions. Obviously, decreasing the resolution in the discretization of the input values and the membership
degrees negatively affects the system performance (del Campo & Tarela, 1999; del Campo et al. 2001).
Moreover, in a parallel processing architecture the memory size required to store the MFs is proportional
to the number of rules, so severe limitations were imposed on the processing engine.
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Figure 2. Pure parallel implementation scheme of a three-input-one-output FIS with n rules (min-max
operation blocks replicate the graphically depicted input processing). MFs are linked to the rules and
stored individually for parallel processing
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To overcome the above described limitations, many designers have implemented sequential rule
processing architectures. Serialized architectures are more flexible but do not exploit all the parallelism
of fuzzy systems and, since the number of clock-cycles required for processing the rules is proportional
to the number of the latter, they are generally slower. The rule base is stored symbolically in a memory,
and the generation of the membership functions is performed by circuitry that is shared by all the rules,

Figure 3. Serialized implementation scheme of a three-input-one-output FIS with single data-path for
all rules (min-max operation blocks replicate the graphically depicted input processing). Rules are
stored in memory using labels of antecedent and consequent MFs, and only one rule can be addressed
every clock cycle
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that is, there is a fuzzy partition of the universes of discourse for each input variable (Figure 3). For
sequential fuzzy processors, memory size is still a problem for systems with a high input dimensionality
(many input variables), as memory size grows exponentially with the dimensionality of the input domain.
There have been proposed some alternative memory organization proposals that optimize memory us-
age and achieve a linear proportionality between memory size and input dimensionality (Eichfeld et al.,
1992; Eichfeld et al., 1995; Hollstein et al., 1996), although these optimized organizations apply severe
restrictions to the allowed MF overlapping degree.

Input Stage: Pure memory approach to the MF representation is very flexible, but is very memory
demanding too. An alternative approach that saves memory resources consists in storing only some
values that define the shape, usually piecewise-linear, of the MFs. These values may represent both the
breakpoints and the slopes of the interpolating linear functions. The operations required to calculate
a membership degree are usually a search of the domain segment the input value belongs to, and the
computation of the linear function defined for each domain segment. The amount of linear functions
needed to describe a MF is limited, and the more complex shape is wanted the more memory must be
used to store the function parameters. There are very simple designs restricted to represent elementary
A, S or Z shapes (Ascia et al., 1997), and other more developed implementations capable of representing
more complex PWL functions (Eichfield, 1996; Halgamuge, 1994; Hollstein et al., 1996). The allowed
overlapping between MFs is also a concern, but in any case, the required memory is much lower than
for a look-up-table approach.

The drawback is the need for additional though quite simple, membership function circuits (MFC)
to compute the membership degrees. The use of pure MFCs (circuits that directly compute the MF
through an algorithm) to process the membership degrees in digital implementations, unlike in the
analog approach, is quite rare. These circuits approximate, with adjustable accuracy and full program-
mability, continuous nonlinear functions like Gaussians, sigmoidals or generalized bells that boost the
knowledge representation capability of the FISs with almost no memory cost (Basterretxea et al., 2002;
Basterretxea et al., 2006).

Rule processing: A common strategy that improves the performance of serial processing architectures
consists in evaluating only the active rules, that is, the rules with non-zero output. The active rules are
detected after calculating the membership degrees of the antecedents or by comparing the input values
with the supports of the MFs. When a non-zero fuzzified data is detected, the number of active MFs and
their degrees of membership are saved. Then, an associative memory in which the rule antecedents ad-
dress their consequents is accessed to retrieve the consequents of active rules. Any rule that shares a MF
that is not activated by a system input will have a null output, so there is no need for it to be processed
and computation time is saved. The active rule selection operation is critical for the active rule driven
processors and different implementations have been reported. Some of them perform the detection of
active rules in parallel with fuzzification (Weiwei et al., 2004), saving clock-cycles and reducing latency,
but are static non-adaptable selectors for predefined MFs. In the majority of designs, hence, the selection
begins late after fuzzification, as explained above (D’ Amore et al., 2001; Ikeda et al., 1992; Watanabe et
al., 1990). In (Ascia & Catania, 2000), an active rule selector that uses two fuzzification units to operate
in parallel is described, obtaining a process two times faster than for simple selectors. Another limitation
imposed by these designs is a severe restriction in MF overlapping, usually allowing the overlapping
of just two MFs. Moreover, these selectors are not scalable in terms of the number of inputs, MFs or
bit-width. Recently, some more sophisticated algorithms have been proposed to obtain fully scalable,
faster and overlapping restriction-free active rule detectors (Hamez et al., 2008).
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Asan increase in the dimensionality of the input space causes an exponential growth in the complexity
of the system when using grid partitions -this problem is known as the curse of dimensionality-, some
designers have searched for alternative architectures in order to tackle this problem. This is the case of
the above mentioned PWL and PWM fuzzy systems (Rovatti, 1998). In piecewise linear and multilinear
systems the inference procedure is reformulated to have a complexity O(n.log n), being n the number
of input variables. The underlying idea is a sort of active rule processing scheme applied to a restricted
fuzzy modeling. Imposed restrictions are as follows: the MFs are triangular shaped, they are normalized,
and they overlap in pairs. These constraints guarantee that, given an input vector, only two antecedents
per input dimension provide non-zero activation values, so a corresponding “active cell” is defined in
the input domain partition. Once this active cell is identified and its corresponding parameters loaded,
a single inference kernel processes the output (del Campo et al., 2008; Rovatti et al., 1998;). Of course,
this improvement in performance means storing many intermediate pre-computed results, so memory
requirements are notably increased. Similar architectures are proposed in (Baturone et al., 1998; Vidal-
Verd et al., 1998) for mixed analog/digital fuzzy chips.

Output Stage: The last of the processing units in a FIS, that is, the defuzzification stage, is of main
importance, as it is one of the most time-consuming operations. Generally speaking, defuzzification
requires multipliers, adders, substracters, accumulators and a divider. There are many defuzzification
methods proposed. The most common defuzzification method for hardware implementations is the
Center-of-Area, but it is not very hardware-friendly itself —although not so time consuming as the more
extended centroid of area—, so several alternatives to optimize the hardware have been proposed, usually
with the aim of avoiding the multipliers (Watanabe et al., 1990) or the divider (Ruiz et al., 1995). In any
case, defuzzification operations are not easily subject to rigorous mathematical analysis, so alternative
non Mamdani-like fuzzy inference systems that do not employ fuzzy consequences, such us the very
popular Sugeno-type fuzzy inference systems, have been widely used both in software and hardware
implementations.

With the aim of simplifying the implementation of fuzzy operators and reduce occupied area, some
researchers have worked on alternative representations of digital numbers that allow their serial pro-
cessing. These are the so-called pulse-based techniques, including stochastic computation, pulse-width
modulation and bit-serial arithmetic. In these alternative approaches, numbers are represented as streams
of'individual bits and system precision is controlled in time rather than in area. With the present gigahertz
clock rates, it is possible to compute numbers serially with highly pipelined architectures and achieve
good throughput while hardware complexity is dramatically reduced for high accuracy number repre-
sentations —see (Dick et al., 2008) and references herein—. Depending on the representation, arithmetic
operations like multiplication, probabilistic sums, and probabilistic negation in the stochastic repre-
sentation, or maximum, minimum, and difference in pulse-width modulation are performed by simple
two-input one-output logic gates. Bit-serial arithmetic operators are also much simpler than parallel-bit
implementations. The major drawback of these approaches is the high clock frequencies required, only
achievable by state of the art devices that may imply higher power consumption.

Analog Implementations
In spite of their design complexity and lower accuracy, analog realizations have sometimes been preferred

for their high speed, low area, and low power consumption, mainly for highly parallel and high input/
output dimensionality. Input-output delay times reported for various analog designs are as low as tenths
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Figure4. Current-mode analog fuzzy circuit examples: (a) transconductance membership function circuit,
(b) max operator (concept diagram), (c) min operator (concept diagram). Analog circuits use much less
transistors than their digital counterparts: an 8 bit resolution MF occupies 256 bytes of memory, and
around 430 transistors are needed to implement an 8 bit MAX/MIN CMOS digital circuit
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of microseconds (D’Amore et al., 2001; Peters et al., 1995), or even less —63 ns in (Amirkhanzdeh et
al., 2005)—. As they process the fuzzy rules in parallel, time response does not depend on the complexity
of the inference engine. When input signals are taken from sensors and output signals excite actuators,
using fuzzy analog chips avoids the use of A/D and D/A converters, since the majority of sensors and
actuators cope with analog signals. On the other hand, compared to the digital approach, analog designs
are less efficient with regard to rearrangement and programmability, and show relatively low accuracy,
although analog designers sometimes claim that this is not a severe limitation in view of the typical
demands of fuzzy control applications.

The first analog fuzzy chips were designed by Yamakawa (1988) in bipolar technology. Analog
design is much more “artistic” than digital design since it is less hierarchical and structured, and the
same specifications can be reached in many different ways. Consequently, it is more difficult to make a
taxonomical description of analog fuzzy chips, which are almost exclusively fuzzy controllers. In any
case, in the continuous-time analog design framework, two main design styles can be distinguished:
current-mode circuits and voltage-mode circuits. There are also some designs with transconductance
blocks, which work with voltages as inputs and currents as outputs. Current-mode circuits appear to
be the best suited option since basic fuzzy operations can be implemented with very few transistors.
Adding and subtracting operations are simple wire connections, and multiple input maximum and mini-
mum operators are also very simple circuits (Baturone et al., 1994; Lemaitre et al., 1994), as depicted
in Figure 4. Another advantage of current-mode circuits is that they are capable of operating with very
low voltage supplies. However, current-mode MFCs use current mirrors to replicate their outputs, as
their fan-out is 1. From the technological point of view, most current-mode designs use MOS (Metal
Oxide Semiconductor) transistors.

Voltage-mode circuits interface much better than current-mode circuits do with the majority of sensors
and transductors, which usually have voltage-mode output signals. Another advantage is that the input
and output signals of the circuits can drive various inputs at the same time with no need of additional
circuitry. Voltage-mode fuzzy chips usually use transconductance-mode MFCs based on differential-
pairs of transistors operating in weak inversion (Dick et al., 2008) or in strong inversion (Baturone et
al. 1994 ; Guo et al., 1996; Landlot, 1996; Lemaitre et al., 1994; Ota & Wilamowski, 1996; Peters et
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al., 1995; Rojas et al., 1996; Ruiz et al., 1995;.Vidal-Verdi & Rodriguez-Vazquez, 1995) to produce
smooth non-linear MFs, although there are some pure voltage mode designs, such as those circuits of
Yamakawa (1993) implemented in bipolar technology. Some researchers have exploited the subthreshold
operation mode of MOS transistors with floating gates to obtain very low consuming building blocks
with the ability to store information in the MOSFET (MOS Field Effect Transistor) gates (Marshall &
Collins, 1997). Voltage-mode designs are usually implemented with single ended amplifiers, resistors
and capacitors (RC-Active), or with differential amplifiers and capacitors (MOSFET-C). Transconduc-
tance designs use OTAs (Operational Transconductance Amplifiers) and capacitors as basic building
blocs. The OTA-based design is more structured, but it occupies more silicon area (Indue et al., 1991;
Tsukano & Inoue, 1995).

An alternative to continuous-time analog design is the use of switched circuits or discrete-time cir-
cuits. The aim of switched circuits is to obtain a superior precision and better programmability compared
to the classical analog designs, but maintaining a high processing speed with less area occupation and
power consumption than a digital counterpart. Switched design is based on the use of a clock-signal
to control the operation of switches, so the behavior of the circuit is controlled by the clock-period. A
drawback of switched design is that basic operations are not implemented at transistor level, but with
operational amplifiers or comparators, so the occupied silicon area is bigger. There are two main discrete-
time analog design techniques: switched capacitors (SC), which are voltage-mode and switched current
(SI), which are current-mode. Some discrete-time analog FIS implementations were published in the
nineties (Huertas et al., 1993; Fattaruso et al., 1994; Cilingiroglu et al., 1997). Going further, hybrid
analog/digital implementations such as those described in (Amirkhanzdeh et al., 2005; Baturone et al.,
1997, Bouras et al., 1998; Miki & Yamakawa, 1995; Yosefi et al., 2007) have been presented as a good
alternative to pure analog circuits, combining the strengths of both analog and digital approaches. In
these designs, analog circuitry is used to perform a highly parallel fuzzy inference engine with low area,
high speed and low power consumption, and digital circuitry is used to provide high programmability
and long term storage for the system parameters.

SCALABILITY AND NEW TRENDS IN FUZZY HARDWARE

As is clear from the preceding section, a great research effort was dedicated in the decade of the 1980s
and early 1990s to the design and implementation of fuzzy hardware. Many of those works were de-
veloped by means of ASIC technology with the aim of achieving high performance requirements for
real-time applications. As exposed above, this technology is suitable to fit the specificities of fuzzy
computation, but it suffers from several drawbacks such as low flexibility, long development cycles,
and a complex design methodology that results in expensive solutions that rapidly become obsolete.
However, the present situation of fuzzy hardware design is other than it was ten to fifteen years ago, as
is the design of any other complex digital system. Nowadays flexible solutions for high-performance
fuzzy computation may be easily developed and updated by means of user-friendly CAD (Computer
Aided Design) tools. This is a consequence of the development of new hardware platforms and new
design paradigms that have broaden the implementation choices by giving new freedom degrees and
new tools to the design process.

With regard to the platforms, the use of reconfigurable hardware —mainly FPGAs— and the integra-
tion of whole digital systems —processors, dedicated circuits, memory and other peripherals— on a single
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chip (System on Chip or SoC) has narrowed the gap between general purpose hardware and dedicated
hardware approaches, and between software and hardware. General-purpose fuzzy hardware imple-
mentations are rarely published nowadays, and there are no reports of new commercial fuzzy chips.
Instead, ad-hoc solutions targeted to specific applications are designed and implemented on configurable
hardware platforms. If the target application or its requirements change, the system is redesigned and
rapidly implemented by reconfiguring the hardware. In this sense, the present availability of synthesiz-
ers based on standard HDLs enhance desired properties of hardware architectures such us modularity,
reusability and scalability.

The scalability of a fuzzy system is closely related to the technology of reconfigurable hardware; it
measures the ability of the system to improve its performance after adding hardware, proportionally to
the new resources. This property is closely linked to the fraction of parallelism allowed by the algorithms
and the availability of resources in the target platform. Concerning fuzzy computation, a scalable fuzzy
system is efficient and practical when applied to complex situations such as multidimensional problems
with a large number of membership functions and a large rule base. A useful tool in designing for scal-
ability is the well known Amdahl’s Law (Amdahl, 1967) which gives a measure of the speedup that can
be achieved by exploiting parallel processing. It states that the maximum speedup that can be achieved
by adding new functional modules to the parallelizable fraction of an algorithm is limited by the frac-
tion of the calculation that is sequential. For instance, the inference algorithm in a FIS allows a certain
degree of parallelism but it necessarily involves a fraction of serial computation (the same states for
defuzzification algorithms). In summary, hardware designers have to carefully analyze the performance
and scalability issues before making decisions about the system architecture. Finally, note that the scal-
ability property, applied to electronic systems, is sometimes used to quantify specific requirements for
a particular dimension such as load, precision, etc.

Reconfigurable Hardware

With the aim of better understanding the state-of-the-art in reconfigurable hardware for fuzzy computa-
tion, let us briefly introduce some background concepts concerning FPGA technology. An FPGA is a
semiconductor device which can be configured by the user, after the chip is manufactured, to implement
virtually any digital function as long as its available resources are adequate.

Figure 5 illustrates the general structure of a typical static random access memory (SRAM)-based
FPGA. Most FPGAs consist of a matrix of configurable logic blocks (LBs), a configurable routing
structure, and /O blocks that drive the 1/O pads of the chip. A circuit is implemented in the FPGA by
programming each LB to implement a small part of the logic and by programming the routing structure
to make the necessary connections between LBs, while the I/0 blocks are programmed to operate as
either input pads or output pads. The programming information is a string of ‘0’ and ‘1’ (bitstream)
generated after automatic mapping of the design onto the FPGA. This information, commonly referred
to as configware, is stored in SRAM cells during the configuration process of the device (the configura-
tion memory is not shown in Figure 5). The actual circuit is easily updated by reconfiguring the device
with a new bitstream.

The whole development cycle of FPGA solutions is supported by user-friendly CAD tools, developed
by the vendors or third party companies, which dramatically reduce the development time. The inherent
reconfigurability of FPGAs, without additional costs, eases system prototyping and architecture update.
Although FPGAs cannot match ASICs in performance, the former delivers a better performance/cost
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Figure 5. Structure of a typical SRAM-based FPGA
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ratio than the latter whenever the parallelism can be exploited. Undoubtedly FPGAs outperform ASICs
in terms of the flexibility (in a broad sense) and development time.

Reconfigurable Fuzzy Processing

Since first fuzzy chips based on FPGAs were reported in the literature in the early 1990s (Manzoul &
Jayabharathi, 1994; Hossain & Manzoul, 1993), both the capacity and the performance of FPGA devices
have been greatly improved due to the rapid evolution of microelectronic technology over the past years.
Those preliminary works were devoted to the development of small scale fuzzy controllers, with no strict
requirements in performance or in power dissipation. Most of them used simplified approaches, mainly
look-up tables, to implement either the whole system or the most time-consuming operations (Hung &
Zajak, 1995; Manzoul & Jayabharathi, 1994: Manzoul & Jayabharathi, 1995). To overcome the capacity
limitations imposed by early FPGA technology, some researchers proposed the partition of the system
functionality into multiple programmable devices —e.g. FPGAs and EPROMs (Erasable Programmable
Read Only Memory)— (Hollstein et al., 1996; Hung & Zajak, 1995). In addition, FPGAs were also used
at that time with prototyping purposes, as a previous step to the fabrication of ASIC fuzzy chips with
better performance (Hossain & Manzoul, 1993).

Beside the technological evolution, FPGA design tools and methodologies have also evolved from
a design flow based on schematics to a more flexible design flow centered on HDLs. Standard HDLs,
namely VHDL and Verilog, are nowadays the most widely used mean to describe, simulate and syn-
thesize digital circuits. With the integration of HDLs into the design flow, the reconfigurable approach
has gained in flexibility, portability and scalability; HDL allows the designer to define generic and
parameterizable architectures which can be easily resized and resynthetized. Therefore, the scalability
problem associated with FPGA solutions has to do more with system modeling —i.e. HDL model- than
with electronic design. Towards the middle of the 90s, some researchers began to exploit the benefits of
HDL specifications to develop fuzzy hardware. Some of them went a step further by developing CAD
tools, mainly based on VHDL, for rapid prototyping of fuzzy hardware (Hollstein et al., 1996; Kim,
2000). The ultimate goal of these tools is to fulfill the requirements of a wide range of applications in
terms of fuzzy model type —fuzzy operators, inference mechanism, fuzzification and defuzzification
strategies—, complexity —number of 1/O variables and size of the rule base—, and performance.
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However, despite the methodological advances introduced by HDLs in the past decade, large fuzzy
systems still exceeded the size of a single device so they had to be split into several FPGAs. In this
situation, another way to tackle the problem of capacity limitation was proposed: the global run-time
reconfiguration method where the computation of the fuzzy system is divided into several temporally
independent tasks (Kim, 2000). Each task is configured onto a single FPGA, one task at a time, while
a memory board is used for storing the intermediate results between consecutive configurations. This
work can be seen as the first precedent in the field of fuzzy computation of the method nowadays known
as partial run-time reconfiguration method.

In the framework of present FPGA technology, previous drawbacks have been largely overcome and
current technology provides a realistic approach to the development of hardware for high-performance
fuzzy computation. Let us outline some significant examples. For instance, fuzzy logic has been suc-
cessfully applied to controlling the behavior of mobile robots. In (Li et al., 2003) the authors present an
FPGA-based car-like mobile robot which uses fuzzy rules to model the experience of a skilled driver to
perform the parking task. Two FISs were implemented on a single FPGA of the Altera’s FLEX family,
one to control the steering angle and the other to control the speed of the car. Fuzzy hardware based
on FPGAs has also been used in the field of image processing. In (Louverdis & Andreadis, 2003) the
authors propose a fuzzy processor suitable for morphological color image processing. The processor
is capable of performing the basic morphological operations of standard and soft erosion/dilation for
color images with 24-bit resolution. The prototype (54 rules) was implemented on a FLEX10K device
of Altera and provided a performance of 601 KiloFLIPS with a typical clock frequency of 65 MHz. A
survey of FPGA-based intelligent controllers for modern industrial systems can be found in (Monmasson
& Cirstea, 2007). This review includes the implementation of a fuzzy controller for a synchronous stand-
alone generator. The proposed design aims to improve the efficiency of diesel-engine-driven generators
by allowing optimum speed operation. The fuzzy controller was modeled and simulated using VHDL
and the prototype was synthesized and implemented into a low-cost Xilinx XC4010 FPGA. This solu-
tion greatly improved the control performance while keeping a high level of flexibility. Finally, another
perspective of the suitability of FPGA to develop fuzzy computation is provided in (Chowdhury et al.,
2008). This work presents the development of a smart processing FIS for clinical diagnostic applications
in rural areas of Third World countries. The authors point out that FPGA technology is very useful in
these countries due to low investment, portability, short design cycle and the scope of reprogrammabil-
ity for improvement without any additional cost. The whole system has been realized on an Altera’s
Cyclone II chip which can be interfaced with a wireless transceiver and other telecommunication media
for telediagnostic applications.

The Synergism between FISs and FPGAs

Summing up, in addition to the well known advantages of FPGAs, there are several specific advantages
of reconfigurable hardware technology that make it specially suited to implementing real-time scalable
fuzzy algorithms:

. Some FPGA families (e.g. Xilinx’s Virtex family) incorporate internal RAM blocks to the generic

structure depicted in Figure 5. These memory blocks are very useful for implementing large fuzzy
systems because of the huge amount of information involved in the definition of membership
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functions and rules that demands large on-chip memory resources. Distributed RAM blocks are
also useful for mapping memory-based approximations.

. The availability of a dense and flexible interconnection architecture (i.e. configurable routing in
Figure 5) fits the requirements of high performance FISs. Most fuzzy models can be viewed as a
layered structure, similar to an artificial neural network, where each layer consists of several par-
allel processing units densely connected with the neighboring layers. The interconnection scheme
of such systems requires high flexibility in the segmentation of the routing paths to avoid addi-
tional propagation delays.

. Modern FPGA families include higher level functionalities, such as multipliers or generic DSP
(Digital Signal Processing) blocks, embedded into the silicon. These resources are very useful
for implementing both the inference engine (e.g. Sugeno type fuzzy inferences) and the defuzzi-
fication stage because they are faster and occupy less area compared to if building them from
primitives.

. The capacity of FPGAs has increased according to Moore’s Law since the first families appeared
on the market, so, even very large fuzzy systems (e.g. data mining applications) may soon be
implemented on a single FPGA, provided that the architecture is scalable enough.

»  Rapid prototyping on FPGAs is a useful feature in developing for scalability. Reconfigurable de-
vices and tools allow the designer to develop fuzzy systems with different sizes and compare the
achieved performance in order to experimentally verify the scalability of the architecture.

In what follows we will continue to uncover potential advantages of FPGAs for fuzzy computation,
especially those concerning the latest advances in reconfigurable technologies.

Hardware/Software Codesign

In the last decade new design methodologies and tools have emerged to deal with the challenges of new
electronic platforms. In this sense, hardware/software (HW/SW) codesign (De Micheli, 1997; Wolf,
2003) has been proposed as an optimal solution for many systems where a trade-off between versatil-
ity and performance is required. This approach proposes the partition of the computation algorithms
into HW and SW blocks by searching for the partition that optimizes the performance parameters of
the whole system. A recent work in the field of fuzzy computation (Cabrera et al., 2004) concludes that
HW/SW solutions, with an adequate partition, can often outperform classical solutions, based either
on HW or SW, for designing high-speed and low-consumption fuzzy control systems. In this work the
authors implement the inference mechanism and a simplified defuzzification method in the hardware
partition whereas the remaining tasks (initialization, I/O processing, etc) are implemented in software.
On the basis of this partition of tasks, the authors present two HW/SW prototypes: 1) a medium complex-
ity FPGA interfaced with an external microcontroller, and ii) a single Xilinx’s Spartan2 FPGA with an
embedded microcontroller core. The main advantage of the second approach, where all the parts of the
fuzzy system are integrated in a single chip, is the direct interfacing of HW and SW modules with the
consequent savings in I/O delays and hardware resources.

Meanwhile, a milestone in the evolution of reconfigurable hardware has been to combine the logic
blocks and interconnects of traditional FPGAs (logic fabric) with embedded microprocessors and related
peripherals to form a system-on-a-programmable chip (SoPC). Some examples are the Excalibur family
of Altera (Altera Corp., 2002) which incorporated an ARM processor core, and the Virtex-II Pro, Vir-
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tex-4, and Virtex-5 families manufactured by Xilinx, which include one or more PowerPCs embedded
within the logic blocks (Xilinx Inc., 2008a). A similar approach, but less efficient in terms of area and
performance, consists in using soft-processor cores instead of hard-cores that are implemented within
the FPGA logic; two widely used soft-cores are the Xilinx’s MicroBlaze (Xilinx Inc., 2008b) and the
Altera’s NIOS processors (Altera corp., 2008). These new features of reconfigurable hardware have
been exploited to develop a new enhanced generation of fuzzy systems.

The analysis of the above mentioned works shows that to obtain efficient HW/SW architectures the
regular and recurrent computations have to be implemented in the hardware partition and the irregular
or less frequent computations are better suited to a software development (see Figure 6). For example,
the implementation of a PWL fuzzy controller using a SoPC of the Altera’s Excalibur family has been
reported in (Echevarria etal., 2005). The system is a three-input single-output PID (Proportional-Integral-
Derivative) fuzzy controller with a cellular architecture. The main processing blocks of the proposed
architecture are a hyperplane generator and a preprocessing module. On the one hand, since the hyperplane
generator is a typical sum of products, it has been efficiently implemented in the hardware partition.
On the other hand, the preprocessing module, which involves a sorting algorithm, has been developed
by simple software procedures. The ARM processor operates up to 200 MHz and the hyperplane unit
performs the evaluation of the output in only two clock cycles with a maximum frequency of 84 MHz.
Another approach to SoPC-based fuzzy computation can be found in (Sdnchez-Solano et al., 2007) where
acomplete design methodology and tool chain is presented. The proposed design flow combines standard
FPGA implementation tools with a specific environment (Xfiuzzy) for the development of fuzzy controllers
as IP (Intellectual Property) modules. The design flow has been used to develop a fuzzy controller, on
a Xilinx’s Spartan device, for solving the navigation tasks of an autonomous vehicle. 60% of the FPGA
resources are dedicated to implementing the MicroBlaze soft core and its associated components, and
the remaining 40% corresponds to the fuzzy inference IP core. Both the processor and the fuzzy core
operate with a 50 MHz clock; the fuzzy core completes one inference in 16 clock cycles.

However, the impact of using configurable hardware and HW/SW codesign techniques is greater
when hybrid systems, based on the synergism of fuzzy logic and other computational intelligence tech-

Figure 6. HW/SW co-design for fuzzy computation: a SoPC-based solution
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niques (mainly neural networks), are considered. Hybrid neuro-fuzzy systems combine typical fuzzy
systems with the learning algorithms of neural networks. The latter are used to adapt parameters of the
fuzzy system as membership functions or rules. A few years ago, Reyneri (2003) performed an in-depth
analysis of the implementation issues of neuro-fuzzy hardware. This work points out the limitations,
advantages and drawbacks of different implementation techniques and draws attention to HW/SW code-
sign as the most promising research area concerning the implementation of neuro-fuzzy systems, since
it allows the fast design of complex systems with the highest performance/cost ratio. Recently, several
publications account for HW/SW solutions for neuro-fuzzy computation (del Campo et al., 2008, Kung
& Tsai, 2007; Reyneri & Renga, 2004).

In (del Campo et al., 2008) an efficient HW/SW implementation of an adaptive neuro-fuzzy system
based on a SoPC is presented. The Excalibur device family, which embeds an ARM processor core, has
been used to prototype a neuro-fuzzy architecture. The microprocessor performs the learning algorithm
(gradient-descent method plus least-square estimator) and the [/O data processing, while a Sugeno-type
inference algorithm is implemented in the FPGA logic fabric. The main motivation to develop a hetero-
geneous HW/SW solution is the nature of neuro-fuzzy algorithms: the embedded processor provides
flexibility and high precision to implement the learning algorithms, while the logic fabric allows the
development of parallel hardware for high-speed fuzzy inferences. Along the same line is the adaptive
fuzzy controller for speed control of a permanent magnet synchronous motor drive developed in (Kung
& Tsai, 2007). The authors argued that the modules requiring fast processing but simple computation
are suitable to be implemented by hardware, whereas control algorithms with heavy computation can
be realized by software. They selected a device of the Altera’s Cyclone family and a soft processor core,
the NIOS II IP core, to develop the prototype.

Another recent proposal in HW/SW fuzzy computation is the context switchable fuzzy inference
chip (Qao et al., 2006). The authors have developed a reconfigurable fuzzy inference chip (RFIC) on a
Virtex I FPGA which allows for online changes in the rules. The RFIC uses a formatted memory map to
encode the fuzzy relational knowledge and the inference model. Any change in the rules (context switch)
is achieved via a loadable register, so there is no need to reconfigure the FPGA. A remarkable feature
of this work is the suitability of the RFIC to develop evolvable fuzzy hardware. The block architecture
suggested by the authors consists of the RFIC as fuzzy processing unit and an evolution module that
generates the new context. The evolution module (i.e. genetic algorithms) can be developed by using a
processor core. If the architecture is developed as a SoPC, it supports intrinsic hardware evolution (real
hardware is used during the evolutionary process). The potentiality of this trend will be analyzed later
after introducing partial reconfiguration techniques.

Although HW/SW solutions enhance reconfigurable hardware, there are also a few drawbacks that
have to be considered. The main drawback is the bottleneck of the HW/SW interface. The communication
overload between the microprocessor and the HW block can reduce the whole system performance. To
avoid this problem, the transfer rate of data and parameters has to be high enough to take advantage of
the parallelism of hardware. The limited bandwidth of the HW/SW interface is also an important obstacle
in designing for scalability, no matter what the scalability of the hardware or the software may be. In
this sense, a different kind of architecture known as network-on-chip (NOC) has been proposed recently
to deal with the communication problem in an efficient way. NOCs feature a router-based network for
on-chip communication among different cores (i.e. processor cores, memories and specific IP cores).
This emerging paradigm, as yet unexploited in the field of fuzzy computation, is suitable for the design
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of reconfigurable fuzzy systems with a high level of parallelism, better performance and enhanced scal-
ability in comparison with a conventional bus-based architecture.

Dynamic Partial Reconfiguration

Dynamic partial reconfiguration is a new design methodology for reconfigurable hardware that consists
in the ability to reconfigure selected parts of an FPGA anytime after its initial configuration while the
device is still active (run-time reconfiguration). Potential advantages of partial reconfiguration for fuzzy
hardware are multiple: self-reconfiguration, adaptability, scalability, reduction of power dissipation, and
reduction of device size, among others.

The most popular partially reconfigurable architecture is the Virtex Il series of Xilinx. These SRAM-
based FPGAs have a fine-grained architecture, similar to that depicted in Figure 5, but improved with the
addition of RAM blocks and hardware multipliers. Parts of the hardware on the reconfigurable device can
be changed at run-time by reprogramming only selected SRAM cells of the configuration memory, while
all other parts stay unaffected and operative. The device has different internal and external reconfigura-
tion interfaces of which the internal configuration access port (ICAP) is of particular interest because it
is accessible from the components within the FPGA (see Figure 6). Thus, a processor core embedded in
the FPGA can be used to control the internal configuration port during run-time. Since the system itself
decides to load new configuration data and initiates the reconfiguration task, this reconfiguration style
is known as self-reconfiguration. The above ideas have inspired the development of new approaches for
fuzzy computation, the evolution of reconfigurable hardware being the most innovative.

The configuration bitstream of a FPGA determines the function implemented by each logic block and
each interconnection switch (see Figure 6). Adaptation of the circuit functionality is achieved by modifi-
cations in the bitstream, in the same way that evolution of living beings is accomplished by modification
in the DNA strings. In this sense, there is an analogy between the bitstream in a FPGA and the genetic
sequence in living beings that has pushed researchers to apply the principles of artificial evolution to
reconfigurable hardware design. Concerning FPGA, evolvable fuzzy hardware uses genetic algorithms
for searching for a bitstream (i.e. genome) that configures the device with a circuit that satisfies the
design specification. Upegui (2005) proposes three methodologies for evolving hardware by means of
dynamic partial reconfiguration of the Virtex II family. Each methodology is related to a different level
of abstraction and granularity in the elementary components used to evolve the circuit: modular evolu-
tion, node evolution, and bitstream evolution.

Node evolution methodology has been applied to evolve fuzzy computation hardware in the pioneering
work by Mermoud et al. (2005). They use the difference-based reconfiguration flow (Eto, 2007) where
the designer is able to change the configuration of FPGA components such as LUTs (Look-Up Tables),
multiplexers, RAM blocks or I/O resources. After the modifications have been performed, a partial bit-
stream can be generated including only the differences between the initial and modified bitstream. Since
only a limited number of bits are changed, the reconfiguration time is considerably reduced if compared
with the reconfiguration of a full bitstream. In this application, system evolution implies the modifica-
tion of LUT functions. The proposed implementation co-evolves two species (i.e. MFs and rules) in a
4-input single-output FIS with 3 triangular MFs per input and a total of 20 rules. The genome describing
the FIS consists of two individuals; the first one encodes the vertices of the triangular antecedents while
the second one encodes the connections between the antecedents and the rules, the fuzzy operators and
the consequents. The genome encoding is a key feature of the scalability of the system; it can be easily
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extended to increase the number of inputs and/or rules of the FIS. The main drawback of this solution is
that each partial bitstream has to be generated externally by the FPGA vendor tool. However, to overcome
this limitation, the authors are refining the implementation in order to allow on-chip evolution (Upegui,
2006). Performing on-chip evolution on FPGAs is a promising trend for fuzzy computation and adapt-
able systems, however, there is still much research effort to be done in this area.

HARDWARE FOR FUZZY DATA-MINING

Fuzzy data-mining techniques such as fuzzy clustering or fuzzy decision-tree algorithms are not fuzzy
rule-based processing schemes. In fact these algorithms are used to find structure in raw data, so very
often are useful for generating fuzzy rules not from expert knowledge but from non-directly interpretable
data sets. Hence, hardware design for fuzzy data-mining algorithm processing, except for the possible
need of input fuzzification or the use of common fuzzy operators such us max or min, has little to do
with the systems previously analyzed in this chapter. In any case, data-mining algorithms have been
traditionally implemented by software applications running on GPPs, since flexibility, scalability and
good interface with data-bases is more important for these systems than computation time, area or power
consumption. However, due to the increasing amount of data to be processed by data-mining algorithms
and the more and more frequent high speed processing specifications, the hardware development for
parallel processing or coprocessing of data-mining algorithms is gaining relevance. A few papers and
reports on hardware design and implementations for fuzzy data-mining algorithms speed up have seen
the light in the last few years, mainly related to fuzzy clustering algorithms. Let us review some of them
in this section.

Multiprocessor architectures: One of the characteristics of data-mining algorithms to be exploited
for process acceleration is their intrinsic parallelism, so the first steps to speed up data-mining applica-
tions have been oriented to algorithm parallelization. The main data-mining algorithms, fuzzy set theory-
based ones included, have been investigated with the aim of speeding up their processing: association
rule-based (Agrawal & Shafer, 1996; Shen et al., 1999), decision trees (Kubota et al., 2000) and fuzzy
decision trees (Kim et al., 1999), clustering (Boutsinas & Gnardellis, 2002), and fuzzy clustering (Mode-
nesi et al., 2007; Rahimi et al., 2004). The hardware implementation of the parallelized algorithms has
been performed in various manners using conventional processors, such as by using distributed memory
(Modenesi et al., 2007; Xu et al., 2003) or shared memory multiprocessor architectures (Jin et al., 2005;
Modenesi et al., 2007; Syeda et al., 2002;), or in grid environments (Cannataro et al., 2004). All of them
report good scalability figures.

Regarding fuzzy data-mining algorithms, in (Modenesi et al., 2007) for instance, a fuzzy C-means-
based parallel cluster analysis is performed in two multiprocessor architectures: a PC cluster and a
multiprocessor machine. Unlike in previous published parallel implementations, where only strategies
to distribute the iterative process to find cluster centers are considered, this work describes how to
parallelize the entire cluster analysis, including the determination of cluster centers and the optimal
number of clusters by computing a cluster validity index. This is an iterative process where the cluster-
ing algorithm is computed for a range of number of clusters and the performance index is computed for
every partition generated. When all partitions have been computed, the partition corresponding to the
maximum performance index is chosen. The algorithm begins by splitting the data equally among the
available processors. Each processor computes de geometrical center of its local data and communicates
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this center to a master processor, which sets the initial centers and broadcasts them so that all proces-
sors have the same centers values at the beginning of the fuzzy C-means clustering algorithm. After
convergence is achieved in a processor, a distance factor needed to calculate the global validity index
is computed in its local data and this value is sent to the master, where the validity index is calculated
and stored. If the range of number of clusters is covered, the algorithm stops, otherwise returns to the
set of initial centers performed by the master processor. This whole procedure is repeated as many times
as the desired range of number of clusters to obtain the partition with the best performance index. The
authors conclude that the bigger the datasets are, the more variables implied and the more number of
clusters to be generated, the higher the speeding up of the algorithm in multiprocessor computation is,
that is, it behaves in a scalable manner.

The same research team has investigated a multiprocessor based parallelization of fuzzy rule based
classifiers by deriving a fuzzy rule based classifier for each input variable to aggregate the partial con-
clusions into a global one (Evsukoff et al., 2005). In this case, a single variable classifier is assigned to
a different processor in a parallel architecture, and partial conclusions are synchronized and processed
by a master processor. This approach is applied to a very large database and results are compared with
a parallel neural network architecture.

Reconfigurable hardware: In recent years some efforts have been focused on designing ad-hoc
hardware accelerators to speed up data-mining workloads. As clustering algorithms are, to some ex-
tent, data streaming applications, experimentation on their implementation on data streaming targeted
off-the-shelf hardware can be found, as in (Harris, 2005), where a fuzzy C-means adaptive algorithm
is programmed on a commercial graphic processing unit. With the maturing of FPGA technology, re-
searchers working on intensive data-mining applications immediately became aware of the benefits of
exploiting the fine-grain parallelism and scalability easiness of reconfigurable logic devices as hardware
coprocessors: exploring the properties of a FPGA coprocessor system in the domain of query process-
ing for computation-intensive data mining applications (Leung et al., 1999), implementing clustering
algorithms on reconfigurable fabrics (Baker & Prasanna, 2005; Estlick et al., 2001), improving the data
transfers for large data sets (Zhang et al., 2004) or developing text mining IP-cores for FPGAs (Free-
man & Jayasooriya, 2006) . In (Choundary et al., 2007), for instance, the authors describe a generic
data-mining system architecture that can be customized for specific applications. This is achieved by
implementing kernels with very time-consuming data-mining specific calculations on reconfigurable
hardware (FPGAs). Once the critical kernels of various data-mining algorithms are identified, specific
hardware can be implemented to process them in a processor/coprocessor architecture. Since kernels
remain the same for a given application, the required logic can be loaded before the process begins by
programming the FPGA. In the case study performed by these researchers, the fuzzy C-means is one of
the analyzed algorithms. The kernels identified as critical for this algorithm are the clustering process,
the distance calculation and the fuzzy sum. Ad-hoc hardware logic for these kernels is designed and pro-
grammed in a FPGA. The system has been tested with datasets of various sizes, and it has been observed
that the bigger the dataset the bigger the improvement in the speed up. The authors report overall speed
ups from 11x to 80x in the fuzzy C-means algorithm. Besides this, the experimental results strongly
suggest that the designed system is scalable.

High performance reconfigurable computing: A relatively new and very promising research field
on high performance computing that can be naturally targeted to intensive and/or real-time data-mining
applications is the one known as high performance reconfigurable computing (HPRC). HPRC combines
parallel processing theory and techniques used in high end supercomputers and computer clusters with
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state-of-the-art hardware acceleration devices, such as the most advanced FPGAs. These systems are
able to exploit coarse-grained functional parallelism as well as the fine-grain parallelism intrinsic to the
FPGA internal architectures (Buell et al., 2007). Nearly all major high performance computing vendors
such as SRC Computers (SRC-7family), Cray (XR1) or Silicon Graphics (RASC Technology) now have
HPRC highly scalable product lines, reflecting a clear belief in the huge potential of reconfigurable
computing. The first parallel-computing architectures including FPGAs were not designed to be scalable,
but recent HPRC computers use stackable crossbar switches connected to parallel buses that allow for
implementing different, highly scalable topologies. Commercial firms such as Nallatech, for instance,
have introduced a family of scalable cluster optimized FPGA HPRC products to either upgrade exist-
ing HPC cluster environments or to build new clusters with off-the-shelf FPGA computing technology
(Cantle, 2006).

Some vendors like Exegy have developed specific data mining targeted systems by combining
software with reconfigurable hardware to produce applications that perform at hardware processing
speeds, while retaining the flexibility of software (Dutcher, 2006). Exegy claims its systems have vir-
tually zero latency and near linear throughput gains by adding appliances (linear scalability). For the
highest performance systems, where 1/O band and FPGA interface latency requirements are higher than
standard parallel buses (PCIx) can offer, specific solutions for data [/O management are implemented.
Some examples are Silicon Graphics’ RASC blade technology and NUMAIink® interconnect with its
Scalable System Port solution, SRC’s Hi-Bar Switch for its SRC-7 family, and Cray’s SeaStar2+ for its
XR1 Reconfigurable Processing Blade. HPRC provides performance increases that are often of orders
of magnitude compared to scalar microprocessors-only-based solutions. In addition, power consumption
per gigaflop (floating-point operation per second) is dramatically reduced, form factors are diminished,
and the overall price/performance ratio is notably lower. All these promising features make us think
HPRC will soon be a preferred option for cutting edge fuzzy (and non-fuzzy) data-mining algorithm
processing of large data-bases.

CONCLUDING REMARKS

In this chapter we have seen that electronic hardware design for fuzzy computing has been a very ac-
tive research field during the last twenty years, beginning early after the first successful applications of
fuzzy inference systems were published. Specificity of fuzzy processing computational characteristics
combined with high speed, small area, and/or low power requirements have pushed designers to inves-
tigate into new hardware implementations to obtain high performance fuzzy ASICs targeted to specific
applications, which generally have been fuzzy controllers. Both the digital approach and the analog ap-
proach have been followed in the design process, producing fuzzy chips with distinctive performance
characteristics, strengths and weaknesses. However, in the last decade the number of reported works
on FIS analog implementations has suffered a progressive decay that clearly shows a loss of interest
in this technology for applications in this area. This tendency is closely related to the never ending and
comparatively much faster advances in digital technologies, and more precisely, to the rapid develop-
ment of digital reconfigurable devices and the associated drastic changes in design and implementation
methodologies.

The consolidation of reconfigurable hardware, particularly FPGA technology, together with the stan-
dard use of hardware description languages for digital system modeling have revolutionized the field
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of digital system design in many areas, particularly in fuzzy hardware design. New design methodolo-
gies such as the hardware/software codesign, and bioinspired techniques such as the genetic algorithms
have produced novel and more efficient and flexible hardware designs and have broadened the research
perspectives in this field:

. HW/SW co-design techniques, applied to the development of SoPCs, make it possible to imple-
ment a complete fuzzy inference system, including system peripherals, on a single chip with the
consequent savings in size, cost and power consumption.

. Several present applications of fuzzy computation require enhanced capabilities to deal with com-
plex problems. This feature involves the hybridization of the fuzzy algorithm with other tech-
niques poorly suited for hardware implementation. Thus, the heterogeneity (HW/SW) of SoPCs is
tailored to the computational demands of hybrid fuzzy systems.

. Current design methodologies for FPGAs promote the use of soft IP cores (i.e. netlist or HDL) as
building blocks for complex hardware design. The availability of reliable and previously tested IP
cores addresses the needs for rapid prototyping, design reuse and scalability.

. Partial hardware reconfiguration is emerging as a promising solution to enhance digital fuzzy
hardware with the capability of self-adaptation. Although this technology is not yet mature, it is
expected that over the next few years FPGA manufacturers improve design tools to fully support
dynamic partial reconfiguration.

Hardware design for fuzzy data-mining, which traditionally has been implemented on general purpose
machines, has become the object of investigation in the last few years as a consequence of the huge
amount of data to be processed and the more frequent requirements for high speed applications. On the
one hand, various hardware coprocessors for speeding up data-mining algorithms have been recently
published. On the other hand, recent advances in high performance reconfigurable computing foretell
a very promising outlook for low cost, high performance, linearly scalable data-mining processing
environments. Nevertheless, there are still some challenges for HPRC applications that must be faced:
double-precision floating-point performance, memory bandwidth and ease of use of development tools
for HPC programmers not familiarized with electronic engineering computing EDA tools are some of
these.
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! In pipelined designs attention must be paid, of course, to possible variations in the system through-

put when new inputs are introduced to the system.
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ABSTRACT

This chapter examines how to scale algorithms which learn fuzzy models from the increasing amounts
of labeled or unlabeled data that are becoming available. Large data repositories are increasingly
available, such as records of network transmissions, customer transactions, medical data, and so on.
A question arises about how to utilize the data effectively for both supervised and unsupervised fuzzy
learning. This chapter will focus on ensemble approaches to learning fuzzy models for large data sets
which may be labeled or unlabeled. Further, the authors examine ways of scaling fuzzy clustering to
extremely large data sets. Examples from existing data repositories, some quite large, will be given to
show the approaches discussed here are effective.

INTRODUCTION

Scaling fuzzy learning systems can be a challenge, because the search space for fuzzy models is larger
than that of crisp models. Here, we are concerned with scaling fuzzy systems as the size of the data grows.
There are now many collections of data that are terabytes in size and we are moving towards petabyte
collections such as a digital Sloan sky survey (Giannella et al., 2006, Gray and Szalay, 2004).
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Iflearning fuzzy models requires more computation time than learning crisp models and it is a struggle
to enable crisp learning models to scale, can we scale fuzzy models of learning? The good news is that
scalability is certainly possible as the number of examples grow large or very large. We do not examine
the issues with large numbers of features which are a significant problem, for at least supervised fuzzy
learning.

Methods for scaling supervised fuzzy learning methods and unsupervised fuzzy learning methods
(though only clustering algorithms) will be discussed. An obvious approach is to subsample the data
such that each subset is a size that is amenable for learning, but captures the information inherent in the
full data set. It is a good approach, but one that has pitfalls in knowing when to stop adding data to the
training set (Domingos and Hulten, 2000). Some good papers in the area of subsampling are (Provost
and Kolluri, 1999,Wang et al., 2008, Provost et al., 1999, Pavlov et al., 2000). Decomposition of the
data is the other major approach one can envision. It is this approach, leading to an ensemble or group
of models that is the focus of this chapter.

For labeled data which enables supervised learning, We will show that an ensemble approach can
be used to increase the accuracy of the fuzzy classifier. This is a necessary condition to working with
disjoint subsets to enable the construction of fuzzy classifiers on very large data sets. However, we will
focus on relatively small data sets where the goal is to increase accuracy, not to scale. The same ap-
proach using disjoint subsets will allow for scalable fuzzy classifiers to be developed. For unsupervised
learning, examples will be given which show that the clustering approaches presented here produce data
partitions which are comparable to those obtainable when clustering all of the data.

Ensembles

An ensemble, for our purposes, is made up of a set of models. The models may be created through super-
vised or unsupervised learning. The models in the ensemble need to be diverse. The idea of diversity is that
they make different types of errors and in the aggregate errors are corrected (Banfield et al., 2005).

The models may be created from different underlying learning algorithms. However, the most com-
mon way to create an ensemble is to use different data sets and the same underlying learning algorithm.
A common approach is to use bootstrap aggregation or bagging (Breiman, 1996), which is selection
with replacement to create different training data sets. This has the effect of weighting the data, as some
of it is left out (0 weight) and some of it is duplicated (doubled, tripled or more in weight). On average
about 63% of the training data will be in a given bag which is the same size as the training data. The
assumption that the training and test data are independently identically distributed is implicit in bagging.
The use of bagging to create an ensemble typically improves the classification accuracy (Banfield, et
al., 2007, Dietterich, 2000).

Boosting is another popular algorithm for creating ensembles of classifiers (Freund and Schapire,
1996). It focusses on misclassified examples by giving them a higher weight. For our purposes, it is a
sequential algorithm (you do not know what is incorrect until the next model/classifier in the ensemble
is built). There have been efforts to make it scalable (Chawla, 2004), but they have not been applied to
fuzzy classification approaches.

As fuzzy learning algorithms typically scale poorly with the number of training examples, methods
that allow for minimal training data set sizes, but produce accuracy comparable to all the data are desir-
able. Recent work has shown that an ensemble can be created from disjoint training data sets or data sets
that have no overlap and obtain accuracy on unseen test data that is equivalent (or sometimes better) than

32



Scaling Fuzzy Models

training on all of the data (Chawla, et.al. 2001). For large data sets, this means you can build classifiers
in parallel on subsets of the training data to get the same accuracy as training with all of the data. Now,
you can train on data that would not fit in main memory, for example.

Scaling Supervised Fuzzy Learning

There are a number of ways to scale learning. Subsampling the data for a smaller training set is an impor-
tant approach. As the number of fuzzy rules grow with the number of features, effective feature selection
can be a big help. Other approaches are to optimize the learning algorithm or develop algorithms which
scale better, at perhaps the cost of some precision.

In this section, we focus on one particular approach using ensembles. Essentially, this is the subsam-
pling approach with a twist that all of the training examples are used by the union of classifiers in the
ensemble. Each learning algorithm will get a unique set of training examples. It is certainly also feasible
to give them overlapping sets, but for true scalability to very large or extreme data unique or disjoint
sets are likely the best. You will overall use less data with the disjoint data sets, which may be important
when the size of the data is very large. A disjoint data set can be given to each learning algorithm for
building a classifier which will almost certainly result in a diverse set of classifiers.

In order to be confident that the combination of classifiers built on disjoint data sets will result in
accuracy comparable to building a single classifier on all the data, it is useful to look at experiments
with smaller data sets. We will present experiments using 20 smaller data sets and bagging to show that
bagging can improve the accuracy of fuzzy classifiers. Where bagging works, one can expect that classi-
fiers built from disjoint data subsets of reasonable size can be combined to produce accuracy comparable
to learning on all the data (Shoemaker et al., 2008). So, our experiments here show that bagging can be
applied to increase the accuracy of fuzzy classifiers.

The classifiers in the ensemble do not need to be of the same type. However, the most typical con-
figuration is to use classifiers that are all of the same type. We will illustrate the idea of an ensemble of
classifiers by using the ANFIS (Adaptive Neuro-Fuzzy Inference Systems) fuzzy neural network (fl-
toolbox, 2006) learning algorithm to generate classifiers. It is widely available as part of the MATLAB
Fuzzy Logic Toolbox.

An adaptive network can be considered as a superset of feed-forward neural networks with supervised
learning. ANFIS is a type of Neuro-fuzzy network which has the fuzzy rules embedded within the neural
network. Figure 1 shows the structure of an adaptive network. Node functions are represented by squares
if they have parameters, which make them adaptive, and by circles if they do not have parameters. The
links have no associated weights and they only represent direction flow. For further details on ANFIS,
see (Jyh and Roger, 1993).

The ensemble building approach here is simple. It is a modification of bagging (bootstrap aggrega-
tion) (Breiman, 1996) in which training sets are selected from the overall data by selecting data, with
replacement, until a bag of the chosen size (usually 100%) is created. This essentially re-weights the
examples in the training set for each classifier.

For scalability, one would simply divide the data into n disjoint subsets of tractable size. Learn n
classifiers using ANFIS. Then, given a test example you will get n fuzzy predictions. These need to
be combined. They can be combined by using a majority vote (e.g. harden each decision and take the
class that most often has the highest fuzzy membership). Perhaps a better combination is to add up all
the fuzzy memberships and average them. Then take the higher average membership. The reader can
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Figure 1. Structure of an Adaptive Network

certainly think of other possible, combination methods which may be better, but we will present the
above two.

The approach of building » classifiers trained on disjoint subsets of data and then combining them
has been shown to provide accuracies comparable to those obtained using all the data (Shoemaker et al.,
2008). The advantages are that each classifier can be trained in parallel on tractable size data sets. This
can enable learning from data which cannot be fit in computer memory or that will require calculation
time that is not feasible for the problem. It allows for using more data in the training process (all of it for
example) than you could if you subsample to enable timely learning. Experimental evidence has shown
that this approach is successful with decision trees and neural networks as the underlying base classifiers.
As long as the classifiers make different errors (have a diversity of responses) and have “reasonable”
accuracy, one can expect that any underlying learning algorithm can be exploited to produce the classi-
fiers (Kuncheva, 2004). If fuzzy classifiers which make different errors, but generally have comparable
accuracy, can be constructed an ensemble approach may work for them.

There has not been very much work on ensembles of fuzzy classifiers and no work that we are aware
of on scaling fuzzy classifiers for really large data sets. A clear reason for this is the fact that fuzzy
classifiers have been found most useful for their explanation capabilities. That is, they are very good at
producing understandable sets of rules (Klawonn et al., 1996). If you have very large data sets where
you get lots of fuzzy rules and even worse have to combine them, you will lose the understandability.
Then the question becomes did you get a fast, accurate overall classifier. People have either not obtained
more accuracy through ensembles of fuzzy classifiers or not tried this approach to get higher accuracy.
Perhaps because of the loss of interpretability.

In the following subsection, we will show up some results from bagging ANFIS classifiers. The posi-
tive aspect of the results is that you can get a statistically significant increase in accuracy on a number
of data sets using bagging and a fuzzy learning approach. Of course, an interpretable set of rules no
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Table 1. The 20 data sets used.
and classes are shown

The number of attributes used, the total attributes, number of instances

Data Set Attributes used Total Attributes # Instances # Classes
balance scale 4 4 625 3
breast 6 9 699 2
cme 6 9 1473 3
dermatology 6 34 366 6
glass 6 9 214 7
haberman 3 3 306 2
heart-statlog 6 13 270 2
Ionosphere 6 34 351 2
iris 4 4 150 3
monks1 6 6 432 2
monks2 6 6 432 2
newthyroid 5 5 215 3
page-blocks 6 10 5473 5
phoneme 5 5 5404 2
pima (5) 5 8 768 2
satimage_test (6) 6 36 2000 6
Tae 5 5 151 3
vehicle (6) 6 18 846 4
wine (6) 6 13 178 3
yeast (4) 4 8 1484 10

longer exists. The results also suggest that scalability using disjoint training data sets without a loss in
accuracy is attainable.

Experiments and Results

The ANFIS classifier was tested on twenty data sets, both without bagging and with 2 types of vote
counting for the bagged ensemble (Canul-Reich et al., 2007). Each bag of training data was of the same
size as the original training data, often called bagging at 100%. So, each of training data sets consisted
of examples chosen at random with replacement from the original data. The data sets were all public
domain mostly from the UCI repository (UClrepository, 2006). ANFIS results are typically poor for
datasets with more than six features due to the size of the fuzzy search space. In the data mining tool,
Weka (Weka, 2006), the gain ratio feature selector was used to choose the best 6 features for data sets
with more than six features. Table 1 shows the characteristics of the data sets used.

Each experiment on a data set begins with a stratified separation of the data into approximately 2/3
of the examples for training, and the remaining examples (approximately 1/3) for testing. The strati-
fication process is intended to preserve the class distribution present in the original data set for both
training and testing sets. Then for each of 100 bags, the bag of data was created by randomly drawing
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with replacement from the stratified training set until the number of examples in the bag equals the
stratified training set size. This bag probably will have numerous instances of examples that are in the
bag more than once. Conversely, some of the examples in the stratified set will not be drawn and put
into the bag. These out-of-bag examples are used for the checking or validation set. The checking set is
used by ANFIS to prevent overfitting the training data, especially if the data has noise or if the number
of training epochs is large.

In order to evaluate both methods of bagging with a single classifier that does not use bagging, one
instance of each unique example in the stratified training set was used to create the training data set.
This can also be viewed as simply removing all duplicates or multiple instances of examples from the
bag. This method uses the same checking set used for the bagging trials, which should provide a fair
comparison of bagging vs. no bagging.

ANFIS was run using the data in the newly formed training set (either a bag or that bag with du-
plicates removed) as an input to train the FIS (Fuzzy Inference System). A separate checking FIS is
generated that captures the parameters of the training FIS in the epoch of minimum error, which results
in a more accurate model. When the training process is complete, the checking FIS is used to classify
the unseen test data.

The above process was repeated in each experiment for the number of bags we chose to use for
experiments, which was 100. Each new bagged and non bagged classifier was formed from the same
stratified training set that was selected from the entire data set before the first bag was formed.

When all 100 classifiers have been created, two different types of ensemble voting were performed
on the outputs generated by the checking FIS for test examples. In the first type of voting, the predictions
for each test example consisted of the defuzzified outputs from the checking FIS. These real numbers
are rounded to crisp values (whole numbers) and any resulting value that is invalid or out-of-range is
changed to the closest valid class value. Then the 100 crisp votes are counted and the predicted class
for the example is the one with the majority of votes. In the case of ties, the class with the lower number
wins.

Here, we note that just one output is used to discriminate among classes. In the other type of ensemble
voting, the 100 defuzzified votes are simply added. Then the mean or average value is determined.
This value is then rounded to a valid, crisp class value and is designated as the class predicted by the
ensemble. For example, consider the case of 3 classifiers predicting 0.4, 1 and 0.4 respectively for a
sample (prediction < 0.5 means class 1 and prediction > 0.5 means class 2). Under the majority-of-votes
criteria, these individual predictions are clearly 1, 2, 1, resulting in a majority of votes for class 1. Under
the mean-of-defuzzified-votes criteria, the mean of the three original predictions is calculated, that is
0.6, resulting in a combined prediction for class 2 for the sample.

The process described above was performed 25 times and average accuracies are reported.

Analysis of Results

In Table 2 the average test accuracies are shown for 25 test runs using the ANFIS checking FIS for 10
epochs. A visual representation of these results is shown in Figure 2.

Figure 2 shows higher accuracy was achieved with the defuzzified ensemble voting method on
fifteen out of twenty test data. The worst accuracy consistently came from the majority vote bagging
ensemble method.
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In Table 3 the average test accuracies are shown for 25 test runs using the ANFIS checking FIS for
20 epochs.

Table 3 and Figure 3 indicate that higher accuracy was achieved on the glass and yeast data sets with
bagging using the defuzzified mean.

Figure 4 shows a head-to-head comparison of 10 vs. 20 epochs for test accuracies using defuzzified
voting of predictions from the checking FIS generated using bags of data. The accuracy with 20 epochs
was greater than or equal to that of 10 epochs, except for the iris and newthyroid datasets.

The significance of the accuracy difference between bagging and a single classifier was evaluated
using the Friedman-Holm Test, which was discussed in (Demsar, 2006). The procedure allows the com-
parison of two or more classifiers over multiple data sets and determines whether there is a statistically
significant difference in the accuracies. It uses the ranks of the classifier on each data set, ranging from
1-3 here. Ties of 1, for example, are each given 1.5, and smaller is better.

Briefly, the Friedman test is a " "'non-parametric equivalent of the repeated-measures ANOVA” (Dem-
sar, 2006). ANOVA is a statistical method for testing differences between the performances of classifiers
measured on the same test environment with the null-hypothesis being that there is no differences between
them. When the null-hypothesis is rejected, a post-hoc test follows. Holm’s procedure was applied in our
work. It consists of sequentially testing ordered hypotheses starting from the most significant p value,

Table 2. Average test accuracies in % for 25 runs using checking FIS for 10 epochs with standard devia-
tions in (). A bold value indicates the highest accuracy for that data set

Data set No bags Bags majority vote Bags mean defuzzified
Balance_scale 71.229 (2.34) 69.627 (2.75) 71.522 (2.14)
breast 92.769 (0.90) 81.236 (2.48) 93.579 (1.25)
cme 31.801 (1.68) 28.318 (1.91) 31.479 (1.92)
dermatology 51.825 (1.07) 50.426 (3.05) 52.262 (1.07)
glass 48.602 (3.98) 41.556 (4.05) 48.167 (6.93)
haberman 73.739 (1.19) 72.078 (3.18) 73.882 (1.81)
heart-statlog 74.189 (2.73) 70.133 (3.28) 75.467 (4.09)
ionosphere 85.733 (1.59) 70.598 (2.0) 87.111 (2.18)
iris 95.642 (2.26) 92.960 (3.01) 96.080 (3.13)
monksl 69.271 (2.68) 56.889 (2.15) 74.083 (3.13)
monks2 76.247 (2.47) 54.806 (3.27) 78.722 (3.47)
newthyroid 86.863 (1.63) 79.944 (4.11) 88.000 (1.92)
page-blocks 86.992 (0.78) 82.692 (0.96) 87.163 (0.88)
phoneme 79.603 (0.77) 78.735 (0.77) 79.847 (0.86)
pima 74.484 (1.7) 71.125 (1.6) 75.484 (1.87)
satimage-test 61.110 (1.02) 56.102 (1.02) 61.985 (1.48)
tae 46.013 (4.31) 41.961 (5.0) 44.863 (5.56)
vehicle 47.869 (1.70) 53.475 (2.45) 49.418 (2.44)
wine 81.667 (2.63) 51.667 (5.09) 90.200 (4.01)
yeast 32.693 (1.65) 36.065 (2.08) 32.630 (1.94)
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Figure 2. Average test accuracies for 25 runs using checking FIS for 10 epochs
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if its corresponding hypothesis is rejected the procedure goes on with the next p value, which is tested
and so forth until a null hypothesis that cannot be rejected is found.
The Friedman-Holm test results show that using ANFIS, the bagging approach with the membership

function based combination method was statistically significantly better than a single classifier, at the
95% threshold.

SCALING UNSUPERVISED FUZZY LEARNING

Clustering streaming data presents the problem of not having all the data available at one time. Further,
the total size of the data may be larger than will fit in the available memory of a typical computer. If
the data is very large, it is a challenge to apply fuzzy clustering algorithms to get a partition in a timely
manner. In this section, we present an online fuzzy clustering algorithm (OFCM) (Hore et al., 2008)
which can be used to cluster streaming data, as well as very large data sets which might be treated as
streaming data. OFCM can provide partitions equivalent to fuzzy ¢ means (FCM). It processes the data
as each independent chunk of data arrives. That is, the algorithm can perform well even if the data is
evolving over time. Results on several large volumes of magnetic resonance images show that the new
algorithm produces partitions which are very close to what you could get if you clustered all the data at
one time. That shows that this algorithm is an accurate approach for online clustering.
Clustering streaming data has become an important issue due to the increasing availability of large
amounts of data collected over time. Due to the reducing costs of recording data, the sources of stream-
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Table 3. Average test accuracies in % for 25 runs using checking FIS for 20 epochs with standard devia-
tions in (). A bold value indicates the highest accuracy for that data set

Data set No bags Bags majority vote Bags mean defuzzified
balance_scale 72.484 (2.23) 72.057 (2.41) 72.632 (2.40)
breast 92.764 (0.91) 81.270 (2.47) 93.614 (1.23)
cmce 32.006 (1.65) 28.554 (1.85) 31.796 (1.89)
dermatology 52.139 (0.98) 50.787 (2.98) 52.361 (1.12)
glass 42.284 (2.55) 40.444 (4.00) 50.833 (5.95)
haberman 73.736 (1.21) 72.078 (3.02) 74.000 (1.72)
heart-statlog 74.801 (2.6) 68.178 (3.11) 78.044 (3.74)
ionosphere 86.007 (1.51) 71.179 (2.13) 87.282 (2.21)
iris 95.365 (1.97) 91.040 (3.75) 95.920 (2.2)
monksl 71.224 (1.80) 56.694 (2.57) 75.556 (2.57)
monks2 82.601 (2.99) 62.083 (2.75) 84.806 (4.23)
newthyroid 86.279 (2.32) 80.278 (5.26) 87.333 (3.24)
page-blocks 88.140 (0.75) 82.323 (0.90) 88.743 (0.83)
phoneme 80.096 (0.75) 79.119 (0.87) 80.391 (0.82)
pima 74.516 (1.69) 71.125 (1.59) 75.500 (1.84)
satimage-test 61.403 (1.02) 56.492 (1.01) 62.309 (1.4)
tae 46.049 (4.31) 41.961 (5.0) 45.098 (5.55)
vehicle 48.326 (1.72) 53.887 (2.42) 49.773 (2.38)
wine 82.099 (2.45) 52.933 (5.68) 90.267 (4.58)
yeast 34.386 (1.64) 34.537 (1.83) 35.515 (2.58)

ing data are growing rapidly. Features of streaming data are that it arrives at different times and the
size of the streaming data can be so enormous that we cannot store all of it. Instead, we must process
the data as it arrives, or in chunks, and delete it to free memory for incoming data. In many cases, the
streaming data cannot be revisited due to its evolving nature (Aggarwal et al., 2003, Aggarwal et al.,
2004, Yang, 2003, Cao et al., 2006, Nasraoui et al., 2003, Hore et al., 2007a). That is, random access is
impossible. To find meaningful clusters under these constraints, a number of clustering algorithms based
on the single pass approach (O’Callaghan et al., 2002, Guha et al., 2003, Hore et al., 2007b) have been
proposed. The single pass approach can work well for scaling classical clustering algorithms, but may
not fit for clustering streaming data (Aggarwal et al., 2003). The reason is that streaming data might
evolve over time and a single pass view of the entire stream tends to make algorithms insensitive to an
evolving distribution (Aggarwal et al., 2003, Hore et al., 2007b).

A good streaming algorithm should not only extract meaningful information from the entire data
set, but also respond to dynamic changes. As stated in (Aggarwal et al., 2003), a streaming clustering
algorithm should be able to produce a good quality partition even if data is evolving considerably over
time. Streaming methodology may also be used for scaling purposes when clustering very large stored
data sets. One advantage of streaming algorithms over many single pass and other scalable algorithms
(Farnstrom et al., 2000, Pal and Bezdek, 2002, Hathaway and Bezdek, 2006, Hore et al., 2007a) is that
they don’t require random access to data and process data in whatever order it may arrive.
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Figure 3. Average test accuracies for 25 runs using checking FIS for 20 epochs
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Short Review of Algorithms for Clustering Streaming Data Sets

Recently a number of algorithms have been proposed for clustering streaming data sets (Aggarwal et
al., 2003, Aggarwal et al., 2004, Yang, 2003, Cao et al., 2006, Nasraoui et al., 2003, O’Callaghan et
al., 2002, Hore et al., 2007a, Dai et al., 2004, Beringer and Hullermeier, 2006). Most of them address
the crisp case, clustering streaming data by using either hard ¢ means or its variants or other crisp algo-
rithms. In (O’Callaghan et al., 2002) a streaming algorithm was proposed using a k-Median algorithm
called LOCALSEARCH. They showed that their LOCALSEARCH algorithm was better in quality but
computationally expensive compared to hard-c-means. They viewed the streaming data as arriving in
chunks and then, after clustering, memory was purged by representing the clustering solution by weighted
centroids. Then they applied the LOCALSEARCH algorithm to the weighted centroids obtained from
chunks to obtain weighted centroids of the entire stream seen so far. They showed that their algorithm
outperformed BIRCH (Zhang et al., 1996) in terms of quality measured in sum of squared distance.
This method of freeing the memory is similar to the method of creating a discard set in the single pass
hard ¢ means algorithm (Farnstrom et al., 2000). OFCM summarizes clustering results in a similar way
(Hore et al., 2008). The difference between (O’Callaghan et al., 2002,

Farnstrom et al., 2000) and our approach is in the fact that in fuzzy clustering an example may not
completely belong to a particular cluster. Our method of summarizing clustering results involves a fuzzy
membership matrix and fuzzy centroids, which do not exist for the crisp cases. So in (O’Callaghan et
al., 2002), clustering streaming data was approached using a single pass view of the data.
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Figure 4. Average test accuracies for 25 runs using 100 bags, and defuzzified checking FIS outputs for
10 and 20 epochs
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In (Aggarwal et al., 2003), it was pointed out that a streaming algorithm may not be viewed as single
pass clustering problem because they are generally blind to evolving distributions and a single pass
algorithm over an entire stream will be dominated by outdated history. They proposed a framework for
analysis of clusters over different time frames. They stored summary statistics describing the streaming
data periodically using micro-clusters which was the online component of their algorithm, and later
analyzed these summary statistics of clusters, known as the offline components, over a user provided
time horizon. They showed the superiority of their algorithm compared to (O’Callaghan et al., 2002) on
data with an evolving distribution.

In (Hore et al., 2007b), a streaming FCM (SFCM) algorithm was proposed. When the first chunk of
data arrives, the algorithm will cluster the chunk of data into ¢ cluster centroids using FCM. Memory
is freed by summarizing cluster centroids into ¢ weighted points using the fuzzy matrix obtained dur-
ing the clustering. When a second or later chunk of data comes, it will be clustered with the weighted
points of previous clustered chunks. How many chunks of history to use for clustering with a new
chunk is predefined by the users. The first chunk’s cluster centroids are initialized randomly while the
other chunks’ are initialized as the last chunk’s cluster centroids. Their experiments showed this method
could provide results comparable with FCM only in the case the amount of clustering history to use is
selected properly.

In (Hore et al., 2007a), a single pass FCM (SPFCM) method was proposed. They separated the large
data into several partial data accesses (PDA). The first PDA was clustered into ¢ cluster centroids. Then
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the data in memory was condensed into ¢ weighted points. Those weighted points will be clustered
with new points in the next PDA. In their experiments, the method provided excellent partitions, almost
the same as FCM’s. There was a significant speedup compared with FCM. However, single pass FCM
requires randomly reordering the entire data to avoid unpredictable results. So, its performance drops
when processing data in the order it arrives.

In (Cao et al., 2006) a density based streaming algorithm DenStream was proposed. The design
philosophy of the DenStream algorithm was similar to (Aggarwal et al., 2003) as they too had an online
component for summarizing cluster information and then an offline component later to combine clus-
ters. They used the density based DBSCAN algorithm (Ester et al., 1996) in their work. Using a density
based clustering algorithm they were able to discover arbitrary shape clusters and show the robustness
of their algorithm towards noise. However, density based algorithms are different from fuzzy clustering
algorithms as they try to optimize a different objective function. In (Cho et al., 2006) a framework for
efficiently archiving high volumes of streaming data was proposed, which reduces disk access for storing
and retrieving data. They grouped incoming data into clusters and stored them instead of raw data.

Many other relevant single pass or scalable algorithms include using hard ¢ means, EM (Jain and
Dubes, 1988), Hierarchical Clustering and their variants (Aggarwal et al., 2004, Zhang et al., 1996,
Bradley et al., 1998, Gupta and Grossman, 2004, Neal and Hinton, 1998, Karkkainen and Franti, 2007).
A streaming algorithm using artificial immune system (AIS) models was also proposed in (Nasraoui
et al., 2003). As stated before the fuzzy ¢ means algorithm optimizes a different objective function and
also the single pass approach may not be suitable for clustering an evolving stream.

Non-incremental algorithms for speeding up fuzzy ¢ means or hard ¢ means (Pal and Bezdek,
2002,

Hathaway and Bezdek, 2006, Zhang et al., 1996, S.Eschrich et al., 2003, Cheng et al., 1998, Guha
et al., 1998) are not generally applicable to clustering streaming data sets because they assume all the
data can be loaded into memory. In (J. Lazaro and Cuadrado, 2003) a modified FCM was proposed to
simplify hardware implementation and obtain parallelism for real time video processing, but it is very
application specific and not applicable for data streams. In (Liu and Meng, 2004) a data driven fuzzy
clustering method based on the Maximum Entropy Principle was proposed for a real time robot-tracking
application. It is application specific and does not have the same objective function as FCM.

Thus some work has been done for hard-c-means and fuzzy-c-means clustering applied to streaming
data and large data. However, as stated in (Hathaway and Bezdek, 2006), the crisp clustering methods
may not be easily generalized to their fuzzy counterparts. The fuzzy methods we examined above have
constraints including having to select a properly predefined history and an inability to handle evolving
streams.

Online Fuzzy C Means

Due to the constraints of limited memory and computation time, a streaming algorithm may be able to
load only a relatively small amount of the data at a time depending upon the speed of the stream and
hardware capability. As in (O’Callaghan et al., 2002), we assume the data is both arriving and processed
in chunks, that is, n, data points arrive at time ¢ , n, at ¢,, and so on.

We cluster data in each chunk by fuzzy ¢ means (FCM), and we have to decide the number of clus-
ters ¢ for each chunk. In the worst case, all data in a given chunk might come from one class only and
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in the best case data might come from all n classes. If we set the number of clusters to be always ¢
(highest resolution under the assumption we know the upper bound on the number of clusters), there
are 2 cases:

Case A: If less than ¢ classes arrive in a chunk, then we are overclustering. Overclustering may
not cause any information loss. Information loss is only certain to occur when we undercluster.
Case B: If exactly c classes come in a chunk, then we are partitioning the data correctly, that is,
neither overclustering nor underclustering.

In both cases, setting the number of clusters to be equal to ¢, the maximum number of classes in
the data set, will likely not cause any information loss. So we set the number of clusters to be ¢ in each
chunk.

Data in each chunk is clustered by FCM. The objective function (J, ) minimized by FCM is defined
as follows:
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where U, : is the membership value of the k" example, =z, in the i cluster, v, : is the i" cluster

centroid, n: is the number of examples, c: is the number of clusters, D, <xk, vl,) = Hmk — viHQ : is the
distance metric. We have used the Euclidean distance.

After data in one chunk is clustered by FCM, memory is freed by condensing the clustering solution
in the memory into ¢ weighted examples. The ¢ weighted examples are represented by the c cluster cen-
troids obtained after clustering. Their weights are calculated using the membership matrix as follows:

wi:Z‘:ul],1<z<c 4)

n, is the number of examples in memory.
The weighted centroids of each final partition are saved with weights as calculated above. The
weighted centroids of all chunks form an ensemble of weighted clustering solutions. The ensemble is
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then merged into c final clusters. The merging operation is done by clustering all the weighted centroids
in the ensemble using their weights. Weighted FCM (WFCM) is used for this purpose:

We modified the objective function of FCM (similar to [Karkkainen and Franti, 2007]) to take into
effect the weighted examples.

Assuming there are n, weighted examples in total, the cluster centroids for WFCM are calculated
as:

n
C

Zw(u)mx
LN ' .
V=2l 1<i<e 1 €X.

2 n
chzle (ui.i )m

x]/ may be an original example or a weighted centroid and X’ is the union of the original examples
and all weighted examples (centroids). The w, are calculated from equation (4) for any added centroids
and are 1 for the original examples. The weights of the n weighted examples are calculated from con-
densation/summarization of clustering at previous time instants.

The membership matrix is calculated as follows:
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Itshould be noted that the modification of the objective function does not change the convergence prop-
erty of FCM because a weighted example can be thought of as many identical singleton examples.

To speed up clustering, we initialize the clustering process for each chunk with the final centroids
obtained from clustering the previous chunk. This knowledge propagation allows for faster convergence,
provided the distribution does not change rapidly, which might often be the case.

The size of the ensemble of weighted centroids is not likely to be large because it consists of only
weighted centroids. If in any case it becomes large, similar to (O’Callaghan et al., 2002) the weighted
centroids from the ensemble can be incrementally loaded and reclustered into ¢ weighted centroids. This
will decrease the ensemble size, which can be finally merged into ¢ partitions in memory.

Data Sets for Experiments

Nine real data sets were used, including Iris, KDD98, Plankton and 6 magnetic resonance image data
sets (MRI-4, MRI-5, MRI-6, MRI-7, MRI-8, and MRI-9). Below we list details of those data sets. Note
that value of m used in FCM was m=1.2 for the KDD98 data set and m=2 for the other 8 data sets.
The Iris plant data set consists of 150 examples each with 4 numeric attributes (Merz and Murphy,
n.d.) and 3 classes of 50 examples each. One class is linearly separable from the other two. We clustered
this data set into 3 clusters. KDD9S is the data set used in the 1998 KDD contest (kddcup08, 1998). This
data set is about people who gave a charitable donation in response to direct mailing request. It was used
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Table 4: Summary of data sets. The number of attributes used, number of instances and classes are

shown

Data Set Attributes used # Instances # Classes

Iris 4 150 3
KDD98 56 95412 10
Plankton 26 419358 12
MRI-4 3 3621971 3
MRI-5 3 1248595 3
MRI-6 3 4948180 3
MRI-7 3 4031593 3
MRI-8 3 1236969 3
MRI-9 3 1504594 3

in (Farnstrom et al., 2000), and has been pre-processed in the same way. After processing the original
data, it has 95412 examples and 56 features. As done in (Farnstrom et al., 2000), we clustered this data
into 10 clusters. The code for preprocessing is available at http://www-cse.ucsd.edu/users/elkan/skm.
html. The Plankton data set (Luo, et al. 2005) consists of 419358 samples of plankton images from the
underwater SIPPER camera which records 8 gray levels. There are 26 features extracted. The samples
were taken from the twelve most commonly encountered classes of plankton during acquisition in the
Gulf of Mexico. The class sizes range from about 11,337 to 74,053 examples. We clustered this data set
into 12 clusters. Table 4 summarizes all the data sets.

With the MRI data set, we fetched data for the experiments along the axial plane, from the bottom of
the brain (neck) to the top of the skull. The distribution of tissues in the human brain naturally evolves
as we go up or down along the axial plane, and there also will be different amounts of tissues at different
locations. So we believe MRI images provide good data sets to study our streaming algorithm in a real
life scenario. Specific details include (1) The MRI-4 data set was created by concatenating 96 slices of
MR images, T1 weighted, of size 512X512 from a single human brain. The magnetic field strength was
1.5 Tesla. After air and skull were removed using the brain extraction tool (BET2) (Jenkinson et al.,
2005), there were 3,621,971 examples. The code for the BET2 is available at http://www.fmrib.ox.ac.
uk/analysis/research/bet/. We clustered this data set into 3 clusters. (2) The MRI-5 data set was created
by concatenating 144 slices of MR images, T1 weighted, of size 256X256 from a single human brain.
The magnetic field strength was 3 Tesla. After air and skull were removed using the brain extraction
tool (BET2) (Jenkinson et al., 2005), there were 1,248,595 examples. Intensity homogeneity on this data
set was corrected using an implementation of the bias correction algorithm from (Cohen et al., 2000).
We clustered this data set into 3 clusters. (3) The MRI-6 data set was created by concatenating 96 slices
of MR images, T1 weighted, of size 512X512 from a single human brain. The magnetic field strength
was 1.5 Tesla. After air and skull were removed using the brain extraction tool, BET2 (Jenkinson et al.,
2005), there were 4,948,180 examples. We clustered this data set into 3 clusters. (4) The MRI-7 data
set was created by concatenating 96 slices of MR images, T1 weighted, of size 512X512 from a single
human brain. The magnetic field strength was 1.5 Tesla. After air and skull were removed using the
brain extraction tool, BET2, there were 4,031,593 examples. We clustered this data set into 3 clusters.
(5) The MRI-8 data set was created by concatenating 144 slices of MR images, T1 weighted, of size
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256X256 from a single human brain. The magnetic field strength was 3 Tesla. After air and skull were
removed using the brain extraction tool, BET2, there were 1,236,969 examples. Intensity homogeneity
on this data set was corrected using an implementation of the bias correction algorithm in (Cohen et al.,
2000). We clustered this data set into 3 clusters. (6) The MRI-9 data set was created by concatenating
144 slices of MR images, T1 weighted, of size 256X256 from a single human brain. The magnetic field
strength was 3 Tesla. After air and skull were removed using the brain extraction tool, BET2, there were
1,504,594 examples. Intensity homogeneity on this data set was also corrected. We clustered this data
set into 3 clusters.

Experimental Setup and Results

In (Hathaway and Bezdek, 2006) a reformulated optimization criteria 2~ (mathematically equivalent
to J inequation (1)) was given as:

W (. L)
R (V) - Z[ D, (mk,vi)(l—m)]
Q)

The new formulation has the advantage that it does not require the U matrix and can be directly
computed from the final cluster centroids. For large data sets, where the whole data set cannot be loaded
into memory, R = can be computed by incrementally loading examples from the disk.

For KDD98, Plankton and the 6 MRI data sets, 5% of the data was loaded in each chunk. For the Iris
data set, we fetched 25 examples in each chunk. So, it required 6 time instants to fetch the full data set.
We will compare the performance of streaming FCM (Hore et al., 2007b) and OFCM under this setting.
We also compared the results of the single pass FCM (SPFCM) algorithm on these data with the same
chunk size as used for SFCM and OFCM experiments. Results of experiments on the single pass algo-
rithm (SPFCM) running with and without scrambling (randomly reordered) the data is also reported.

The results of OFCM and SPFCM were compared with the clustering quality obtained at the end of
the stream for the SFCM algorithm. The difference in quality is computed according to:

DQ = [%] 100
! (6)

m, is the mean R value for experiments with FCM and m, is the mean R_ value for experiments
with OFCM, SPFCM and SFCM.

That is, the difference in R value expressed in percentage, of the OFCM, SPFCM, and SFCM
algorithms from the quality obtained by clustering all the data at once using FCM.

All results are an average of 32 random experiments, each starting with a random initialization at
the beginning of the stream. On each data set all algorithms had the same random initializations. Table
5 shows the performance of the SFCM, OFCM, and SPFCM algorithms compared to clustering the
entire stream at once.
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Table 5. Difference in Quality (in percentage) of the SFCM, OF CM, and SPFCM algorithms compared to
clustering all the stream at once with FCM. SPFCM” means clustering without scrambling the data

HIS1 HIS2 HIS3 HIS4 HISS SPFCM” SPFCM OFCM

(%) (%) (%) (%) (%) (%) (%) (%)
MRI-4 0.7082 1.0378 6.654 12.9819 17.6392 8.8818 0.0026 0.17447
MRI-5 2.4084 3.8948 11.1541 18.0348 23.1885 10.4976 0.0011 0.17691
MRI-6 6.7014 4.2827 10.2577 15.7393 19.5325 8.2708 0.0009 1.1098
MRI-7 1.2444 22.0437 69.0189 109.1186 141.9229 84.72 0.0065 0.439
MRI-8 0.584 15.7915 41.5251 63.6055 82.3348 47.623 0.0027 0.2398
MRI-9 0.5464 13.0416 35.9483 53.7082 67.0518 40.582 0.0141 0.2995
Iris 5.2772 2.3517 90.083 91.2483 91.565 79.6733 0.1117 0.21661
KDD -0.0567 -0.0585 0.0169 0.0127 0.0098 -0.1315 -0.0324 -0.07934
Plan-
Kton 14.2393 11.7439 10.1547 8.7612 8.6569 4.02337 0.0046 2.95274

In the table, HISn means SFCM using a history of n chunks. For the single pass experiments, in the
table SPFCM denotes clustering was done on the randomly reordered data set, while SFCM” means data
was clustered the way it comes: the way SFCM and OFCM algorithms fetches data.

In Table 5, we see SPFCM, as expected, provides unpredictable clustering quality when it processes
data as it comes. When the same data sets were scrambled, it always produced excellent quality. For
processing data in a typical stream setting (processed as it comes), either SFCM (with appropriate his-
tory) or OFCM can be used. The results in Table 3 show that OFCM is always superior to SFCM in
producing a clustering solution as good as clustering the full stream at once. OFCM always obtained
good quality partitions; even for the Iris experiment the quality difference is only 0.21661%. Generally,
usage of history greater than or equal to 2 resulted in poor partitions, at least in the context of produc-
ing clustering quality (at the end of stream) as good as clustering the entire data stream at once. On the
KDDO98 data set, any amount of history usage gives good quality; however, with HIS1 and HIS2 average
quality was even better than the average quality of FCM. OFCM varied from FCM by 1% for MRI-6
and 2.9% for Plankton. There are still small variations on large data sets. The quality of OFCM always
was better than SFCM in producing a partition as good as clustering the full data set. Thus, OFCM can
be thought of as a generalized single pass FCM algorithm that like streaming algorithms can process
data as it comes, while at the end of the stream it can produce clustering quality as good as clustering
the entire data stream.

Summary

In this chapter, we have focused on ways of dividing data to enable fuzzy learning systems both super-
vised and unsupervised to scale. The approaches focused upon do not throw away any of the data, but
instead they use disjoint subsets of the data to build individual classifiers or data partitions.

We have briefly discussed other approaches, based on subsampling, to building scalable fuzzy learn-
ing systems. The issues with subsampling are in selecting the right subsample or right set of examples
which enable learning a good model. Typical approaches stop too early when they use things like the
chi-squared test. Subsampling is an area deserving of further research.
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For supervised learning to show the possibilities of ensembles, we have compared ANFIS with and
without bagging to classify twenty data sets. Results were computed two different ways:

a) Ensemble class votes for each example from the defuzzified output of the FIS for each bag were
individually converted to crisp class values. Then, the predicted class for each test instance was
found using a majority vote of these crisp values.

b) The mean of the sum of the defuzzified FIS outputs for each bag was converted to a crisp class
prediction for the ensemble.

c) Feature reduction was done via the gain ratio feature selector in Weka for all data sets with more
than 6 features. Other sets of features chosen differently would result in different accuracies, but
similar conclusions.

The mean defuzzified output gave the most accurate results. It is advisable not to make crisp the
defuzzified outputs of each FIS before these values are combined in a vote. Otherwise, the benefit of
the fuzzy membership functions is lost and lower accuracies result.

The Freidman/Holm test for determining significance of differences in accuracies for our classifier
methods was performed, resulting in the conclusion bagging is statistically better than a single classifier
at the 95% level.

It is interesting that fuzzy models have enough variability to benefit from an ensemble formulation.
This suggests that ensembles of fuzzy classifiers where each is built on a disjoint subset of data can be
used to generate an accurate scalable fuzzy classifier.

For unsupervised learning, we have shown that tractable size data subsets, or chunks of the stream,
can be clustered in the usual way. You get an ensemble of data partitions which must then be combined.
One way to combine them is to simply cluster weighted class centers, centroids, of the data in each
partition. Using online fuzzy clustering, the centroids of the individual data partitions are given weights
based on the membership of the examples assigned to the clusters they represent. The centroids then
form weighted examples which can be clustered to obtain the centroids of final data partition. Any future
data can be assigned to the nearest cluster. If one needs to assign all of the data to the final clustered
centroids, this can be done by sending the clustered centroids to processors where the data resides and
to determine their class.

The online fuzzy clustering process results in cluster centers that are very similar to those obtained
by clustering all of the data using fuzzy c-means. So, in cases where you could not possibly cluster all
the data at once due to its size one may expect that the partition will be similar to a venerable, well-
known clustering algorithm. Hence, there is evidence that scaling fuzzy clustering algorithms can be
effective.

This chapter has outlined methods of using ensembles to enable fuzzy learning systems to scale
whether the data is labeled or unlabeled. In the case of labeled data there will be many fuzzy rules (for
instance) reducing the interpretability of the system. For clustering, there should be no loss in interpret-
ability. The ensemble approaches outlined here are viable ways of scaling fuzzy learning systems.
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ABSTRACT

The emergence of music recommendation systems calls for the development of new data management
technologies able to query vast music collections. In this chapter, the authors present a music warehouse
prototype able to perform efficient nearest neighbor searches in an arbitrary song similarity space.
Using fuzzy songs sets, the music warehouse offers a practical solution to three concrete musical data
management scenarios: user musical preferences, user feedback, and song similarities. The authors
investigate three practical approaches to tackle the storage issues of fuzzy song sets: tables, arrays,
and compressed bitmaps. They confront theoretical estimates with practical implementation results and
prove that, from a storage point of view, arrays and compressed bitmaps are both effective data struc-
ture solutions. With respect to speed, the authors show that operations on compressed bitmap offer a
significant grain in performances for fuzzy song sets comprising a large number of songs. Finally, the
authors argue that the presented results are not limited to music recommendations system but can be
applied to other domains.

INTRODUCTION

Automatic music recommendation systems have recently gained tremendous popularity. To provide per-
tinent recommendations, music recommendation systems use fuzzy set theory (Zadeh, 1965) to combine
user profiles, music features, and user feedback information. However, at the current growing speed,
the database element of any recommendation system will soon become a bottleneck. Hence, appropri-
ate musical data management tools, able to manipulate fuzzy sets and scale to large music collection
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and growing user communities, are needed. Music Warehouses (MWs) are dedicated data warehouses
optimized for the storage and analysis of music content.

The contributions of this chapter are fourfold. First, based on a previous case study (Delicge &
Pedersen, 2006), we propose three generic usage scenarios illustrating the current demands in musical
data management. To answer these demands, we define fuzzy song sets and develop a query algebra for
them. Second, to demonstrate the usefulness of fuzzy song sets, a prototypical MW composed of two
multidimensional cubes is presented. Fuzzy song sets prove to be an adequate data representation to
manipulate musical information. Third, we discuss three solutions for storing fuzzy song sets and fuzzy
sets in general. We construct theoretical estimates for each storage solution. A practical implementa-
tion shows that the storage overhead represents a major part of the storage consumption and that two
solutions are viable for large music collections. Fourth, we benchmark and compare the performance
of the main operators previously presented for various sizes of both data structures. Experiments are
conducted on a real music collection.

This chapter demonstrates how fuzzy set theory can be used in the context of music recommenda-
tion systems. All results presented in this chapter can be directly applied to standard fuzzy sets; the
presented storage solutions remain generic and can thus be applied to a vast range of domains besides
music recommendation and user preferences.

The remainder of this chapter is organized as follows. After presenting the related work on fuzzy
sets for the management of musical data, we present three information scenarios that are commonly
treated by music recommendation systems. We proceed by defining fuzzy song sets and an algebra.
Two prototypical multidimensional cubes are presented; they illustrate the use of the algebra through
query examples. Storage solutions are then discussed and precise storage estimates are proposed and
experimentally validated. Next, a comparison of the performance of the fuzzy song set operators on
the bitmap and array representations is conducted. Finally, we conclude and describe promising future
research directions.

RELATED WORK

Research on music recommendation systems has received a lot of attention lately. Current trends on
playlist generation are focused on how to improve recommendations based on user-specific constrains.
For example, a playlist generator that learns music preferences by taking user feedback into account
was presented by Pauws & Eggen (2001). Other new interesting approaches concentrate on aggregating
different music features; for instance, Bosteels & Keere (2007) study the use of generalized conjunctions
and disjunctions of fuzzy sets theory for combining audio similarity measures. However, fewer research-
ers have addressed the scalability issues raised by these methods in terms of storage and performance
(Aucouturier & Pachet, 2002; Pampalk, 2005). This chapter focuses specifically on the storage and
performance issues and proposes to manipulate a large collection of musical data where song similari-
ties, user preferences and user feedbacks are represented with fuzzy sets.

A traditional database approach is to use a relational model such as the one proposed by Rubenstein
that extends the entity-relationship data model to implement the notion of hierarchical ordering, com-
monly found in musical data (Rubenstein, 1987). A multimedia data model, following the layered model
paradigm that consists of a data definition layer, a data manipulation layer, a data presentation layer, and
a control layer, is presented by Wynblatt & Schloss (1995), but no query language is proposed. None
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of those models adopts a multidimensional approach by representing data in cubes, a very convenient
structure for performing on-the-fly analysis of large volumes of data that has already proved its strengths
in data warehouses (Pedersen & Jensen, 2001). Finally, a music data model, its algebra and a query
language are presented by Wang, Li, & Shi (2004). The data model is able to structure both the musical
content and the metadata but does not address performance optimization issues. In particular, it does
not provide an adequate framework to perform similarity based search. Jensen et al. address this issue
and offer a multi-dimensional model that supports dimension hierarchies (Jensen, Mungure, Pedersen,
& Serensen, 2007). We extend that multidimensional model by integrating fuzzy sets and addressing
additional usage scenarios. Furthermore, this implementation proves to be able to handle a much larger
music collection of a realistic size in the context of an MW.

The use of bitmaps in multidimensional databases is frequent. Different compression schemes exist
to reduce the storage consumption of bitmaps. The Word Align Hybrid (Wu, Otoo, & Shoshani, 2006),
WAH, and the Byte aligned Bitmap Compression (Antoshenkov, 1994), BBC, are two very common
compression algorithms. BBC offers a very good compression ratio and performs bitwise logical opera-
tions efficiently. WAH performs bitwise operations much faster than BBC but consumes more storage
space. We propose a modified version of WAH compression technique to represent fuzzy sets. We show
how fuzzy set operators can be adapted to directly manipulate the compressed representations in order
to preserve the performance.

Significant efforts have been made in representing imprecise information in database models (Codd,
1979). Relational models and object oriented database models have already been extended to handle
imprecision utilizing the fuzzy set theory (Prade & Testemale, 1984; Bordogna, Lucarella, & Pasi, 1994).
This chapter proposes pragmatic solutions to store and manipulate fuzzy sets within multidimensional
data cubes. It significantly extends our previous work (Deli¢ge & Pedersen, 2007) in several ways: im-
proving the WAH compression algorithm, revising size estimates, and implementing and benchmarking
the operators. While our focus is on musical data, we believe our approach can easily be generalized to
the similarity matrices extensively used in fuzzy databases, e.g., to perform fuzzy joins.

QUERY SCENARIO

The data obtained from a music recommendations system has to be organized to answer specific queries.
Examples of such query scenarios are presented below.

User Feedback

The user’s opinion about the system’s previous recommendations is a valuable piece of information for
improving the future suggestion, e.g., by reinforcement learning. For each song played, the user can
grade if the suggestion was wise based on the criteria provided, referred to as the query context. The
query context can be the artist similarity, the genre similarity, the beat similarity, or any other similar-
ity measure available to the system to perform a selection. The grading reflects if a proposed song was
relevant in the given query context. For example, it is possible to retrieve the list of songs Mary liked
when she asked for a list of rock songs or the ten songs she liked the most when she asked for similar
songs to a song made by “U2”.
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Typically, the data obtained should contain:

. the profile of a registered user in the system;

. the query context provided by the user; and

. the list of songs and marks so that for each song proposed, the user can grade how much he liked
a particular song being part of the proposition.

Grades are given on a per song basis, they reflect if the user believes the song deserves its place
among the suggested list of songs: strongly disagrees, neutral, likes, and loves. While the grade must not
be a numerical value, we assume that a mapping function to the interval [0,1] exists so that when a user
believes a song definitely deserves its place in the list, a high value in the interval should be given.

User Musical Profile

Regardless of any given query context, some songs should never be proposed to Mary as she simply
can’t stand them or, on the contrary, some songs should be proposed more often as they are marked as
Mary’s favorites. Therefore, recommendation systems often offer to their users the possibility to rate
any song on a fan-scale ranging from “I love it” to “I hate it” depending if they like the song or not.
Such information is useful for building network based on users having similar musical taste. The data-
base backend of the recommendation system should be able to find users similar to Mary based on his
favorite and loathed songs.
The User Musical Preferences contains two different pieces of information:

. a reference to a user registered; and
. a list of songs associated with their respective grades on the fan-scale.

As above, we assume the mapping to the interval [0,1] so that if Mary hates a song, a low score
is assigned; and if she loves it, a value close to 1 should be used. So, musical profiles can be used to
modify the frequency a given song appears as a recommendation and build recommendation based on
profile similarities.

Songs Similarities

Finally, music recommendation system should be able to compare songs. For each pair of songs, the
system is able to provide a similarity value with respect to a given aspect of the song such as the release
year, the genre, the theme, the lyrics, or the tempo. The similarity values should indicate if two songs
are “very different”, “different”, “somewhat similar”, or “very similar” from the perspective of any
given aspect of the song. For example, the song “We will rock you” by Queen is “very different” from
the song “Twinkle, twinkle little star” with respect to their genre similarity aspect.

To compare songs, three pieces of information are necessary:

. a pair of compared songs;

. a similarity function that maps to a pair of songs to a similarity value; and
. a similarity value reflecting how similar the two songs are.
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Again, we assume that the similarity values can be mapped to the interval [0,1] so that if two songs
are very different, a value close to 0 should be used, and if they are very similar, a value close to 1
should be used instead.

The scenario is very generic; very few assumptions are made about the properties of the functions
used to compute the similarity values. In particular, the similarity functions do not have to fulfill the
mathematical properties of a metric: the non-negativity, the identity of indiscernibles, the triangular
inequality, and the symmetry properties. They do not have to be defined over the whole domain of song
pairs. This allows similarities to be based on a wide diversity of song attributes.

AN ALGEBRA FOR FUZZY SONG SETS

In this section, we introduce fuzzy song sets as well as operators and functions to manipulate them.
Let X be the set of all songs. Then, a fuzzy song set, 4, is a fuzzy set defined over X such that:

A:{MA(ac>/x: z e X, ,uA(x)e[O,l]}

and is defined as a set of pairs u, (ac) / x, where x is a song, (x) , referred to as the membership
degree of x, is a real number belonging to [0,1], and / denotes the association of the two values as com-
monly expressed in the fuzzy logic literature (Galindo, Piattini, & Urrutia, 2005). When x (x) = 0, song
x does not belong to 4, and when u (x) = 1, x completely belongs to 4.

Operators

The following operators are classically used in order to manipulate song sets.

Equality

Let 4 and B be two fuzzy song sets. 4 is equal to B iff for all song the membership degree of a song in
A is equal to the membership degree of the same song in B.

A=B & VrelX, MA<$): MB(J?)

Subset

Let 4 and B be two fuzzy song sets. 4 is included in B iff for all song, the membership degree a song in
A is lower than the membership degree of the same song in B.

A QB@VIEX,,LLA(Q:)S,LLB(JJ)

Note that the empty fuzzy song set defined with the null membership function, i.e., Vo € X, u (a:) =0,
is a subset of all fuzzy sets.
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Union

Let 4 and B be two fuzzy song sets over X. The union of 4 and B is a fuzzy song set with, for each song,
a membership degree equal to the maximum membership degree associated to that song in 4 and B.

AﬁB:{umB (:c)/x}

) = i, ()., 0)

Intersection

Let 4 and B be two fuzzy sets over X. The intersection of 4 and B is a fuzzy song set with, for each song,
a membership degree equal to the minimum membership degree associated to that song in 4 and B.

AﬂB:{,uAm (:1:)/:1:}

) = min o, o) 0,0

Negation

Let 4 be a fuzzy set over X. The negation of 4 is a fuzzy song set with the membership degree of each
song equal to its symmetric value on the interval [0,1].

—A={1-p,(2)}

Reduction

Let A be a fuzzy set over X.The reduction of A is a subset of A such that membership degrees smaller
than o are set to 0.

Reduce(a, A) = {p,, (v) / x}

_ @) if () 2
P Tl0 i ) <

The reduction operator changes the membership degree of songs below a given threshold to 0. Itallows
the construction of more complex operators that allow the reducing the membership degree granularity
over ranges of membership degrees.
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Top

Let A be a fuzzy set over X. The Top, subset of A is a fuzzy song with the membership degree of all ele-
ments not having the k highest membership degree set to 0 and the membership degree of the k highest
elements of A set to their respective membership degree in A.

Top, <a,A) = {,uAk(ac)/z | Vo2, € X,1<i<j, p, (mz) > ,uA(a:j)}

(@) if 1<k
i 0 otherwise

Note that the Top, subset of A is not unique, e.g., when all elements have an identical membership
degree. The Top, operator returns a fuzzy song set with all membership degrees set to zero except for
k elements with the highest membership degrees that remain unchanged. Top, is a cornerstone for the
development of complex operators based on relative ordering of the membership degrees. Note also
that Top, (A) can not be defined as the subset of A having all its elements having a membership greater
or equal to the one not included since Top, (A) contains all the elements of A.

Average
LetA,,...,A bei fuzzy song sets. The average of A ,...,A. is a fuzzy song set that assigns to each song

a membership degree equal to the arithmetic mean of the membership degrees of that song in the given
sets.

Angr.“,Ai = {MAl,.”,Ai (I) / =}

> @)
Fa,.a, (x ) -

SRR

The average operator in fuzzy sets is the pendant of the common average operator and is very useful
to aggregate data, a common operation in data warehousing in order to gain some overview over large
datasets.

Functions

The following functions are defined on song sets. They extract information from the song sets to real
values or crisp sets.
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Support

The support of A is the crisp subset of X that includes all the elements having a non-zero membership
degree in A.

Support (A) ={reX:p, (x) > 0}

Cardinality

The cardinality of A is the sum of the membership degrees of all its elements.

zeX

Distance

The Minkowski distance of order p > 1 € R between two song sets is defined as follows.

RS

d (AB)=

Soele)- o |

The 1-norm distance is the Manhattan distance, the 2-norm distance is the Euclidean distance, and
the co-norm is the Chebyshev distance.

THE MUSIC WAREHOUSE CUBES

This section presents two data cubes built to serve queries introduced in the scenarios. In data warehouses,
data are logically organized in cubes. A cube is a generalization of a flat two-dimensional spreadsheets
to multiple dimensions. While spreadsheets have rows and columns that are combined to form cells,
cubes have dimensions that are combined to form facts. Each fact has numeric measures attached to it.
To capture the context of a fact, dimensions are organized into hierarchies. Hierarchies define group-
ings and aggregation functions to be performed, e.g., a counter or an average. The two cubes presented
below show how fuzzy song sets can be integrated into a multi-dimensional model and how they can
be queried.

The Song Similarity Cube
The Song Similarity cube captures similarity between songs with respect to selected similarity func-

tions. The cube is composed of two dimensions: a song dimension and similarity dimension; they are
represented in Figure 1. The song dimension captures all the details about a song, including editorial
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Figure 1. Dimensions composing the Song Similarity Cube

Song dimension Similarity dimension

All songs
All similarity functions

Publication decade Genre
Artist ~ Album Publisher Beat | Similarity function group
Publication year Subgenre
Similarity function 1D
Song ID

information such as the artist name, the publication year or any acoustic information such as the beat
of the song or its genre. For each of these attributes, similarity functions can be created, e.g., an artist
similarity function that gathers information from external web sites and social networks, or a similarity
function that compares the genre wherein songs have been classified, aware that some genres are more
similar than others, or the timbre comparison that uses low-level extracted information to provide a full
comparison matrix.

Each dimension has a hierarchy, which defines how the data can be aggregated to provide differ-
ent degrees of granularity, e.g., the similarity of songs between sub-genres and the similarity of songs
between coarsely defined genres. Similarity function of coarser granularity can also span over differ-
ent attributes, e.g., to provide some average similarity values out of attributes obtained using different
extraction algorithms.

At its most detailed level, the cube is organized based on a star schema, using three tables: the song
dimension table, the similarity function table and the closest songs fact table. The closest songs fact
tables is composed of three attributes: a reference to a song (referred to as the seed song), a reference to
a similarity function, and a fuzzy song set. The notion of similarity between a song and the seed song is
represented by the fuzzy song set membership degree. The closest songs take a high membership degree
while the farthest songs have a low membership degree.

Data of the Song Similarity are shown in Tables 1, 2, and 3.

Typical queries involve the intersection, union, and reduction operators. The queries can be performed
on the song seeds using pieces of information such as the artist or the creation year. Closest Songs Cube
usage examples are presented below. The example assumes the creation of a new SQL data type, called
FZSET, using object-relational extensibility functionality like found in PostgreSQL. For example, the
closest songs attribute in the fact table is of type FZSET. The FZSET implementation details will be
discussed further.

Example 1:

“What are the songs that have a similar beat to the song “One” by U2?”

SELECT SUPPORT (REDUCE (0.6, c.songs)

FROM closest songs c

INNER JOIN songs as a USING (song id)

INNER JOIN similarity functions as b USING (c.sim id)

WHERE a.title = ‘one’ AND a.artist = ‘U2’ and b.sim = ‘beat 1’
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Table 1. CubeSong dimension

song id title Artist album beat genre
1 One 2 Achtung Baby DATA DATA
2 One u2 Miss Sarajevo DATA DATA
3 Paint it black Rolling Stones Aftermath DATA DATA

Table 2. Similarity function dimension

Sim id Sim function Sim type
1 beat 1 beat
2 beat 2 beat
3 genre 1 genre

Table 3. Closest songs fact

song_id sim_id Closest_songs

1 1 {1.0/1;0.5/2;0.0/3 }
1 2 {1.0/1;0.7/2; 0.1/3 }
1 3 {0.9/1,0.4/2;0.1/3 }
2 1 {1.0/1;0.5/2;0.4/3 }
2 1 {1.0/1;0.5/2;0.3/3 }
3 1 {1.0/1;0.5/2;0.5/3 }

In a star schema, the fact table and the 2 dimensions tables are joined to form the cube. Retriev-
ing the similarities between a song and all the others simply requires selecting a song and a similarity
function from the dimension tables and retrieving the corresponding FZSET in the closest song table.
The support function transforms an FZSET data type into a regular SQL crisp set of elements having
non-zero membership degrees.

Example 2:

“Find the beat similarity between two songs; the first song is identified with the artist, album,
and title attributes from the song dimension, the second is identified using its unique key.”

SELECT MU (c.songs,el)

FROM closest songs c

INNER JOIN songs as a USING (song id)

INNER JOIN similarity functions as b USING (sim id)

WHERE a.artist = ‘U2’ AND a.album=’'Achtung Baby’ AND a.title='One’ and b.sim = ‘beat 1’
GROUP BY a.album_id

The mu function returns the membership value associated to a given element. The similarity between
two songs can be obtained by retrieving the full fuzzy song set representing song similarities for the
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first song, and filtering out the results to only return the element matching the second song. However,
with such an operation being so common, optimization based on the physical storage structure of the
fuzzy song set can be performed, thus motivating the need for creating a specific element search func-
tion within a fuzzy song set.

Example 3:

“Retrieve the 100 songs having the most similar beat to the songs made by U2.”

SELECT SUPPORT (TOP (100, UNION (c.songs))

FROM closest songs c

INNER JOIN songs as a USING (song id)

INNER JOIN similarity functions as b USING (sim_id)
WHERE a.artist = ‘U2’ AND b.sim = ‘beat 1’

GROUP BY a.album id

Aggregation functions allow multiple fuzzy song sets to be retrieved and combined. In Example 3,
multiple songs are matching the selection criteria in the song dimension, causing multiple fuzzy song
sets to be retrieved from the closest song table. The fuzzy song sets are then combined using the union
operator; finally the elements with the 100 highest membership degrees are returned.

Example 4:

“Return the similar songs to the given song across the different beat similarity functions avail-
able.”

SELECT SUPPORT (AVG (songs) )

FROM closest songs c

INNER JOIN songs as a USING (song id)

INNER JOIN similarity functions as b USING (sim_id)

WHERE a.title = ‘one’ AND a.artist = ‘U2’ and b.sim = ‘beat’

GROUP BY a.albumid, b.similarity function group

As in a spreadsheet, aggregation can be performed on both dimensions. Example 4 retrieves all the
versions of a song in the different albums of an artist and returns an average over similarity functions
of the same type, such as the beat, the genre, or the mood.

The User Feedback Cube

The User Feedback Cube collects relevance statistics about the songs proposed to users by the music
recommendation system. As illustrated by Figure 2, the User Feedback Cube is composed of two di-
mensions: the user dimension and the query dimension. For each user and query, the user feedback is
stored. The feedback given for a particular played song is stored as a membership degree representing
how relevant the proposed song is in the context of the query. A very low membership degree is given
when a user believes the song should not have been proposed. The Feedback and the Favorite Songs
attributes are both defined using the FZSET abstract data type. The user dimension is composed of a
hierarchy allowing users to be aggregated along the various attributes composing their profiles. One
of these attributes is a fuzzy song set representing the user’s favorite songs; it becomes thus simple to
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Figure 2. Dimensions composing the User Feedback Cube

User dimension Query dimension
All users )
All queries
Age group Continent
Language Favorite songs Gender Region Query type
Age
Country
Query ID
User ID

compare groups of users created based on the users’ musical tastes. The hierarchy on the query dimen-
sion permits to obtain overview along group of semantically close queries.

Example 5:

“What are the favorite songs three users have in common?”

SELECT SUPPORT (REDUCE (0.8, INTER (Favorite songs))
FROM users
WHERE user id = 1 OR user _id = 2 OR user_id = 3;

Retrieving the songs three users like is an immediate query using the proposed algebra; only the user
dimension tableis required. Here, the aggregation form ofthe intersection function allows straight-forward
selection of the intersection between three multiple sets. The Reduce operator selects only the songs
resulting from the intersection with a membership degree above 0.8. The support operator transform the
fuzzy song set object into a crisp set that can be manipulated with the regular SQL algebra.

Data from the User Feedback Cube are shown in Tables 4, 5, and 6.

Example 6:

“Who are the 100 users that have the most similar taste to John’s taste?”

SELECT b.user id

FROM users as a, users as b

WHERE a.user id = 1

ORDER BY distance (a.favorite songs, b.favorite songs) ASC
LIMIT 100;

Example 6 illustrates how, using a self-join, the user dimension can be used to find similarities be-
tween users based on their favorite songs.

Example 7:

“Per query type, what are the songs users born in the 80’s were usually happy to hear?”

SELECT SUPPORT (REDUCE (0.8, AVERAGE (uf.feedback)), g.query type

FROM user feedbacks as uf
INNER JOIN users as u USING (user id)
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Table 4. Users dimension

User id Name DOB Favorite songs

1 John 01 Jan 80 {1.0/1;0.5/2;0.0/3 }
2 Nadia 02 Feb 70 {1.0/41;0.7/42; 0.1/43 }
3 Natalie 03 Mar 60 {0.9/11; 0.4/22; 0.1/33 }
4 Adam 04 Apr 83 {0.2/1;0.47/;0.13/23 }

Table 5. Queries dimension

Query id Query Query type
1 Rock songs Genre

2 Pop songs Genre

3 Songs marked as favorite by users with similar music profiles Social

4 New song releases Editorial

Table 6. User feedbacks fact

User id Query id Feedback

1 1 {1.0/1;0.5/2;0.0/3 }
1 2 {1.0/1;0.7/2;0.1/3 }
3 1 {0.9/10.4/2;0.1/3 }

INNER JOIN queries as g USING (query id)
WHERE ‘1 JAN 80’ <= u.DOB AND u.DOB <= ‘31 DEC 89’

GROUP BY g.query type;

Using the user dimension, only the users born in the 80’s are selected, and the average feedback per
query type is then calculated. Again, using the reduce and support operators, only the songs with a high
membership degree are output as crisp sets.

Example 8:

“What are the 100 songs that fans of ‘Elvis’ liked the most when they asked for Rock songs?”

SELECT SUPPORT (TOP 100 (AVERAGE (uf.feedback)))

FROM user feedbacks as uf

INNER JOIN queries as g USING (query id)

WHERE u.user id IN (

SELECT user

FROM songs

WHERE SUPPORT (TOP (10, favorite song)) = song id AND artist = ‘Elvis’

) AND g.query = ‘Rock songs’
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Example 8 performs an aggregation of the user feedback. The selection of the users for the aggrega-
tion is performed using the favorite songs in the user dimension. Thus, both fuzzy song sets in the user
dimension table and the fact table are used.

STORAGE OPTIONS

In this section, three different storage options for representing fuzzy song sets in the MW are presented:
tables, arrays, and bitmaps. A prototypical MW where song elements are uniquely identified using 32
bits is used to illustrate the discussion. The proposed MW can reach a size of over 4 billion songs and
at least 100 different membership degrees.

Table

The first solution is to represent the fuzzy song set attribute as a table with three columns: (seed song,
song, membership degree). Let s be the size of the seed song set, e the size of the song set, and m the size
of the set of all the values the membership degree can take. The size of the payload, i.e., the size of the
data when not considering the overhead due to the DBMS, denoted p, can be calculated as follows.

p = 5. e(log,s +log,e + log,m)

where log, s, log, e, and log, m are the minimum number of bits required to store respectively a seed
song, a song, and a membership degree.

The quadratic growth can be limited by admitting only & songs for each seed song to be physically
stored in the table and letting the remaining songs take a default membership degree. The selection of
which song should be represented is dependent on the application. Here, we assume that the elements
with the highest membership degree are interesting; this is performed using the 7op, operator. The size
of the payload can then be estimated as follows.

p =s. k(log,s + log,e + log,m)

When 2* seed songs are present, the database reaches its maximum capacity. In such case, the size
of the payload, if only the 1000 elements with the highest membership degree are physically stored,
reaches 36 TB. On a data set composed of 10,000,000 seeds, the payload attains 84 GB.

Array
A second approach is to use one-dimensional arrays containing the songs and their associated member-
ship degrees for representing fuzzy song sets. The data is stored in a table with two columns: (seed song,

array). As with tables, only the & (<e) most similar songs should be physically stored. The size of the
payload grows as follows.
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p = s(log,s + k(log,e+ log,m))

When storing the 1000 closest songs of 2°% song seeds, the size of the payload is reduced to 19 TB;
on a data set composed of 10,000,000 song seeds, the payload reaches a size of 44 GB However, since
the probability of having no songs for a particular membership degree is small, ordering the fuzzy song
set by membership degrees allows membership degrees to be stored using one bit relatively to each
other: a bit set means to move to the next lower membership degree, a bit unset means to keep the same
membership degree. In the unlikely case of a gap in the sequence of membership degrees, a dummy ele-
ment, referred to as the empty element, is used to jump to the next membership degree. For large gaps,
successive empty elements are used.

For example, the fuzzy song set {100 / 1234,100 / 2345,99 / 3456,97 / 4567,96 / 5678} is repre-
sented by the array [{1234,100}, {2345,100}, {3456,99}, {4567,97}, {5678,96} ] that is compressed as
[{1234,0], {2345,1}, {3456,1}, {0,1}, {4567,1}, {5678,0}], where only one bit is required to capture a
decrement of the membership degree, and 0 is the empty element.

The compression ratio, r, obtained is as follows.

k(log,e + log,m)
(k + x) (log,e +1)

In order to be efficient, i.e., » > 1, the number of empty elements, noted x, in the data set has to
remain limited.

log, m —1
log, e +1

<k

The compression ratio in the best (no empty element) and worst (m — 1 empty elements) case sce-
narios are:

,r,+

:log2m+log26 ok log, m +log, e
log,e+1 (k+m—1)(log26+1)

For high £ values, the likelihood of using empty elements vanishes, therefore causing 7~ to asymp-
totically converge to r* as k increases. Figure 4 shows the compression ratio »* and 7~ for membership
degrees represented on 7 bits (128 different values), and fuzzy song set and song seeds represented using

Figure 3. organization of a compressed array

\ seed | elem || elem || elem || elem || elem || elem || elem || elem
elem || elem || gap || elem || elem || elem || elem || elem
elem || elem || elem || elem || gap || elem || elem || elem
elem || gap || elem || elem || elem || elem || elem || elem
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Figure 4. best and worst compression ratio for the arrays
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32 bits. For £ = 1000, the compression ratio ranges between 1.04 and 1.18. The full similarity matrix
represented with compressed arrays takes 17 TB.

Bitmap

A third option is to use bitmaps to represent fuzzy song sets. In a bitmap (Chan & loannidis, 1998),
each element is represented by a position in a sequence of bits. Typically, in a bitmap index, a bitmap
for each attribute value is created. The size of each bitmap is equal to the cardinality of the indexed ele-
ments. Fuzzy song sets can be constructed using the same structure. A fuzzy song set is composed of a
bitmap for each membership degree an element can have. As illustrated in Figure 5, each song element
is represented with a bit set in the bitmap corresponding to its membership degree.

A fuzzy song set where the membership degree has a cardinality of m is represented with m bitmaps
of song elements, where each bitmap has a size of e bits. Thus the size of a fuzzy song set using bitmaps
is as follows.

p = s(log, s +m e)

Figure 5. representation of a fuzzy song set with an array of bitmaps
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The bitmap size can be dramatically reduced using compression algorithms. The Word Aligned
Hybrid (WAH) bitmap compression method offers a good compression ratio on sparse bitmaps while
preserving query performances (Wu, Otoo, & Shoshani, 2006).

Briefly, in a WAH-compressed bitmap, the bitmap is divided in 32 bit long words. The first bit of
each word is used to mark if the word is a literal word or a fill word. If the first bit of a word starts with
a unset bit, the word is a literal word; the remaining bits are then used to store a classical 31 bit long
bitmap. A fill word starts with a set bit and indicates the presence of a run composed of homogeneous
31 bit long groups of set or unset bits; thus, fill words are of two kinds: 0-Fills or I-Fills. The second
bit of a fill word is used to differentiate runs of unset bits from runs of set bits. The remaining 30 bits
are used to count the number of homogeneous 31 bit long groups the run contains.

Figure 6 shows an example of how the bitmap composed of 9%0, 3*1, 56%0, 691, 980, 3*1 and
6*0 can be compressed using WAH. First, the uncompressed bitmap is divided into groups of 31 bits.
If a group forms a literal word, an unset bit is prepended to it. Otherwise, the group is replaced by an
appropriate fill word and a counter of the number of identical consecutive groups following the current
group.

The WAH compression becomes effective when many consecutive zeros or ones can be represented
with fill words. In the worst bit distribution, i.e., a random bitmap, the WAH algorithm reduces the size
of the bitmap as follows.

P (n d,w) v [1 - (1 _ d)QH _ dzw_Q]

w —

Figure 6. The WAH bitmap compression

Uncompressed bitmap
00000000 01110000 00000000 00000000 00000000 00000000 00000000 00000000
0ooo1111 11111111 11111111 11111111 11111111 11111111 11111111 11111111
11111111 10000000 00000000 00000000 00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000 00000000 00011100 0000

Uncompressed bitmap organized in groups 081 bits:

'0000000001110000000000000000000' " 0000000000000000000000000000000
0000001111111 111111111 11111111 T 1111 1111111111111
1111111111111000000000000000000' I 0000000000000000000000000000000
10000000000000000000000000000000! 0000000000000000001 11000000 ‘

Merging consecutive homogenous1 bits groups

'0000000001110000000000000000000' x 1 | 0000000000000000000000000000000 x 1
0000001 111111111111111111111111) x 1 1111111111111 1111111111111 x
1111111111111000000000000000000' x 1 0000000000000000000000000000000 x 2
1000000000000000000111000000 I'x1

WAH encoding in words of32 bits

Literal word 0 -Fill word, counter =1
00000000001110000000000000000000/ [ 10000000000000000000000000000001
Literal word 1 -Fill word, counter =1

00000001111111111111111111111111/ [ 11000000000000000000000000000001

0 -Fill word, counter =

Literal word Fill 2
[01111111111111000000000000000000/ [ 10000000000000000000000000000010

Literal word

0000000000000000000111000000 !
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where n is the size of the bitmap in bits, d is the bit density, i.e., the fraction of bits set, and w is the word
length, (32 bits in our example). Using the top, operator, the bit density is d = k/e. On a fuzzy song set
of 232 songs where only 1,000 songs are physically stored and n = 2%2, d = 1,000 / 232, the size of each
bitmap is 64,000 bits.

As previously illustrated by Figure 5, a bitmap is constructed for each of the membership degree a
song element can possibly take. The fuzzy song set is then represented using an array composed of 100
bitmaps, but this does not affect the size of the overall bitmap as the bit density of in each bitmap will
proportionally decrease, maintaining the bit density in the full bitmap unchanged.

k
p~s|log,s+ p, ,(e. m,——, w
e.m

In an MW of 232 songs, where 1,000 song elements with the highest membership degree are physi-
cally stored, the size of the payload reaches 33 TB. On a data set composed of 10,000,000 song seeds,
the payload size is 76 GB.

Payload Estimate Comparison
Figure 7 shows the expected size for storing a Fuzzy Song Set Attribute (FSSA) for each of the 232 song
seeds and for different values of £. The linear growth of the WAH bitmap with the number of stored

elements is explained by considering k / n < 1 and applying a binomial decomposition. The payload
can then be approximated by p  ~2.kw.

Figure 7. estimated payload storage requirements
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In arrays, the seed elements only have to be stored once per FZSET. Arrays take thus half the stor-
age requirements of tables. With arrays, however, the data need to be compressed and reorganized, thus
leading to an overall increase in complexity. The array compression scheme is focused on compressing
the membership degree. The compression occurs on the 7 bits used to represent the membership degree
but leave the 32 bits representing each element untouched; thus limiting the maximum compression
performance that can be achieved. Bitmaps, on the other hand, are focused in compressing the 32 bits
representing the elements; this is done by imposing a position to each song element. These important
structural differences will have an impact on the implementation of operators and functions.

Storage Estimates and Benchmark

This section describes the storage requirements for the implementation of the Song Similarity Cube fact
table. Therefore, some parts of the following are dependent on the DBMS chosen for implementing the
cube. We calculate some storage requirements estimates for each of data structure. As our estimates
match experimental results, we proceed on predicting the size of each storage option depending on the
number of fuzzy elements they contain.

The experience was conducted on PostgreSQL 8.3, well-known for its scalability. As already explained,
the songs can be uniquely identified using 32 bits and the membership degree of each song element has
a granularity of 100. The dataset used for the implementation consists of 150,834 songs, gathered from
the Intelligent Sound project. Song similarities are computed using a genre classifier collecting acoustic
features from a popular media player (Lehn-Schigler, Arenas-Garcia, Petersen, & Hansen, 2006)

The expected table overhead in PostgreSQL can be estimated by considering tuple overhead and page
overhead (PostgreSQL, 2008). In our configuration, pages have a fixed size of 8 KB. Since tuples are
not allowed to span over multiple pages, PostgreSQL uses secondary storage tables, referred to as The
Oversized-Attribute Storage Technique (TOAST) tables, to store large attributes. Using TOAST, large
field values are compressed and/or broken up into multiple physical rows. TOAST tables use the Lempel-
Ziv, briefly LZ, compression technique to reduce their size (Ziv & Lempel, 1977). The compression of
‘toasted’ attributes being optional, we will compare the different possible setups.

In a table, the number of rows is the product of the number of seeds and the number of elements per
seed: 150,834.1000 = 150,834,000 rows. Each page has a size of 8KB, with a header of 24 bytes, thus
leaving 8,168 bytes of free space. Each row has a payload of 4 + 4 + 4 + 1 = 17 bytes. Each tuple is
stored after a 20 bytes long header, and is aligned to start on the 32nd byte. Therefore, the size of each
row in the table is 31 + 17 bytes. Thus, each page can accommodate 185 rows, and 150,834,000 rows
will require 815,319 pages, thus taking a disk space of 815,319 * 8 KB = 6,369.67 MB. In our storage
experiment on the 150,834 songs, gathered from the iSound database, this is exactly the storage size
taken on disk; thus indicating that our estimate is precise.
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For arrays, each element has to be aligned on 4 bytes, thus 8 bytes are necessary to store the element
and the membership degree. Additionally, 4 bytes are used to store the size of the array. Each array has
therefore a size of 4 +4 + 1000 * 8 = 8008 bytes not allowing two tuples to fit on a single page. Therefore
150,834 pages of 8 KB are needed, causing the storage requirements to be 1,178 MB.

For bitmaps, in the worst case compression scenario, each of the 1,000 elements requires both a fill-
word and a literal word, e.g., when a 0-fill word is required between each set bit. A word takes 4 bytes,
thus 8 bytes per elements and 8,000 bytes per bitmap. For each bitmap, an additional 4 bytes long integer
is required to keep track of the size of the data, thus adding 100 * 4 bytes. Thus a bitmap cannot fit on
a page and has to be moved to an auxiliary toast table, where each bitmap is split into chunks of 2,000
bytes. In that case, 4 rows per bitmap attribute are required in the auxiliary table. Storage estimates
show that in the most pessimist case 1,472 MB are required to store the bitmaps. In the selected dataset,
183,184 pages are required to store the bitmaps. The total space taken by the WAH compressed bitmap
storage representation is therefore: 1,431 MB.

If the number of element increases, a similar storage technique using an auxiliary TOAST table is
required for the array data structure. As with bitmaps, data larger than 2,000 bytes is split into 2,000 bytes
chunks. Each array is therefore divided into 5 chunks, and 150,834*5 chunks are needed. For each data
chunk, a 31 bytes long header has to be added. Since 8,168 bytes of storage are available per page, only
4 chunks can be stored per page and 188,543 pages are needed. The total size of the array data structure
is 1,472 MB when stored using a TOAST table.

Further compression of TOAST data using standard L.Z algorithm can be performed. The compres-
sion ratios are data depending.

Table 7. comparison of the storage options

Size (MB)
Table Payload estimate 1,852
Overhead estimate 4,518
Total estimate 6,370
Real size 6,370
B-tree Index 3,231
Total 9,601
Array Payload estimate 666
Overhead estimate 511
Total estimate 1,178
Real size 1,178
Real size + LZ 794
B-tree Index 3
Total 1,181
WAH Bitmap Payload estimate 1,151
Overhead estimate 296
Total estimate 1,447
Real size 1,447
Real size + LZ 719
B-tree Index 3
Total 1,450
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Table 7 shows the storage requirements for the three storage options. In addition, the space required
to index seed songs and similarity functions using a standard B-Tree and storage requirements for LZ-
compressed data are presented.

Our experiments show that the real size requirements match the estimates. While table are certainly
the most straightforward solution, they are a bad choice for data storage requirements and indexing pur-
poses. With respect to the payload, the arrays are very promising but suffer from an important overhead
that makes arrays and WAH compressed bitmaps very comparable in term of storage size. Furthermore,
since array elements are aligned on 8 bytes, compressing the array does not bring any storage benefit
and adds unnecessary complexity. LZ compression works better on bitmaps, therefore creating a sen-
sible difference in favor of bitmaps; this is observation might, however, be data dependent. Finally, with
respect to the implementation of the two new data types, WAH-bitmaps are a more complicated data
structure to build; the compression requires some particular attention and the variable length nature of
the bitmap brings additional complexity.

Using identical storage estimates, we predict the size of tables, arrays, and bitmap with respect to
k. Considering that k elements are required in order for the data to be useful, we can thus choose what
data structure is the most appropriate. The results of the size estimates are shown in Figure 8. For all
values of k, tables are the worst solution. For £ > 2,000, arrays and WAH-compressed bitmaps tend to
behave very similarly. For lower values of k, due to the data organization in pages, results vary sensibly
depending on k. However, arrays always keep a slight advantage.

FZSET FUNCTIONS AND OPERATORS

We now compare the array and bitmap storage structure with respect to the performances of their op-
erators.

WAH Bitmap Operations

The original WAH compression method has been slightly adapted in order to manipulate bitmaps of
different lengths. First, the last word, i.e., the remainder of the uncompressed bitmap is stored as if the

Figure 8. estimated storage requirements including PostgreSQL overhead
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bitmap is extended with extra unset bits to finish the last word. So a bitmap composed of: 10+0’s, 21*1’s,
and 4*1’s becomes <001FFFFF> <78000000> and not <0001FFFF> <0000000F> as in the original
algorithm. This allows no particular treatment for the last word and allows expanding existing bitmaps
without any extra manipulations.

Listing 1. Pseudo C implementation of the bitwise logical AND operator on two WAH compressed
bitmaps

struct wah32run_struct {
unsignedint it; // iterator
unsignedint data; // decompressed data
unsignedint nWords; // group counter
bool isFill;
Y
staticinline void wah32_run_decode(wah32run run, unsigned int word) {
if (WAH32_ISCOUNTER(word)) {
run->data = (word > WAH32 ONECOUNTER ?
WAH32_ALLONES : WAH32 ALLZEROES);
run->nWords = word & WAH32 MASK COUNTERVALUE;
run->isFill = 1;

else {
run->data = word & WAH32 MASK LITTERAL;
run->nWords = 1;
run->isFill = 0;
}
}
// input: 2 bitmaps represented with 2 dynamic arrays of integers
// output: 1 bitmap represented with 1 dynamic array of integers
voidwah32_and(Intlist x, Intlist y, Intlist rtnBitmap) {
unsignedint nWords = 0; / minimum counter
wah32run xrun, yrun;
xrun = wah32_run_init(); / initialize data struct
yrun = wah32_run_init(); / initialize data struct
while (xrun->it < intlist_size(x) && yrun->it < intlist_size(y))

if (xrun->nWords == 0) // load a new word from x

wah32 run_decode(xrun,*intlist_getp(x,xrun->it));
if (yrun->nWords == 0) // load a new word from y

wah32 run_decode(yrun,*intlist_getp(y,yrun->it));
if (xrun->isFill && yrun->isFill) {

// appends a fill word with counter = minimum counter

nWords = min(xrun->nWords, yrun->nWords);

wah32_appendFill(rtnBitmap, nWords,

xrun->data & yrun->data);
xrun->nWords -= nWords;
yrun->nWords -= nWords;

else {
// append a literal word to the bitmap
wah32_appendLit(rtnBitmap, xrun->data & yrun->data);
(xrun->nWords)--;
(yrun->nWords)--;
}
if (xrun->nWords == 0)(xrun->it)++;
if (yrun->nWords == 0)(yrun->it)++;
}
wah32 run_free(xrun);
wah32 run_free(yrun);
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Logical operations on WAH-compressed bitmaps can be performed without decompressing the bit-
maps. Operations are performed by scanning both inputs word by word. If two fill words are met, the
result will be a fill word of type resulting from the operation; its length is the minimum length of the
two input fill words. If two literal words, or a literal and a fill word are met, the result will be a literal
corresponding to the operation.

Intersection and Union

The computation of the intersection or the union of two fuzzy song sets represented in arrays is performed
by a modified sort-merge. The arrays are first decompressed and sorted by element. In our experiment,
the sorting of the array with respect to its elements is done using the quicksort algorithm. Once sorted, the
membership degrees of identical elements are compared. For an intersection, if both elements are present,
the minimum membership degree is placed in the array; for a union, the maximum membership degree
of both elements or the membership degree of the existing element are placed in the return array.

The computation of the WAH union is performed as follows. In the WAH bitmap representation, the
elements are organized per membership degree. For each membership degree starting from the highest,
we perform a logical OR on the compressed bitmaps. To prevent future operations to set a bit already
set previously for another membership degree, we have to maintain a history of bit, also represented
using a WAH-bitmap. This costs two additional operations on the bitmaps, a compressed NOT-AND
to check that a bit was not previously set, and a compressed or, to maintain the history up to date as
we scan through the various membership degree. Pseudo C code for performing the union is shown in
Listing 2, results are shown in Figure 9. The computational cost of the “OR”, the “NOT-AND”, and the
“OR” for maintaining the set bit history are shown in Figure 9. The WAH union is the sum of the three
operations.

No update of the history is needed when handling the last bitmap, thus the CPU time reaches a ceil-
ing when no more elements are added to a bitmap corresponding to a level higher than 1. After 2000
elements, all the bitmaps have elements. New elements are added in the last bitmap corresponding to
the lowest membership degree.

For sparse bitmaps, the number of elements grows linearly with the number of elements. As the den-
sity of bits set increases, the proportion of literal words increases, thus increasing the likelihood of new

Listing 2. Pseudo C implementation of the union of fuzzy song sets represented with two arrays of WAH
compressed bitmaps with membership degree ranging from 0 to 100

wahbitmap * union(wahbitmap *x, wahbitmap *y) {
wahbitmap tmp, history; // temporary and history bitmaps
wahbitmap z[101]; // z is the return array of bitmap
unsignedshort mu; // membership degree
for (mu = 100; mu >=2 ; mu--) {
tmp = wah_or(x[mu],y[mu]); // logical or, save in tmp
z[mu] = wah_notand(history,tmp); // check with history
history = wah_or(history,tmp); // update history
}
// for mu = 1, no history update
tmp = wah_or(x[mu],y[mu],); // logical or
z[1] = wah_notand(history,tmp); // check with history
return z;
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Figure 9. CPU time required for the various steps of a union of fuzzy song sets represented with bit-
maps
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element being added to existing literals rather than splitting fill words into literals. Figure 10 shows the
average input and output length of the bitmaps used for benchmarking the CPU time of the “OR” opera-
tion. After 2000 elements, the length growth diminishes due to the increase in the number of literals.

The union of arrays is highly efficient for low numbers of elements. As expected, their performances
decrease as the number of elements increases. Additionally, the sort operation significantly increases
the computation time. Note, however, that the resulting set is sorted, thus preventing successive sort
operations to be necessary, e.g., in case the function is used for an aggregation. But, even in the best
case scenario, when no sorting of the elements is required, the CPU time spent on the union of arrays is
proportional to the number of elements in the sets. Bitmap operations, however, are linearly proportional
to the number of words in the input bitmap and not directly to number of elements, i.e., the number
of bits set. As the number of elements increases, bitmaps will keep a nearly constant processing time
where arrays will be proportional to the number of elements. Efficiency of the array and bitmaps union
operations on the song similarity dataset is shown in Figure 11.

Figure 10. Input and output length depending on the number of song elements stored
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Figure 11. comparison between the performances of the union operator for arrays and WAH bitmaps
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Top

The top operation for the array data structure requires ordering the elements with respect to their member-
ship degrees. Since the number of membership degrees is limited, the sort is performed using a bucket
sort whose complexity is linear in the number of elements.

For WAH bitmaps, the elements are already grouped by membership degree. The only operation
required is to scan the compressed bitmap, starting with the highest membership degree. As soon as k
elements are found, the scan stops. The number of operations is thus only depending on the number
of words needed to be read during the scan before k set bits are found. Unlike arrays, the operation is
independent from the total number of elements in the bitmaps. Pseudo C code for performing the top
is shown in Listing 3.

Finally, returning the resulting WAH bitmaps is performed simply by copying the input bitmaps and
truncating it at the right place. Sorting the array is a slower process as it requires copying elements one
by one. The CPU time spent for performing top operations depending on the size of the fuzzy song set
are shown in Figure 12.

Reduce

On an array, the reduce operation requires scanning the elements of the array; the computational cost
is therefore proportional to the number of elements. In a WAH bitmap, since the elements are already
organized per membership degree, the operation only consists of deleting the bitmaps corresponding to

membership degree lower than alpha from the input bitmap. Pseudo C code for performing the reduce
operation is shown in Listing 4. The computation time results are shown in Figure 13.

GENERALIZATION TO OTHER DOMAINS

The generalization from fuzzy song sets to other domains with respect to the storage solutions is im-
mediate for both arrays and WAH bitmaps.
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Listing 3. Pseudo C implementation of the top operation of a fuzzy song set represented by an array of
WAH compressed bitmaps with membership degree ranging from 0 to 100

wahbitmap * wah_top(wahbitmap * x, unsignedint k) {
for (mu = 100; mu >= 0; mu--) {
if (k > 0) wah_truncate k(&k,x[mu]);
else x[mu] = 0;
}
return x;
¥
wahbitmap wah_truncate_k(unsignedint *k, wahbitmap x){
while (xrun->it < bitmap_size(x)) {
tmp = bitmap_get(x,xrun->it); / get new word
wahrun_decode(xrun,*tmp); // decode the current word
nWords += xrun->nWords; // update the word counter
if (xrun->isFill && xrun->data == ALLONES) {
if (setbitcount + 31 * xrun->nWords > *k) {
// append trailing fills then a literal
// set k =0 and leave
/...

¥
setbitcount += 31 * xrun->nWords;
}
else {
if (setbitcount + bitCount(xrun->data) > *k) {
// need to find which bit exactly is the k
// override trailing bit with 0
// set k =0 and leave
/...
¥
setbitcount += bitCount(xrun->data);
¥

xrun->it++; // point to next word

1

*n-=setbitcount; / remaining number of bits not found

Figure 12. Comparison between the performances of the top operator for arrays and WAH bitmaps
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Listing 4. Pseudo C implementation of the reduce operation of a fuzzy song set represented by an array
of WAH compressed bitmaps with membership degree ranging from 0 to 100

wahbitmap * wah_reduce(wahbitmap *x, unsignedint alpha) {
for (mu = alpha - 1; mu > 0; mu--) {
x[mu] = 0;
}
return Xx;

-

Figure 13. comparison between the performances of the reduce operator for arrays and WAH bitmaps
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For fuzzy sets requiring a fine level granularity, i.e., a high cardinality of membership degrees, the
number of bits used to represent the membership degree on uncompressed arrays grows logarithmically.
On compressed arrays, for fuzzy sets with at least one element per membership degree, no size differ-
ence will be noticed. Similarly, WAH bitmaps are well known to scale very well with high cardinality
attributes as their size is bounded by the total number of elements and not the number of bitmaps.

Finally, the performance studies of the previously presented operators are directly applicable to fuzzy
sets. For other operators, e.g., intersections defined using different t-norms, new performance studies
are required. For WAH bitmaps, the computational time will be proportional to the number of logical
bitwise operations required on the compressed bitmaps.

CONCLUSION AND FUTURE WORK

As music recommendation systems are becoming increasingly popular, new efficient tools able to man-
age large collections of musical attributes are urgently needed. Fuzzy sets prove to be well suited for
addressing various problematic scenarios commonly encountered in recommendation systems. After
defining fuzzy song sets and presenting an algebra to manipulate them, we demonstrate the usefulness
of fuzzy song sets and their operators to handle various information management scenarios in the con-
text of a music warehouse. For this purpose we create two multidimensional cubes: the Song Similarity
Cube and the User Feedback Cube. Three data options, arrays, tables and WAH bitmaps, are envisioned
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for representing fuzzy song sets. We proceed by discussing the impact of these data structures on the
storage space and operators performance.

With respect to storage, while arrays first show to be a very good choice from a theoretical point of
view, they suffer from a significant overhead. Estimates taking into account DBMS overheads show
that the differences between WAH bitmaps and arrays vanish as the number of elements grows. The
different data organizations in WAH bitmaps and in arrays cause operators to behave very differently
depending on the number of elements. Arrays are very efficient when the number of elements remains
limited. However, due to frequent sorting operations, arrays behave poorly for larger sets. Requiring
more complex management, bitmaps suffer from a higher starting overhead that is mostly visible when
the number of elements is low. As the number of elements grows, operations on bitmap are faster than
on arrays. In our experiment with the largest number of elements, the Union operator on WAH bitmaps
is performed 5 times faster than on arrays, the speedup factor is 7 for the 7op operator and 85 for the
Reduce operator.

Future research directions include the development of methods for the transparent manipulation of
arrays and bitmap and the automatic selection of a data structure option during the query plan optimiza-
tion phase. Further research on how to improve the WAH compression performance by using a longer
alignment without diminishing the compression ratio seems also promising, e.g., for 64 bits system
architecture.
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ABSTRACT

The use of online analytical processing (OLAP) systems as data sources for data mining techniques has
been widely studied and has resulted in what is known as online analytical mining (OLAM). As a result
of both the use of OLAP technology in new fields of knowledge and the merging of data from different
sources, it has become necessary for models to support imprecision.

We, therefore, need OLAM methods which are able to deal with this imprecision. Association rules are
one of the most used data mining techniques. There are several proposals that enable the extraction of
association rules on DataCubes but few of these deal with imprecision in the process and give as result
complex rule sets. In this chapter the authors will present a method that manages the imprecision and
reduces the complexity. They will study the influence of the use of fuzzy logic using different size problems
and comparing the results with a crisp approach.

INTRODUCTION

As defined by OLAP Council (2007) “On-Line Analytical Processing (OLAP) is a category of software
technology that enables analysts, managers and executives to gain insight into data through fast, consis-
tent, interactive access to a wide variety of possible views of information that has been transformed from
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raw data to reflect the real dimensionality of the enterprise as understood by the user”. According to Han
(1997), the use of OLAP systems in data mining is interesting for the following three main reasons:

. Data mining techniques need integrated, consistent and clean data to work with (Fayyad, Piatetsky-
Shapiro, Smyth, & Uthurusamy, 1996). The data processing performed when building a data
warehouse guarantees these qualities in data and converts data warehouses into good data sources
for data mining.

e Users frequently need to explore the stored data, selecting only a portion of them, and might want
to analyze data at different abstraction levels (different levels of granularity). OLAP systems are
designed to ease these operations in a flexible way . The integration of data mining techniques
with OLAP provides the user with even more flexibility.

. It is difficult to predict what knowledge is required a priori. The integrated use of OLAP and suit-
able data mining methods allows the user to obtain this knowledge using different approaches and
representations.

Information in decision support systems usually has an ill-defined nature. The use of data from human
interaction may enrich the analysis (Gorry & Morton, 1971) and, nowadays, it is common for companies
to require external data for strategic decisions. These external data are not always compatible with the
format of internal information and even if they are, they are not as reliable as internal data. Moreover,
information may also be obtained from semi-structured or non-structured sources.

In addition, OLAP systems are now being used in new fields of knowledge (e.g. medical data) that
present complex domains which are difficult to represent using crisp structures (Lee & Kim, 1997). In
all these cases, flexible models and query languages are needed to manage this information.

These reasons, among many others, justify the search for multidimensional models which are able
to represent and manage imprecision. Some significant proposals in this direction can be found in the
literature (Laurent, 2002; Jensen, Kligys, Pedersen, & Timko, 2004; Alhajj & Kaya, 2003; Molina, San-
chez, Vila, & Rodriguez-Ariza, 2006). These proposals support imprecision from different perspectives.
In (Molina, Sanchez, Vila, & Rodriguez-Ariza, 2006), we propose a fuzzy multidimensional model that
manages imprecision both in facts and in the definition of hierarchical relationships. These proposals
organize imprecise data using DataCubes (imprecise DataCubes) and it is therefore necessary to develop
data mining techniques that can work over these imprecise DataCube models.

Our aim in this chapter is to study the influence of using fuzzy logic in the scalability of a method to
extract association rules from a fuzzy multidimensional model that can represent and manage impreci-
sion in different aspects: COGARE. As we have already mentioned, previous proposals in the literature
are directed towards obtaining as many associations as possible. However, they produce complex results
(e.g. a high number of rules, rules that represent the same knowledge at different detail levels, etc.). In
contrast, this proposal has two main goals:

. Firstly, to manage data imprecision throughout the entire process.
. Secondly, to reduce the complexity of the final result using both the fuzzy concepts and the hier-
archical relation between elements, without reducing the quality of the rule set.
In the literature there are some other approaches to reduce the complexity of the results (closed

itemsets, maximal itemsets, etc.) but they work on another way because these methods try to reduce the
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number of rules shown to the user but been able to recover all the association rules. Our approach will
try to reduce the global number of association, not only the way to represents them.

During all the process fuzzy logic is used. This introduces complex calculation along with the high
time consuming process of data mining. What we want to do in this chapter is study the influence of
the use of the fuzzy logic in the process of extraction association rules over fuzzy DataCubes and the
overload.

Next sections present the data mining method proposed, and after that, the data used for the study
and the results of the experiments.

ASSOCIATION RULE EXTRACTION

In this section, we will briefly describe the main published approaches for association rule extraction.
We will first discuss classical methods. As the multidimensional models usually define hierarchies, the
multi-level association methods are interesting when studying the association rule extraction over them.
The final subsection introduces the proposed method to work on both crisp and fuzzy DataCubes.

Association Rules

Agrawal et al. (Agrawal, Imielinksi, & Swami, 1993) formalized the problem of association rule ex-
traction. Let /= {i,i, ..., i } be a set of literals called items and D be a set of transactions, where each
transaction 7'is a set of items such that 7c/. A transaction 7 contains the set of items X if X 7.
Definition 1. Let /= {i ,i,, ..., i m} be a set of literals and D be a set of transactions defined over 1. An
association rule is an implication X—Y, where X/, YcI, and XnY = &.

The quality of the rules is usually measured in terms of the confidence and the support of the rule.
The confidence is computed as the percentage of transactions that contain both X and Y with respect
to the transactions that contain X, while the support of the rule is the percentage of transactions that
contain XY in the entire dataset. First approaches considers interesting only the rules with a confidence
and support greater than a threshold. These rules are called strong rules.

The association rule extraction process is divided into two phases:

. Discover the frequent item sets, i.e. the sets of items with a support greater than a given
threshold.
. Build the association rules using the previously obtained frequent item sets.

Since the first step is the most time-consuming, there are proposals which focus on the optimization
of the frequent item set calculation (Agrawal & Sritkant, 1994; Park, Chen, & Yu, 1995; Brin, Motwani,
Ullman, & Tsur, 1997; Savasere, Omiecinski, & Navathe, 1995; Han, Pei, & Yin, 2000).
Multiple-Level Association Rules
The use of taxonomies over the data is interesting because the desired associations may not appear at

the most detailed level but at higher levels. Researchers have also paid attention to this approach, and a
first proposal (Srikant & Agrawal, 1995) applies a rule extraction process to all the levels. The authors
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Figure 1. Frequent item sets at different levels using the same support threshold

/Frequent item sets at higher levels

| No legal age AND Date is 05/22/2006 | | Young AND Month is May |
Dimensions

| No legal age AND Month is May | | Patient is 13 years old AND Month is May |

All Year No legal age AND Year is 2006 I I Young AND Date is 05/22/2006 ‘
Young AND Year is 2006 | | Patient is 13 years old AND Year is 2006 |
Legalage Group eMonth
Age Date Frequentitem set at base level
I Patient is 13 years old AND Date is 05/22/2006 |

define an interest measure that is used to prune the rule set. In this way, a rule is deleted if a rule defined
at a higher level exists and the first does not give more information. This approach considers the same
support threshold for all the levels.

When the taxonomy is complex or when a relatively high number of levels is considered, a high
number of rules appears. Let us explain this with a naive example. Figure 1 represents a possible tax-
onomy over data. Let us suppose that the item set {Age is 13, Date is 05/22/2006} is frequent; then all
the items that group one of the values will be frequent, and all the combinations of these values will
also be frequent.

This circumstance will imply that the following item sets will be frequent: { Young, Dateis 05/22/2006},
{Age is 13, May}, {Young, May}, {No legal age, Date is 05/22/2006}, {No legal age, May}, {Age is 13,
Year 2006}, {Young, Year 2006} and {No legal age, 2006}.

Therefore, for a single item set we obtain another 8 frequent item sets that represent exactly the same
information at different abstraction levels. When the method finishes, it will produce a high number of
rules that are redundant (i.e. they represent the same information at different abstraction levels). This
fact only increases the complexity for the user.

The method uses an interesting measure to reduce redundant rules if other rules at a higher level give
at least the same information. However, it allows redundant rules if the concrete ones are of a higher
quality.

Han and Fu (1995) proposed a top-down approach using a single taxonomy: an item set is considered
to be frequent if the support is greater than a threshold and all the ancestors are also frequent. The items
belonging to an item set are all defined at the same detail level. Later the authors adjust the algorithm
to work with different details level (1999). The authors used different support thresholds for each level
that must be established by the user (if the taxonomy is complex, this involves a large number of pa-
rameters), and do not consider multiple taxonomies over the items. Thus, if the domain is complex, it
may not be modeled well.

Shen and Shen (1998) proposed another method that extracts all the strong rules which are defined
at all the combinations of detail levels using different taxonomies, considering the same threshold. Yen
(Yen, 2000) used a graph structure to obtain the relationships between elements at all the detail levels.
Both approaches present the same problems as those mentioned for Srikant and Agrawall’s proposal: a
large number of rules with redundant information.
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The method proposed by Lui and Chung (2000) uses a bottom-up approach. In this case, the method
considers two infrequent item sets of the same size with common items, and generalizes them to a new
one, which is a candidate frequent item set in a second stage. The support threshold for each item set
is calculated according to a proposed generality measure. As the generalization process is applied only
once, if the relationships appear at higher levels, the method will not discover them.

Another approach to association rule extraction using taxonomies is attribute-oriented induction
(AQI]). In this case, the taxonomies are used to raise the abstraction of the items before the process is
applied. In line with this idea, several methods have been proposed (Han, Cai, & Cercone, 1993; Muyeba
& Keane, 2000) and these have recently been extended to use fuzzy hierarchies (Angryk & Petry, 2005).
The idea is to reduce the number of rules decreasing the number of items to consider. The main problem
of all these approaches is that since generalization is applied before rule extraction, information is lost
in the process.

Association Rules over DataCubes

Let us now briefly describe some proposals for association rule extraction on DataCubes. The first ap-
proach can be found in (Kamber, Han, & Chiang, 1997). The authors proposed a method that works over
a very simple multidimensional model (there are neither hierarchies on the dimensions nor grouping
mechanisms to change the granularity of the data) and which focuses on frequent item set calculation
to speed up the process using DataCube operations.

Zhu (1998) proposed a more complex approach, with the definition of three different associations:

. Intra-dimensional association: the association is found between elements in the same dimension
(item dimension), using another dimension to calculate the support (transaction dimension).

. Inter-dimension association: in this case, the associations hold between elements in different
dimensions.

. Hybrid association: this association is the result of merging the two previous types. The method
first looks for intra-dimensional frequent item sets and then for inter-dimensional frequent item
sets, merging the resulting sets in order to obtain the rules.

In all the cases, the method works over a single abstraction level, and the support threshold is
therefore a single value. For multi-level association rules, the user must run the method for all the level
combinations required, defining the same number of support thresholds as executions (something which
may be very complex for the user) or using the same value for the entire process. As the final result
is the union of all of the obtained rule sets, there may be a high number of rules and repeated associa-
tions expressed at different abstraction levels (as in Srikant and Agrawal’s proposal as mentioned in the
previous section).

Finally, Kaya and Alhajj (2003; 2005) propose a method that works over a simple fuzzy multidimen-
sional model. The proposed DataCube structure defines fuzzy relations at the lowest abstraction level and
does not support imprecision in hierarchies or facts, as well as the normal operations over DataCubes (e.g.
changing the detail level, reducing the dimensionality of the DataCube, etc.). Under these circumstances,
users would have less flexibility since they cannot explore the data. The proposed method extracts as-
sociation rules at all abstraction levels, obtaining intra-dimensional and inter-dimensional associations
as previously presented. The user must establish a support threshold for each level in the DataCube and
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the threshold for an item set will be the minimum of the threshold established for each item. The authors
use an interesting measure to reduce certain problems of confidence when measuring the quality of the
rules, but do not control the redundant associations defined at different abstraction levels.

THE FUZZY MULTIDIMENSIONAL MODEL

Although there is no standard multidimensional model, we shall briefly introduce the common character-
istics of the first models proposed in literature. In classical multidimensional models, we can distinguish
two different types of data: on the one hand, we have the facts being analyzed, and on the other, the
dimensions that are the context for the facts. Hierarchies may be defined in the dimensions (Agrawal,
Gupta, & Sarawagi, 1995;Kimball, 1996;Cabibbo & Torlone, 1997;Cabibbo & Torlone, 1998).

The different levels of the dimensions allow us to access the facts at different levels of granularity.
In order to do so, classical aggregation operators are needed (maximum, minimum, average, etc.). Other
models, which do not define explicit hierarchies on the dimensions, use other mechanisms to change
the detail level (Li & Wang, 1996; Datta & Thomas, 1999). The model proposed by Gray et al. (Gray,
Chaudhuri, Bosworth, Layman, Reichart, & Venkatrao, 1997) uses a different approach. This model
defines two extensions of the relational group by (rollup and cube) that are used to group the values
during the aggregation process.

As the models that define hierarchies usually use many-to-one relations, one element in a level can
only be grouped by a single value of each upper level in the hierarchy. This makes the final structure of a
DataCube rigid and well defined in the sense that given two values of the same level in a dimension, the
set of facts relating to these values have an empty intersection. The normal operations (roll-up, drill-down,
dice, slice, and pivot) are defined in almost all the models. Eventually, some of the models define other
operations in order to provide the end user with additional functionality (Agrawal, Gupta, & Sarawagi,
1995; Gray, Chaudhuri, Bosworth, Layman, Reichart, & Venkatrao, 1997; Datta & Thomas, 1999).

A Fuzzy Multidimensional Structure

In this section, we will briefly introduce a fuzzy multidimensional model which we have already de-
veloped to manage data imprecision (Molina, Sdnchez, Vila, & Rodriguez-Ariza, 2006). The model is
provided with explicit hierarchies that can use fuzzy relations between elements in two levels.

Definition 2. A dimension is a tuple d=(/,<,/,,l ) where [={l, i=1,...,n} so that each /, is a set of
values I,-:{c,- p oo n} and Zimlj=0 if i#f, and < , is a partial order relation between the elements of | so that
li <, Zk ifVcl.j ell, :>Elckp elk|cij <, 1, and 1T are two elements of / so that Vlz. el ll <, lz. and li <, lT

We use level to denote each element li. In order to identify level / of dimension d we will use d./.
The two special levels 1 and 1 will be called the base level and top level, respectively. The partial
order relation in a dimension is what gives the hierarchical relation between the levels. An example of
dimension on the ages can be found in Figure 2.

The domain of a dimension will be the set of all the values that appear in all the defined levels.

Definition 3. For each dimension d, the domain is dom(d) = U,

In the above example, the domain of the dimension Age is dom(Age)= {1, ..., 100, Young, Adult,Old

,Yes,No,All}.
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Figure 2. Example of hierarchy over ages

All={All}=1_

Legal age = {Yes, No} Group = {Young, Adult, OId }

Age = {1,...,100} = I,

Definition 4. For each /, the set

H o={l /L=l AL<, LA-3L L<, 1 <, 1)

is called the set of children of level [.

This set defines the set of all the levels which are below a certain level (/) in the hierarchy. In ad-
dition, this set gives the set of levels whose values or labels are generalized by the ones included in li.
Using the same example of the dimension on the ages, the set of children in level Allis H,, = {Group,
Legal age}. In all the dimensions defined for the base level, this set will always be empty (as the defini-
tion shows).

Definition 5. For each / the set

Bo={l /L=l AL< LA-3L 1<, ] <, 1)

and we call this the set of parents of level I.

For a certain level, this set shall give all the levels that group or generalize the values of the level. In
the hierarchy we have defined, the set of parents in level Age is PAgf{Legal age, Group}. In the case of
the top level of a dimension, this set shall always be empty.

In the case of fuzzy hierarchies, an element can be related to more than one element in the upper
level and the degree of this relationship is in the interval [0,1]. The kinship relationship defines this
degree of relationship.

Definition 6. For each pair of levels /, and / such that /. € H,, we have the relation

1 0l ><l]. — [(),1]

and we call this the kinship relationship.

The degree of inclusion of the elements of a level in the elements of their parent levels can be defined
using this relation. If we only use the values 0 and 1 and we only allow an element to be included with
degree 1 in a unique element of its parent levels, this relation represents a crisp hierarchy.
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Figure 3. Example of the calculation of the extended kinship relation. a) path All-Legal Age-Age b) path
All-Group-Age

25

All

25

If we relax these conditions and we allow values to be used in the interval [0,1] without any other
limitation, we have a fuzzy hierarchical relationship. This allows several hierarchical relations to be
represented in a more intuitive way. An example can be seen in Figure 3 where we present the group
of ages according to linguistic labels. Furthermore, this fuzzy relation allows hierarchies to be defined
where there is imprecision in the relationship between elements of different levels. In this situation, the
value in the interval shows the degree of confidence in the relation.

Using the relation between elements in two consecutive levels, we can define the relation between
each pair of values in different levels in a dimension.

Definition 7. For each pair of levels /. and lj of dimension d such that [ <, l]. NI = l].

p,(a,b) si I €H,
1;(a,b) = © D (p,(a,c)®n,(c,b)) otherwise

L eH,l cel,

where ® and @ are a t-norm and a t-conorm, respectively, or operators from the families MOM and
MAM defined by Yager (1994), which include the t-norms and t-conorms, respectively. This relationship
is called the extended kinship relationship.

This relation gives us information about the degree of relationship between two values in different
levels within the same dimension. In order to obtain this value, it considers all the possible paths between
the elements in the hierarchy. Each one is calculated by aggregating the kinship relationship between
elements in two consecutive levels using a t-norm. The final value is then the aggregation of the results
of each path using a t-conorm.

By way of example, we will show how to calculate the value of 77, , (All, 25). In this situation, we
have two different paths:

o All -Legal age -Age. In Figure 3.a it is possible to see the two ways of reaching 25 from All
through the level legal age. The result of this pathis (1 ® 1) ® (1 ® 0).

*  All -Group -Age. This situation is very similar to the previous one. In Figure 3.b it is possible to
see the three different paths going through the level Group. The result of this path is (1 ® 0.7) @
(1®0.3)® (1 ®0).
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We must now aggregate these two values using a t-conorm in order to obtain the final result. If we
use the maximum as t-conorm and the minimum as t-norm, the result is

(1®N®(1®0)®(1®0.7)®(1®0.3)® (1 ®0)=
(190)®(0.7®03®0)=1@0.7=1

Thus, the value of 7, (All, 25) is 1, which means that the age 25 is grouped by All in level All
with grade 1.

Definition 8. We say that any pair (h, o) is a fact when h is an m-tuple on the attribute domain we
want to analyze, and a € [0, 1].

The value a controls the influence of the fact in the analysis. The imprecision of the data is managed
by assigning an a value that represents this imprecision. When we operate with the facts, the aggregation
operators must manage these values in the computations. The arguments for the operator can be seen
as a fuzzy bag (Yager, 1986; Delgado, Martin-Bautista, Sanchez, & Vila, 2003) since they are a set of
values with a degree in the interval [0,1] that can be duplicated. The result of the aggregation must also
be a fact. So, in the fuzzy case, the aggregation operators may be defined as follows:

Definition 9. Let B(X) be all the possible fuzzy bags defined using elements in X, P(X) be the
fuzzy power set of X, and D_be a numeric or natural domain. We define an aggregation operator G as a
function G : B(X) — P(X) x[0,1]

When we apply an aggregation operator, we summarize the information of a bag of values into a
single value and it is not always possible to undo this operation. If we want to undo operations that
reduce the level of detail in a DataCube, we therefore need something to prevent this problem and so
we define the object history that stores a DataCube’s aggregation states.

Definition 10. An object of type history is the recursive structure

H =Q
H'"™' = (Al,F,G H"

i

where:

. Q is the recursive clause,

. F is the fact set,

. [, isasetoflevels(l,, .., [ ),

*  Aisan application from /, to F' (4:[, — F),
. G is an aggregation operator.

This structure enables detail levels of the DataCube to be stored while it is operated on so that it may
be restored to a previous level of granularity.

We can now define the structure of a fuzzy DataCube. A DataCube can be considered to be the union
of a set of facts (the variables to analyze) and a set of dimensions (the context of the analysis). In order
to report the facts and dimensions, we need a correspondence which for each combination of values of
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the dimension gives us the fact related to these coordinates in the multidimensional space defined by
the dimensions.

In addition to these DataCube features, we also need the levels that establish the detail level that the
facts are defined with, and a history-type object that keeps the aggregation states during the operations.
The DataCube is therefore defined in the following way:

Definition 11. A DataCube is a tuple C =(D, [,,F;A,H) such that

. D =@, .., d) is aset of dimensions,

. l,=({,, ..., 1,)is asetof levels such that lib belongs to d,

e F=Rud where R is the set of facts and J is a special symbol,

e His a history-type object,

*  Aisanapplication defined as 4:/,,x... xI —F that gives the relation between the dimensions and
the facts defined.

If for @ = (a,,...,a ), A(@) = &, this means that no fact is defined for this combination of values.
Normally, not all the combinations of level values have facts. This situation is shown by the symbol &
when application A is defined.

The basis of the analysis will be a DataCube defined at the most detailed level. We shall then refine
the information while operating on the DataCube. This DataCube is basic.

Definition 12. We say that a DataCube is basic if /, =(1, , ..., [, ) and H=Q.

Operations

Once we have the structure of the multidimensional model, we need the operations to analyze the data
in the DataCube. Over this structure we have defined the usual operations of the multidimensional
model:

Roll-Up

Going up in the hierarchies to reduce the detail level. In this operation we need to know the facts related
with each value in the desired level. The set of facts is obtained using the kinship relationships as fol-
lows:

Definition 13. For each value ¢, belonging to 1, we have the set

UZE /e, €l nmle,e,)>0 if 1 =]
F = lL,ele

{h/he FAIRA@) =h} if | =],

where ¢ = (c;,..., Creeey )
Once we have the facts for each value, we must aggregate them to obtain a new fact according to the
new detail level. The influence of each fact in the aggregation will depend on the relation of the fact with

the value considered and the o value assigned to the fact. Fuzzy operators are needed for this process.
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This operation may be defined in the following way:

Definition 14. The result of applying roll-up on dimension d,, level [, (I, # [, ), using the aggregation
operator G on a DataCube C=(D,,,;A,H) is another DataCube C' = (D,l,F',A',H') where
. V=,

. Alel,.ncly ) =G {h|hEFC; /\30214(6;,...,6;,...,0:):h})’

!

ir"“’lnb) >
33 Chyenns €,

. F’ is the range of 4,

H'=(4,,FGH).

Drill-Down

This operation implies go down in the hierarchies to increase the detail level. In this operation, we use
the history-type object. Since this structure stored the initial aggregation state when roll-up operations
were applied, by using the information stored in this structure we can therefore get to a previous detail
level. The operations may therefore be defined as:

Definition 15. The result of applying drill-down on a DataCube C=(D, [,,FA,H) where
H = (A"ll,F',G',H") is another DataCube C’ = (D,I/, F', A", H').

Dice

This operation consists on a projection over the DataCube using a condition. In this operation we must
identify the values in the dimension that satisfy the condition or that are related with a value that satisfy
the condition. This relation is obtained using the kinship relationship. Once we have reduced the values
in the dimension, we must eliminate the facts for which the coordinates have been removed.

Definition 16. The result of applying dice with the condition B on level / of dimension d, in a Data-
Cube C =(D, I,,F;A,H) is another DataCube C' = (D,I',)F' A" Q) where

) by

* D'=d,...d,...d withd =(,<,,1],L) where I' =1 |] <, I and

) =g %'

{c].k lc, €L A ﬁ(c]k)} if l; =1
1q/ . /
dll ={e, e, €d N6 (c)} if 1 <1

I

{e,le,edd A6 () if 1<,

where 6.(c) =3¢, €1 B(c)An,(c,c)>0,

71 i n 1 Al n ! q/ 1 n
. A(cyynCyyenne)) = (o) [ e, €dlIN...N¢ €d I NAlc,,....c]) = (ha),
*  F’istherange of 4"
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Slice

The slice operation reduced the dimensionality of the DataCube. When we apply this operation, we
eliminate one of the DataCube’s dimensions and so we must adapt the granularity of the facts using a
fuzzy aggregation operator.

Definition 17. The result of applying slice on dimension di using the aggregation operator G in a
DataCube C =(D,/,,F;A,H) is another DataCube C" = (D,I/,)F', A’ Q) where

17

- D'=(d,...d_,d_,..d),

i—17 i1 Ty

. zb'_(zib,...,z_ Lol ),

i—1b7 "i+1b?
1r 1 i—1 i+l n 71 1 i+l ny __
. Ac,,ney ye 0 ) = ({h|3614( € 3Gy Gy s C )—h}),

F’istherange of 4.
Pivot

This operation implies to change the order of the dimensions. This operation does not affect the facts,
only the order of the coordinates that defined them.

Definition 18. The result of applying pivot on dimensions d, and dj in a DataCube C=(D,l,,FA,H) is
another DataCube C’ = (D',I', F, A’,2) where

5 Uy

° D/:(d dz 1’d dz+1’ ’dJ 1’d d]+1’ ’dﬂ)
SR S Uuen AN e SENUUOOY RV B0 AONY O

167777 =167 %5b 0 Vi 1b "t Vi—1b? Vib ) Yj1n 0t
1 gt j-1 i g+l n)

L 1r 1 i— i+1 j—1 J+1 i—
A(cb,...,cb ,ab,cb yonr € ,cb,cb o€ ) = ( B O N N A A i

The properties of these operations have been studied in (Molina, Sanchez, Vila, & Rodriguez-Ariza,
2006).

COMPLEXITY MEASURE

Since our approach is supposedly driven by the desire to reduce the complexity of the obtained results,
we therefore need to measure a rule set’s complexity in order to compare different results and decide
which is the least complex. We follow a similar approach to Atzmueller et al. (Atzmueller, Baumeister,
& Puppe, 2004) by considering two factors for the complexity:

. Number of rules: the greater the number of rules in the results, the greater the complexity for the
user. The following section will describe a function to measure this factor.

. Complexity of the rule elements: very specific values (e.g. dates) result in more specific informa-
tion but are more difficult for the user to understand than elements in higher abstraction levels
(e.g. months instead of specific dates). Next sections present the functions for measuring the ab-
straction of a rule and a set of rules.
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Number of Rules

As we have already mentioned, a large number of rules will increase the complexity and make the rule
set harder to understand. We want to measure the complexity as a value in the [0,1] interval. A rule set
with a complexity value which is close to 0 will have very few rules while a value which is close to 1
will correspond to a set with a high cardinality. Under these circumstances, a function can be considered
to measure the complexity if it satisfies the following definition:

Definition 19. A function C, , defined as

C:N —][0,]]

is a complexity function based on the number of rules when C, (x) > C, (), for all x and y such that
xX>y.

All the functions with this behavior can be used to measure the complexity produced by the number
of rules. Nevertheless, this definition does not take into account the size of the problem, i.e. the number
of items. If we get a result with 100 rules for a problem that involves relations among 100 items, we can
intuitively conclude that this set presents less complexity than another with the same number of rules
for a problem with 10 items. This is why we think that the complexity function should also depend on
the size of the problem.

Similarly, two result sets for the same problem with either 4000 or 5000 rules will be about as difficult
to understand. If, however, the sets have either 10 or 100 rules, although the difference in cardinality
is less than in the other case, there will be a greater difference in complexity from the user’s point of
view. According to this intuitive behavior, the function should not present a linear behavior. Taking this
discussion into account, the following function is proposed:

Definition 20. Let NV be the number of items in the dimensions of the DataCube C. The complexity
of the rule set C, over the DataCube C'is a function C, ,:N — [0,1] with the value

G4

ClC)=1—e "

NR (
Figure 4 shows the behavior of the function for three different problem sizes.

Abstraction

The abstraction of an item will depend on the level defined. In a DataCube, elements at higher levels

will present a higher abstraction than elements at lower ones, since the first ones group the second ones.

Thus, intuitively, an abstraction function would behave in the following way.

Definition 21. Let D be a dimension. A function A defined as

A: dom(D) — [0, 1]

is an abstraction function if it satisfies the following properties:
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Figure 4. Complexity function due to number of rules
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hierarchies defined in the dimension).

« Ifc, e Il then A(c)=0 (all the elements at the most detailed level (the base level of the dimension)

have the lowest possible abstraction).

. If forc, e I we get Ve el :n, (c,c )=Ithen A(c)=I (an element that groups all the elements in

the base level has the highest possible abstraction).

then A(cj) > A(Ci) (the abstraction increases if we go up through the

In view of the established properties, the abstraction function must take into account the granularity of

the elements. One possibility is to define the abstraction according to the levels in the hierarchy. In this
case, all the items in a level will share the abstraction value. This situation, however, can present ceratin

problems because elements at the same level will not always have the same granularity. For example, if

we consider a level to define Legal age, this level has two values: Yes and No. In Spain, both values will
group different numbers of ages (the value No groups the ages {/
{18,...100,...}) so both have different levels of granularity, and naturally, different levels of (Yes abstrac-
tion group more values so they appear to present higher abstraction than No). Therefore, the proposed
abstraction function considers each element independently of its level but measures its granularity. The
following definition presents the abstraction function we have chosen.

17} and Yes the remaining values

Definition 22. A is an abstraction function defined as A:dom(D) — [0, 1] when for an element ¢, € [,

the value is

V (c.
Ale) = z‘,,,; %

A

where |IL| represents the number of elements in the base level of the dimension and
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Znucc if =1

Vl (Cz) = {ve el
' 0 otherwise

It should be noted that we consider the number of elements in the base level grouped by value in
order to define the abstraction. This approach is similar to the one proposed by Lui and Chung (Lui &
Chung, 2000) but considering fuzzy hierarchical relations.

The abstraction of a rule would depend on the items that appear in the rule. Once we know the ab-
straction of each of the items, the abstraction of the whole rule is defined as the average abstraction of
the items that define the rule.

Definition 23. Let R be a rule with the elements / R and ,an abstraction function. The abstrac-
tion of the rule is

N
STAUI

A, = =F—— N

In order to measure the abstraction of a rule set, we consider the abstraction of each rule that appears
in the set. Not all the rules, however, have the same importance and some may be more representative
of the data set according to their support. In order to measure the abstraction of the set, we consider the
abstraction of each rule weighted by the support of the rule. Under these considerations, the abstraction
of a rule set is defined as follows.

Definition 24. Let C, = {R ..., R} be a rule set with associated support sop(R ), ..., sop(R,) and 4
be an abstraction function. The abstraction of C, would be

N
ZARlsop(Ri)
=1
Ay =y
3" sonlR)
i=1

Global Measure

In previous sections, we have defined two functions which are useful for measuring the complexity due
to the number of rules and to the abstraction of a result rule set. In order to define a global measure, we
now need to combine both functions to obtain a value in [0, 1] that represents the complexity of the set
according to both factors:

Definition 25. Let o € [0, 1]. We define the global complexity of a rule set CR as

(C

R

global ):aXCNR(OR)+(1_a)X(1_ACR)

Depending on the value of a, the function controls the relative importance of each complexity mea-
sure in the final value. The abstraction of the items will help in the comprehension of the rules but the
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Table 1. Contingency table with relative values

Satisfy C Not satisfy C

Covered by R r I I

Not covered by R r r /
; i 1

number of rules may have a greater influence on the complexity for the final user (intuitively, a low
number of rules with concrete values will be easier to understand than a high number of rules defined
at high abstraction levels). Therefore, we suggest a value of o =0.6.

QUALITY MEASURES

The method we used is based on the complexity of the result obtained, but controlling the quality loss
of the rule set. Thus, the method must use a quality measure. We first describe the measures that are
conventionally used. Later, a new way of computing the quality of a rule set based on these measures
is introduced.

Classical Measures

In this section, we will present some of the main quality measures used in the literature. We will only
introduce the expression and briefly comment on the characteristics of these measures. For a deeper
study, the reader can consult comparative studies about the performances of these measures in (An &
Cercone, 2004; Dean & Famili, 1997; Pedrycz, 2004; Tan & Kumar, 2000). All the measures can be
expressed in terms of relative frequencies. If R:A—C is a rule, Table 1 shows the contingency table
with relative values.

Consistency is the normal quality measure used in association rule extraction, called in this field the
Confidence of the rule. Its aim is to measure specificity, but various problems arise when very frequent
items appear.

Coverage measures the extent to which the domain of the consequent is covered by the rule (the maxi-
mum value is reached when all the elements that satisfy C are covered by the rule). Both the Confidence
and Coverage, measure two important factors for the rule quality, but if we use them separately we can
reach bad conclusions (rules that cover few elements in the case of Consistency, or a high number of
false positives when using the Coverage). To improve the performance, certain authors have proposed a
combination of both measures: Michalski (1990) uses a weighted combination which concedes greater
importance to Consistency when it reaches high values, and Brazdil and Torgo (1990) propose a com-
bination that adjusts the Consistency according to the Coverage.

Another classical measure is the Certainty factor, proposed by Shortliffe and Buchanan (1975). This
has been used in induction systems and measures both direct relations (antecedent implies the conse-
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quent) and indirect relations (when the antecedent appears, it implies no occurrence of the consequent).
This measure has also been used in association rules (Delgado, Marin, Sanchez, & Vila, 2003) because
it does not present some of the problems of the Confidence.

Agreement measures use the main diagonal of the contingency table, and Cohen and Coleman’s
measures are defined in this way. Bruha (1996) proposed two measures that attempt to combine the best
characteristics of both. Measures from other knowledge fields have also been used to compute the qual-
ity of the rules, such as Information Gain, Logical Sufficiency,and Discrimination. In some situations,
the measures lack a formal analysis of the dependencies and are empirically defined. An example of
these measures is IMAFO (Famili, 1990) which combines two measures for the accuracy and coverage
of the rules.

Table 2 gathers the expressions of the measures based on the contingency values.

Quality Measure for a Rule Set

Although all of the previously presented quality measures compute the quality of a given rule, we need to
measure the quality of an entire rule set. As we have previously done with abstraction, we now propose a
general measure that takes into account the importance of each rule. We propose the use of the weighted
arithmetic average. The following definition shows the quality measure for a rule set.

Definition 26. Let C, = {R,,...,R,} be a set of rules, sop(R) be the support for rule R, and Q, be a
quality measure for the rules. The quality of the rule set is defined as

C
QcR == Cl
> sop(R)
COGARE ALGORITHM

As we have already mentioned, one of the main problem of previous rule extraction methods is the
complexity of the results. Normally, the number of rules obtained is high and this complicates their
interpretation. In addition, if the elements used to define the rules have a high level of detail, they will
be even more complex for the user.

In this section, we will describe method to accomplish this task based on fuzzy DataCubes: COGARE
(COmplexity Guided Association Rule Extraction). This method extracts inter-dimensional association
rules and tries to reduce the complexity of the obtained rules using the fuzzy concepts defined in the
dimensions and hierarchies. The use of fuzzy logic allows concepts to be defined more naturally from
the user’s point of view. If the rules are defined using these concepts, they will be more understandable
for the user due to the use of concepts nearer to the user’s language. The hierarchies are helpful in two
ways:
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Table 2. Quality measures

Measure Expression
Consistency OOTZS(R) = &
1,
_ L
Coverage COU(R) = —
£,
M(R) = w, x Cons(R) 4 w, x Conv(R) where
Michalski 1 1
w, = 0.5+—Cons(R)  w, =0.5—=Cons(R)
4 and 4
Brazdil and Torgo BT(R) _ COTLS(R) % eCom;(R)—l
Cons(R) —
M if Cons(R)> f
1—f ‘
Cons(R) —
Centainty factor CF(R) = % lf COTLS(R) < fc
6 otherwise
C
Cohen(R) = ons(B) — J,
Cohen COTLS R
Cov )
Cons(R
Coleman Coleman(R) = M
1=
C1(R) = Coleman(R) x 2+ Cohen(R)
Bruha 3
C2(R) = Coleman(R) x %OU(R)
o _ fe
Information gain [G(R) = — log(fc) + log ?

. Firstly, it is possible that a relation does not appear in a detailed level but can be found at higher
detail levels. Thus, by using hierarchies we can extract rules at different abstraction levels and get
information that does not appear at lower levels;
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Measure

Expression

Logical sufficiency

f
LS(R) = £
(R) f/
£

Discrimination

IMAFO

£
D(R) = log as
fe
f=
IMAFO(R) = (AC X E)x10  AC=f +f
by
E =e

. Secondly, according to the hierarchical relation between elements, the number of rules can be
reduced because some rules can be generalized to a single rule using elements which group the
elements that appear in the rules we want to reduce.

COGARE is based on these ideas, and two main steps can be identified in the method:

. Rule generation: the extraction begins by obtaining rules at the most detailed possible level. It
attempts to calculate the frequent item sets at base levels of the dimensions. If an item set is not
frequent at this level, the method generalizes the items using the hierarchies. This process is re-
peated until the item set is frequent or the elements can no longer be generalized. The rules are
generated using these frequent item sets.

. Generalization process: the result of the previous step is then generalized using the hierarchical
relations. In this case, the method tries to reduce the complexity of the result, using more abstract
elements in the definition of the rules and reducing the cardinality. In this step, the quality loss is

also controlled.

Since the method is developed to work over fuzzy DataCubes, COGARE manages fuzzy concepts
in both steps. The following sections will explain each phase.

Rule Generation

In this phase, the algorithm extracts association rules between elements at different dimensions and
multiple levels. We can differentiate two steps:
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. Obtain the frequent item sets.
. Generate rules using the item sets found in the previous step.

COGARE uses an extension of the Apriori algorithm (Agrawal & Sritkant, Fast Algorithms for Min-
ing Association Rules in Large Databases, 1994). Candidates to obtain the frequent 1-itemset (item sets
that only have 1 element) are all the elements defined at the base level of all the dimensions:

Cl = U liL

vD,eC

where C is a DataCube. An item set will be frequent if its support is equal to or greater than a given
threshold. For the base level, the process uses a value given by the user (threshold,,). If the item set is
not frequent, then it is generalized, considering all the elements in parent levels that are directly con-
nected and that group the item (Figure 5). The new item sets obtained are considered as candidates. This
process is repeated until the item set is accepted as frequent or we can no longer generalize. We follow
a similar strategy to Lui and Chung’s proposal (Lui & Chung, 2000).

These new item sets are defined using elements at a more abstract level. Each item may group more
than one element at the base level. Then, to be considered interesting, the support threshold should be
defined according to the abstraction level. All the elements at higher levels may group several values
at the base level; the support threshold should therefore be greater than the one established for these.
Under these circumstances, the algorithm should use different support thresholds for each abstraction
level. Some approaches ask the user for a value for each level (Alhajj & Kaya, 2003). Depending on the
number of dimensions and the level, this approach may imply asking the user for an excessive number
of values. In order to avoid this problem, we propose that the abstraction of an item set be used in order
to define the threshold as follows: for an item set I and an abstraction function A, the support threshold
is defined as

threshold, = threshold , +(1 — threshold ) * A(I)

SUP)

where:

. threshold,,, is the support threshold established by the user for the basic levels.

Figure 5. Example of generalization of non frequent I-itemset

New candidate sets
Dimension | Patient has no legal age |
All

Legal age Group I Generalize

No frequent item set
Age | Patient is 13 years old |

103



Mining Association Rules from Fuzzy DataCubes

. A(D) is the abstraction of the item set 1.

Once the process has all the frequent 1-item sets, it applies an Apriori strategy to obtain frequent
item sets with more elements: to calculate the frequent k-item sets, it considers as candidates all the
k-element sets that can be built using the frequent (k — 1)-item sets, as long as all their subsets are fre-
quent. In our case, the item sets must be defined using elements at different dimensions (we look for
inter-dimensional relations).

The candidate k-item sets are considered frequent if their support is greater than the support threshold
corresponding to their abstraction (using the previous formulation). As in the 1-item sets case, if a set
is not frequent, the algorithm considers as new candidates all the possible generalized item sets defined
using elements at parent levels which group the elements of the set (Figure 6). The pseudo-code of the
process is shown in Figure 7.

From the frequent item sets, the algorithm builds association rules using the same Apriori method
(considering a certainty factor threshold threshold ., instead of a threshold over the rule consistency).

Generalization Process

At the end of the previous phase, the algorithm obtains a rule set, trying to represent as much information
as possible about the DataCube. The method then tries to reduce the complexity of this set. The method
must deal with the factors we have identified: the number of rules and the abstraction.
The method applies a generalization process to reduce the complexity. This approach works directly on
the abstraction and indirectly on the number of rules. We shall explain this by means of an example.
Let us suppose we have the following two rules:

If [Patient is 13 years old] then [Severity is low]
If [Patient is 20 years old] then [Severity is low]

We can generalize both antecedents, replacing 13 years old and 20 years old with the value Young
that groups both elements. The abstraction of the rules will increase because new rules are defined using
a higher level concept. However, the number of rules also decreases because both rules will be translated
into the same one as in the generalization:

Figure 6. Example of generalization of non frequent 2-item set

Dimensions
New candidate sets

All eYear | Patient has no legal age AND Date is 03/03/2006 |
LA Patient is 13 year old AND Month is March
Legalage Group onth [ Patient is young AND Date is 030372006 |
T Generalize
Date
Age No frequent item set
| Patient is 13 years old AND Date is 03/03/2006 |
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Figure 7. Algorithm to obtain frequent itemsets

Algorithm: Calculate FrequentltemSets(thresholdsup,C)

« Input:
- thresholdsyp: support threshold to consider an itemset as frequent
- C: DataCube

« Output:
- Set of frequent itemsets (Cr)

1) Cr+ 1
2) k<0
3) Do
a) k—k+1
b) If £ =1 then
1) Cl — U liL
vD,eC
c) else
i) Cy < Generate candidates using Crg—1
d) Crr+—0
e) While Cy # 0 do
i) I <« First element of C
i) C — Cy —{I}
iii) sopr + calculate the support of T
iv) If sop; > thresholdsup + (1 — thresholdsyp) x A(I) then
A) Cri +— Cri | {1}
v) else
A) Cp + Cil) Generalize(I)
f) End while
g) If k£ 1 then
i) Cr «— Cr U Cri
4) While Cr, # @ Ak < No. of dimensions
5) Return Cr

If [Patient is Young] then [Severity is low]

In view of this, the generalization process is expected to reduce the complexity due to the number of
rules and abstraction. This process will be applied until the complexity of the result is below a threshold
established by the user (threshold Complexi ty) without disregarding the loss of quality.

The generalization process has two steps. First, it tries to reduce the complexity through generalization
but without allowing loss of quality. Then, if the method does not obtain a result set below the threshold,

it applies a generalization allowing the decrease of quality.
Loss-Less Generalization

This first approach applies an iterative generalization but only accepts a new rule set if the quality of the
new set is greater than or equal to the previous one. The scheme of the process is shown in Figure 8.
The first step in the process is to find the elements that generalize the rule set (C,). The method looks
at each item in each rule and obtains the elements in the DataCube which group them with a kinship
relationship which is greater than 0 (,ul_/. > ()). Under these circumstances, the method only looks for
generalization elements at parent levels which are directly connected to the considered item level.
One element must then be chosen to generalize the rule set. In order to select the element, all the items
are sorted using a heuristic: an element that generalizes more elements would be better if it is supposed
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Figure 8. Generalization process

Gy = Elements
that generalize CR

3
| SortGy |
3
I = First element
inGgg
!

CR’ = Generalize
CR using I

Cowosal CR)>
threshold

Return CR I

to greatly increase the abstraction of the result. Then, the method selects the first element. If the method
generalizes the rule set and obtains a new set with an unacceptable quality (it is lower than the previous
one), then it could be very expensive in the sense that the method had to recalculate the quality of all
the generalized rules. In order to sort the elements, the method therefore takes into account the number
of times an item has been used unsuccessfully in the generalization process.

In this way, the weight of an item I will be calculated as

: NRG
Weight, = —————
N, xB+1

where N, . represents the number of rules that item | generalizes, N, the times that I has been used and
the result set was not accepted, and f€/0,0) measures the penalty for each failed generalization. Tak-
ing this into account, the method decreasingly sorts the elements according to their weights. Once we
have the generalized rule set (CR’), we accept it if the complexity has decreased and the quality has
not decreased:

C  (CR)<C

global global(CR) A Q(CR/) > Q<CR>

If the new set satisfies the condition, this set becomes the new result, and if the complexity is above
the threshold, the entire process is repeated. If the set is not accepted, the process takes the next element
that generalizes the rule set and the process is repeated.

The process finishes if the obtained rule set satisfies the complexity threshold or there are no elements
to generalize. The pseudo-code is shown in Figure 9.
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Figure 9. Loss-less generalization algorithm

Algorithm: Generalizew . (CR, threshold, 3)

« Input:

- CR: Rule set
— threshold: value in [0,1] with the complexity threshold
— (3 value in [0, +oco] with the penalty for failed generalization elements

« Output:
— Rule set

1) While Complezity(CR) > threshold do
a) Ggpr + Set of items than generalize C R order using 8
b) Do
i) If Gor < O then
A) Retun CR
ii) JIg « first element in G r
iii) Gor +— Gogr — {Ig}
iv) CR' + generalize CR using I
¢) While (Quality(CR') < Quality(CR)) V (Complezity(CR') > Complezity(CR))
d CR+ CR
2) End while
3} Return CR

Lossy Generalization

If the previous process fails to obtain a rule set with a complexity below the threshold, then we apply
another generalization process but allowing quality loss. The general process is the same as the one
shown in Figure 9, but we change the new set acceptance criteria. In this case, for a new rule set to be
accepted, it must satisfy two constraints:

. First, the process compares the reduced complexity and the quality loss to decide if the generaliza-
tion is good enough to accept the new rule set. The condition can be written as

QualityLoss <y x ComplexityLoss

where y € [0, +o0) and establishes when the complexity reduction is good enough compared to the
quality lost.

. In any case, the generalized rule set will not be accepted if its quality is below a threshold based
on the best quality obtained throughout the entire process:

Q(CR’) > & x BestQuality

where 6 € [0, 1]. BestQuality will be at least the quality of the first rule set generated, but if when ap-
plying the loss-less generalization we obtained a higher quality rule set and it is accepted, then this new
quality will be used.

If we set y =0 or 6 = 1, then quality loss is not allowed, so the process performs in exactly the same
way as the lossless generalization. The pseudo-code of the process is presented in Figure 10.

107
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Algorithm: Generalizer, (CR, threshold, 3, 8, )

o Input:
— CR: Rule set to generalize

« Output:
— Rule set

— threshold: value in [0,1] for the complexity threshold

— (3 value in [0, +oo] with the penalty for failed generalization elements

- §: value in [0,1] with the quality threshold to preserve

— ~v: value in [0,1] indicating the quality loss allowed to accept a new rule set

1) BestQuality +— Quality(CR)
2) While Complezity(CR) > threshold do

b) Do
i) If Gor < O then
A) Retum CR
ii) Ig « first element in G g
iil) Gor — Gor— {Ia}
iv) CR’ + generalize CR using I

a) Ggr + Set of item than generalize C'R ordered using 8

Quality(CR)—Quality(CR)

v) QualityLoss +—

vi) ComplezityLoss «+—

Quality(CR)
Complexity(CR)—Complexity(CR')

(Quality(CR') < § x BestQuality)
d) CR—CR

3) End while
4) Return CR

Complexity(CR)
¢) While (QualityLoss > v X ComplezityLoss)V

e) BestQuality « maz{ BestQuality, Quality(CR)}

Algorithm

In Figure 11, the main function of COGARE is presented. Let us comment on all the parameters needed

by the method:

Figure 11. COGARE algorithm

Algorithm:

COGARE(C thresholdcompiezitythresholdsu p,thresholdor,3.6,7)

« Input:
— (' DataCube to apply the method

« Output:
— Rule set

— thresholdcomplezity: Value in [0,1] with the complexity threshold

— thresholdsy p: value in [0,1] with the support threshold to accept frequent itemsets
— thresholdcr: value in [-1,1] with the threshold to accept a rule

/3: value in [0, +oc) with the penalty for failed generalization elements

4: value in [0,1] with the quality threshold to preserve

— 4t value in [0, 4o0c) indicating the quality loss allowed to accept a new rule set

5) Return CR

1) Cr «— Calculate FrequentltemSets(thresholdsyp,C)
2) CR « AssociationRules(Cr,thresholdcr )
3) If Complezity(CR) > thresholdcomplezity then
a) CR « Generalizewr(CR, thresholdcompiezity, 83)
4) If Complexity(CR) > thresholdcompiexity then
a) CR « Generalizer (CR, thresholdcomplezity, B, 6,7)
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. C: DataCube to apply the method.

. threshold,, ... value in [0,1] with the complexity threshold.

. threshold,,,: value in [0,1] with the support threshold to accept frequent itemsets. This value will
be used for items at base levels. For items at other levels, the support threshold is calculated ac-
cording to their abstraction as shown before.

. threshold,,: value in [-1,1] with the threshold to accept a rule.

. B: value in [0, +o0) with the penalty for failed generalization elements. This value will have more
influence on the time taken by the algorithm than on the quality of the results.

. d: value in [0,1] with the quality threshold to preserve.

. v: value in [0, +oo) indicating the quality loss allowed in order to accept a new rule set.

EXPERIMENTS
To study the scalability of the algorithm we proposed two different experiments:

*  First, study the influence of the density of the datacubes.
. Second, consider the influence of the number of dimensions (structure).

We now present the datacubes and the parameters used and then the experiments and results for each
type.

Figure 12. Multidimensional schema over medical data
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The DataCubes

We have used DataCubes defined over three different domains: medical, financial, and census data. For
each domain, we have defined two multidimensional schemata that model the same information from both
crisp and fuzzy perspectives. The reason for this choice is to test the influence of using fuzzy logic.

Figure 12, Figure 15, and Figure 18 show the three multidimensional schemata. Fuzzy relations are
represented by means of a dotted line connecting two levels. Crisp schemata are defined in the same
way, translating the fuzzy relations into crisp ones (an element would be grouped by a value in the par-
ent level -the one with the greatest kinship relationship value in the fuzzy case).

We will briefly explain the structures of the multidimensional schemata below.

CMedical

This schema is defined over data collected for non-postponed operations which were carried out in
hospitals in Granada between 2002 and 2004. For the facts, we only consider the data when the patients
are from Granada. There are 50185 facts with one variable (amount) and 6 dimensions. Let us briefly
explain each one.

Dimensions

*  Patient: in this dimension, we model patient data. The most detailed levels consider the different
combinations of sex and age of each patient (the base level therefore has 2 sexes for 101 possible
ages, totalling 202 values). Over this level, we group the patients according to their sex (level sex)
and age (level age). Over this last one, we group the values more naturally for user (level group),
and so we define what we can consider to be young, adult and old patients using linguistic terms
over the concrete values. The definition of these terms is the same as that shown in Figure 2. The
last level groups all the values so we have called it all with a single value (all). The structure of the
dimension is as follows: Patient =({Sex and age, Sex, Age, Group, All},<, . .Sex and age,All)

. Time: in this dimension we consider the date when the operations took place. Over this level, we
have defined a normal hierarchy over dates: weekday, month day, month, month and year, and
year. The level Tem-perature represents information about the average temperature of each month
in Granada using the values cold, warm and hot to group the values. The relationships between
the month and the temperature are not crisp because the user normally considers these concepts
with imprecision. The definition of the relationships are shown in Figure 13. The structure of the
dimensions is as follows: Time =({Date, Weekday, Month day, month and year, Temperature,
Year, All},<. . Date,All)

*  Place: this dimension stores information about where the patients live. Since the definition of the
metropolitan area of Granada is not clear, we have used a fuzzy relation to establish the relation-
ship between this level and the towns. The structure of the dimension is: Place =({ZIP, Town,
County, Metropolitan area, All},<, .ZIP,All)

*  Duration: we also consider the amount of time each operation lasted. The level Range groups
this information according to three categories: normal, long and very long duration. These
groups have been defined imprecisely as shown in Figure 14. The structure of the dimension is:
Duration=({Hours, Range, All},< Hours,All)

>~ Duration’
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Figure 13. Definition of level Temperature in dimension Time for C,,

edical

Cold Warm Hot Warm Cold

Figure 14. Definition of level Range in dimension Duration for C,, . .
19 -
Normal Long Very long
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0 1 2 3 4 5 6 7 8 9 10 11 12

*  Material: we want to analyze whether any materials were required for the operations, i.e. blood,
prothesis, implants. The dimension Material models this information and has the following struc-
ture: Material =({Base, Blood, Implant, Prothesis, All},< . .Base,All)

. Cause: in this dimension we model the causes according to the codes established by the WHO. We
consider the 9 main categories as the base level and the description on them. The structure of the
dimension is as follows: Cause =({Code, Description, All},<. .Code,All)

Measures

The only measure we consider is the number of operations with exactly the same values for all the di-

mensions we have built. This measure has been called the amount.

DataCube
The structure of the DataCube modeling the data is as follows:

C\jeice=(1Duration, Time, Patient, Material, Place, Cause}, { Amount}J,Q,A)
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Figure 15. Multidimensional schema over financial data
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In this section, we present the structure of the DataCube built using the fuzzy multidimensional model
presented. We have built a DataCube using the data obtained from Asexor about 872 companies from
three sectors (service, commercial and industrial) using the National Classification of Economic Activi-
ties (CNAE). In each sector, we differentiate between failed companies and those which have not in
accordance with Spanish Law applied in 2001. We have considered three economic-financial variables:
return on asset, working capital, and indebtedness cost, over the years 1998-2000.

Dimensions

We have defined five dimensions. In all of these, we have used the minimum and maximum operator as
t-norm and t-conorm when calculating the extended kinship relationship. In the following sections, we
will present the structure of each one.

112

Time: the time dimension in this datacube is defined at a detail level of years. The structure of this
dimension is: Time =({Year, All},<_ Year,All), where <_  defines the hierarchical relation as:
Year < Year, Year < All, All STime All

Failure: we have mentioned that we study the companies differentiating between those which have
failed and those which have not. This dimension gives this information. The basic level (Fail) only
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has two values, representing the failure of the company (value Yes) or not (value No), respectively.
The following structure is associated to the dimension: Failure =({Fail, All},<_. " Fail,All).

. Company: this dimension models information about a company. We have used the INFOTEL code
as the base level. Over this, we have defined the CNAE codes to group the companies according
to a detail sector classification. Over this, we define the sector level that groups the CNAE codes
into service, commercial or industrial companies. The other levels represent the number of control
systems used, the number of changes of social address, the number of trademarks obtained by
the company and the social form. This hierarchy translated into the fuzzy model proposed cor-
responds to the following structure: Company =({INFOTEL, CNAE, No. control systems, No.
changes, No. marks, social form, sector, all},<_ ompan INFOTEL,AII), where = Company defines the
hierarchical relation as shown in the figure.

*  Age: the base level of this dimension is the number of years that a company has been in opera-
tion. Over this level, we define another which groups this value in years to classify the companies
depending on whether they are very young, young, mature or very mature. This kind of concept is
ill-defined, and they are normally defined using crisp intervals. This is not how people normally
use these concepts and the previously mentioned edge problem may arise. The use of fuzzy logic
in this situation is useful as it characterizes the concepts in a more intuitive way. The definition
we have used is shown in Figure 16. The structure of the dimension Age is: Age =({ Years, Group,
all} < Ao YCATS, All).

Figure 16. Definition of level Group in dimension Age for C

Financial
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Figure 17. Definition of ranges over the economic-financial variables for C
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*  Return on asset, Indebtness cost, and Working capital: for the three dimensions over the econom-
ic-financial variables we have used the values observed in the data set for these variables to define
the base level of the dimensions. Over these levels we have defined another (Range) which groups
the values into five categories to facilitate the analysis. For the user, the use of categorical values
(e.g. average, low, high, etc.) is more intuitive than numeric values (e.g. a 6.51 return on asset). In
order to avoid the edge problem, we fuzzify the intervals associated to each category.

We consider five categories according to the distance of the value to the mean of the variable and
so we have used the categories very low, low, average, high and very high. The values which are very
near to the mean will be in the average category, those not so near will be in the low or high categories
if they are lower or higher than the mean, respectively, and so on. We have used the mean, maximum
and minimum value of the variable to define the categories. Each interval [minimum, mean]and [mean,
maximum] has been divided into five intervals of width w1 for the first, and w2 for the other. The cat-
egories have then been defined as shown in Figure 17.

The structures of the three dimensions are therefore very similar:

. Return on asset = ({Values, Range, All},SRo »Values,All), where <tos defines the hierarchical rela-
tion between the levels.
. Indebtness cost = ({Values, Range, All},SIC, Values,All),

. Working capital = ({Values, Range, All},<  , Values,All).

=we

Figure 18. Multidimensional schema over census data
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Measures

We have used the return on asset and working capital. Both variables are considered as measures and
dimensions because we want to analyze the relation between both (e.g. return on asset according to the
working capital or viceversa). All the data is obtained from a reliable source so we assign a value 1 of
a to all the facts.

DataCube
Finally, the structure of the DataCube is:

financial —(L T1me, Failure, Company, Return on asset, Working capital}, {return on asset, Working
capital } J,Q,A),

where 4 is the relation that associates each fact with the corresponding values of the base level of the
dimensions.

Census

This schema has been defined over 34198 facts with one variable (amount) and 9 dimensions using the
data from adults in the Census database from the University of California?.

Dimensions

*  Marital status: this dimension stores information about the individual’s marital status. We con-
sider different aspects about this topic to build the hierarchy as shown. The structure of the dimen-
sion is as follows: Marital status =({Marital status, Married, Married in the past, Married at any
time, All}, <, Marital status,All).

*  Education: we also consider the level of education. We have grouped the values according to four
categories: basic, medium, high, and very high. The relationships are defined imprecisely because
we usually manage these concepts with imprecise borders between them. Table 3 collects the val-
ues for the relationships. The level Grouped level groups these four categories into normal (values
basic and medium) and high (high and very high). The dimension has the following structure:
Education =({Education, Level, Grouped level, All},<, . Education,All).

*  Person: we consider the combination of the individual’s age, sex and race as the base level. Over
this level, we group the values according to these three variables. The ages are grouped in the

Table 3. Relationship between Education and Level in C

Census

Level Education
Basics 1/Preschool, 1/1st-4th, 1/5th-6th,

1/7th-8th, 0.8/9"
Medium 0.2/9th, 1/10th, 1/11th, 1/12th, 1/HSgrad,

0.2/Assoc-voc, 0.2/Some-college

High 0.8/Some-college, 0.8/Assoc-voc,
1/Bachelors, 1/Assoc-acdm, 0.2/Profschool

Very high 0.8/Prof-school, 1/Doctorate, 1/Master

115



Figure 19. Definition of ranges over Hours for C

Mining Association Rules from Fuzzy DataCubes

Census

Very low Low Normal High Very high

1 >< >< ><
SERNT 2% 32 50 6

0

0 80 89

( 99
Number of hours
Figure 20. Definition of ranges over Loss capital and Gain capital for C,,
Very low Low Average High Very high
1 ; ><
0 Il Il 1 Il : 1 Il 1 Il
w,oow, 2w, W W Wy Wy 2w, W, W
Minimum Mean Maximum

116

same way as in the medical DataCube. The races have been categorized depending on whether
they can be considered as minorities. The black race represents 10% of the population whereas
others such as amer-indian-eskimo only 3%, and each of these may be considered a minority at
different degrees. Table 4 shows the kinship relationship.

Working hours: we also consider the working hours. The values have been grouped according to
how the number is considered as very low, low, normal, high or very high. In order to build this
classification, we have used fuzzy intervals because the borders between them are not clear. The
Figure 19 shows the structures of the intervals.

Loss capital and Gain capital: these two dimensions represent the loss capital and the gain capi-
tal. The values have been categorized following a similar approach as for the economic-financial
variables in the C DataCube but changing the middle value (Figure 20). The structure is

Financial

therefore similar to those proposed for these dimensions in C,, .
Relationship: over the values of the base level (husband, wife, own-child, other-relative, and not-
in-family) we have defined a level to classify the values according to the degree of relationship.
We have considered the values as direct or not but this classification is not always clear. The Table
5 shows the defined kinship relationship.

Country: another variable to classify the measures is the individual’s country. Countries are clas-
sified by continent. The dimension has the following structure: Country =({Country, Continent,

All},< Country, All),

— Country’
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Table 4. Kinship relationship between races and yes value in Minority

Race Hes Race
Amer-Indian-Eskimo 1
Asian-Pac-Islander 0.7
Black 0.5
Other 1
White 0

Table 5. Kinship relationship between relationships and yes value in Direct

Relationship [ —
Husband 1
Wife 1
Unmarried 0
Own-child 0.5
Other-relative 0.25
Not-in-family 0

*  Job type: in this dimension we consider the job type. The values are grouped according to whether
the job types are paid (level Paid) and if they correspond to the civil service (level Public).

Measures
We only consider the number of transactions with the same values for all the considered dimensions
(amount) as measures.

DataCube
Finally, the structure of the DataCube is

cansue— (1Marital status, Person, Working hours, Education, Loss capital, Gain capital, Relationship,
Country, Job type}, {amount},Q.A)

Support Calculation

In all of the DataCubes presented, there is a measure that stores the number of elements in the original
data sharing the coordinates (e.g. in the medical DataCube, the fact amount represents the number of
patients of the same sex and age, with the same ZIP code, undergoing the same operation, lasting the
same amount of time on the same date). When calculating the support, we must therefore consider the
number of transactions that each fact represents (e.g. in the medical data if a fact amount has the value
5, this means that these coordinates represent 5 operations).

In crisp DataCubes, this only involves changing one aggregation operator: instead of the count op-
erator, we will use the sum aggregation operator. In fuzzy ones, we also have the sum operator, but it
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returns fuzzy sets as the result (see (Molina, Sdnchez, Vila, & Rodriguez-Ariza, 2006) for further details).
Concrete values are needed to apply the quality measures and the support. In this case, we will use the
same approach proposed in (Delgado, Marin, Sanchez, & Vila, 2003). The authors propose the use of
quantified sentences of the type:

“Qof F are G”

where F and G are fuzzy sets and Q is a linguistic quantifier for calculating the support. In order to evalu-
ate the sentence and obtain the support, the GD quantifier (Delgado, Sanchez, & Vila, 1999) is used:

‘(G nF)

@, |%)- ¥ (o-a)o

a,€A(G/F) F

«
i

where A(G / F) = A(G N F)UA(F), A(F) is the level st of F, and A(G / F) ={a,,...,a, } with
a, >« foreveryie{l, .., p/.

If we consider the quantifier O(x)= x, it can be proved that it behaves coherently in the crisp case
(see (Delgado, Marin, Sanchez, & Vila, 2003) for more details). There are two reasons for using this
approach:

. The quantifier GD can be adapted to work over the result of the aggregation operators for the
fuzzy multidimensional model.
e The support calculation is efficient.

Parameter
We have to establish the rest of the parameters of the method:

. threshold Complexinyt WE Want the method to tray to reduce the complexity as much as possible, so we
use 0 for this parameter.

. threshold,,,: for each domain we use a different one:

° Medical: 0.1

° Financial: 0.1

° Census: 0.2

These values are relatively low, but we want the method to extract a high number of rules in order
to include as much influence of the fuzzy logic calculation as possible.

. threshold . for all the domain we use the value 0.4.

. B: we want a high penalization, so 10 is the value chosen.

. d: 0.6 so the method will never accept a new rule set if the quality is less tan the 60% of the best
quality obtained throughout the process.
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. v: The user normally prefers to lose quality if the method obtains a good complexity reduction.
We propose a value of 1.2.

We now have all the elements needed to do the experiments.
Density

To compare the scalability of both approaches (fuzzy and crisp) we consider three different DataCubes
over three domains and execute the COGARE algorithm with different number of facts comparing the
time needed. For each domain we consider six different number of facts as 10%, 30%, 50%, 70%, 90%,
and 100% of the whole set (Table 6 collects the number of facts on each case). As the selection of the
facts may has influence in the number of frequent itemsets, we build five different DataCubes for each
size choosing different sets of facts, randomly selected. Over each DataCube we apply the 14 different
quality measures to reduce the influence of this parameter in the tests. Regarding this, at the end we will
consider the average value of the 14 measures as the time for that size.

This process is applied for crisp and fuzzy approaches, so we have 2520 results to compare: 3 domains,
using 2 approaches (fuzzy and crisp), considering 6 different fact sets size, 5 different DataCubes per
each size, and with 14 quality measures.

Following sections presents the DataCubes used for the tests. After these sections, we present the
parameters used for the COGARE algorithm, and we finish with the results obtained.

Results

Figure 21 shows graphically the data obtained for the experiments. In Table 7 and Table 9 the data to
build the graphics is collected.

As you can see, in three domains the behavior of the algorithm is almost lineal and the time for
fuzzy and, for Medical and Financial, crisp approach is very similar. To compare the results we use the
regression line for these values. In the case that the size of the DataCube is 0 (no records) the method
will not be applied because we have no data to work with, so the time spend is zero. Under this fact, we
can consider than the lineal functions are of the form « X size , where size is the number of facts. Table
8 shows the regression data.

The quality of the regressions is good enough to get significant results when comparing the coef-
ficients. As we can see, in the case of Medical, the slopes of the function in crisp and fuzzy approaches
are very similar, so we can conclude that the use of fuzzy logic has no influence on these domains. In
Financial one, the slopes are very similar but with a small different (around 5.5%), so fuzzy logic has
a very low influence.

Table 6. Number of facts for each domain

10%

30%

50%

70%

90%

100%

Medical 5019 15056 25093 35130 45167 50185
Financial 311 934 1556 2178 2801 3112
Census 3420 10259 17099 23239 30778 34198
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The census domain is more interesting because we can find significant differences between the val-
ues. In the fuzzy case, the coefficient is 33.31% higher than the crisp one. So, in this domain the use of
fuzzy logic has a higher influence, but not enough to change the order of the algorithm (in both cases
it needs lineal time).

Figure 21. Time and memory result for density test
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Table 7. Time for density tests
Time (seconds)
Domain Approach 10% 30% 50% 70% 90% 100%
C Crisp 517.690 1302.905 1938.571 2701.333 4095.571 4686.214
ensus
Fuzzy 467.476 1643.310 2554.357 4148.357 5522.000 5911.643
Crisp 6.167 7.952 9.810 11.452 13.142 13.928
Financial
Fuzzy 6.595 8.167 10.095 11.905 14.123 14.929
Crisp 55.310 109.905 169.357 230.857 288.643 323.642
Medical
Fuzzy 55.929 110.000 169.524 229.667 282.357 331.571
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Table 8. Regression lines

Domain Approach Expression R

Crisp 0.00505x size 0.943
Financial

Fuzzy 0.00533x size 0.946

Crisp 0.00652x size 0.997
Medical

Fuzzy 0.00654x size 0.997

Crisp 0.12882x size 0.994
Census

Fuzzy 0.17173x size 0.996

Table 9. Memory for density tests

Memory (MB)

Domain Approach 10% 30% 50% 70% 90% 100%

Crisp 45.318 68.039 95.551 103.325 108.576 152.102
Census

Fuzzy 47.662 80.639 107.230 102.090 131.070 133.073

Crisp 14.685 14.923 15.283 15.680 16.099 16.296
Financial

Fuzzy 14.759 15.084 15.488 15.744 16.046 15.984

Crisp 54.510 61.515 74.227 87.939 82.420 86.048
Medical

Fuzzy 54.186 63.096 76.245 91.153 89.289 86.444

Another important factor in the scalability is the space needed for the executions (memory). Table 9
collects the average values for each density for the three domains.

To get the regression models we consider three different functions that may fit the results. Table 10
shows the quality for each approach.

For financial and medical domains the best model is the logarithmic, although the quality for square
root is very good too. In census domain the best model is the square root, having the logarithmic ap-
proach good quality too. There is no difference between fuzzy and crisp approaches in the order but we
have to consider the overload in the first approach. Table 11 collects the regression model to compare
the overload.

In census and medical domains the overload is very similar (3.73% and 3.34% respectively) and for
financial one the influence is even lower (0.4%). So we can conclude that the influence of using fuzzy
logic in the memory needed is not very significative.

Structure

In this section we presents the experiments to test the influence of the structure of the DataCubes (the
dimensions) when using fuzzy logic. In that case we will know the influence of the number of dimen-
sions in the time and memory needed. If N is the number of dimensions of a datacube, we build new
datacubes from 2 to N-1 dimensions for each one, choosing.20 of each number of dimensions. Then we
consider three executions with each quality measure. So we have 2520 executions.
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Table 10. Regression quality for memory

Regression model
X %
Domain Approach Lineal (R?) ®) Logaritmic (R?)
Crisp 0.9581 0.9875 0.9705
Census
Fuzzy 0.9441 0.9950 0.9901
Crisp 0.8014 0.9243 0.9716
Financial
Fuzzy 0.7981 0.9224 0.9708
Crisp 0.8731 0.9729 0.9947
Medical
Fuzzy 0.8884 0.9760 0.9955
Table 11. Regression models for memory
Domain Approach Expression (MB)
Crisp 2.710 x log,(x)
Financial
Fuzzy 2.721 x log,(x)
Crisp 13.351 x log,(x)
Medical
Fuzzy 13.796 x log,(x)
Crisp 13.163 x x'?
Census
Fuzzy 13.654 x x'”
Results

The summary of the results for the experiments are shown in Figure 22 and Table 12 and Table 13.

We first consider the time spent on the executions. As in the previous section we try to get a regression
model for the evolution of the time. We consider three possible models: lineal, quadratic and exponential.
Table 14 collects the quality of each approach.

For census and medical domains the best results are for exponential regression in crisp and fuzzy
approaches, although the quality for medical in the case of quadratic is good too. In the case of finan-
cial domain the best model is the quadratic. The first conclusion is that the number of dimensions has a
higher influence in the complexity than the density. In Table 15 the regression expression are presented
to compare the crisp and fuzzy approach.

Both crisp and fuzzy approaches have the same complexity for all the domains. But there is an over-
load in the case of fuzzy ones. In financial and medical domains the overload is not very high (17% and
21% respectively) but in census the influence in higher (158%).

The same analysis is carried out for the memory. In Table 16 the quality of the considered model is
presented.

As in the time tests, medical and census domains present the same complexity (quadratic in these
cases) and financial ales expensive one (lineal). So, although the memory needs are important in these
cases, the number of dimensions has more influence in the time needed. In Table 17 the regression
expression for memory are shown.
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Figure 22. Time and memory results for structure test
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Table 12. Time for structure tests
Time (seconds)
Domain Approach 2 dim. 3 dim. 4 dim. 5 dim. 6 dim. 7 dim. 8 dim
Crisp 2.45 53 12.45 32.75 148.7 364.85 1295.06
Census
Fuzzy 2.3 34 13.25 58.1 283.6 911.9 3374.33
Crisp 1.2 2.45 33 4.85 7.5 9.5 12
Financial
Fuzzy 0.75 3.25 5.75 5.25 7.5 10.65 14.778
Crisp 12.85 30.95 60 132.75
Medical
Fuzzy 11.85 29.55 70.2 162.333
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Table 13. Memory for structure tests

Memory (MB)
Domain Approach 2 dim. 3 dim. 4 dim. 5 dim. 6 dim. 7 dim. 8 dim
Crisp 3.202 5.029 7.739 10.059 32.646 50.891 81.684
Census
Fuzzy 2.851 3.235 5.439 16.431 36.630 63.898 99.461
Crisp 3.573 4.064 4.871 6.585 8.348 9.824 8.829
Financial
Fuzzy 2.041 5.686 8.324 6.656 6.760 9.064 9.246
Crisp 10.867 27.459 46.313 63.956
Medical
Fuzzy 11.310 22.574 44.624 71.625

Table 14. Quality of the regression models for time

Regression model
Domain Approach Lineal (R?) Quadratic (R?) Exponential (R

Crisp 0.5296 0.7144 0.9932
Census

Fuzzy 0.5029 0.6885 0.9891

Crisp 0.9615 0.9965 0.7370
Financial

Fuzzy 0.9531 0.9850 0.7598

Crisp 0.8661 0.9719 0.9866
Medical

Fuzzy 0.8324 0.9560 0.9951

Table 15. Regression expressions for time

Domain Approach Expression (seconds)
Crisp 0.1943 x N°
Financial
Fuzzy 0.2272 x N*
Crisp 0.9304 x &V
Medical
Fuzzy 1.1233 x &V
Crisp 0.4209 x &¥
Census
Fuzzy 1.0881 x e

Table 16. Regression quality for memory

Regression model

Domain Approach Lineal (R?) Quadratic (R?) Exponential (R?)

Crisp 0.8012 0.9430 0.9146
Census

Fuzzy 0.7886 0.9399 0.9184

Crisp 0.9872 0.9009 0.4995
Financial

Fuzzy 0.9568 0.8419 0.4678

Crisp 0.9668 0.9955 0.8845
Medical

Fuzzy 0.9382 0.9988 0.9366
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Table 17. Regression models for memory

Domain Approach Expression (MB)
Crisp 1.287x N
Financial
Fuzzy 1.309x N
Crisp 2.690 x N
Medical
Fuzzy 2.815x N?
Crisp 1.064 xN?
Census
Fuzzy 1.294 x N

The results are very similar to time models. In all the domains the crisp and fuzzy approaches have
the same order but the fuzzy ones introduce an overload. In this case, for medical and financial this
overload is not very important (4.7% and 1.7% respectively). In the census domain the influence is
higher (21.7%).

CONCLUSION

In this chapter we have compare the performance of an association rule extraction algorithm over fuzzy
and crisp DataCubes to test the influence of using fuzzy logic in the model. To achieve this goal we
have build DataCubes over three different domains and considering different number of facts, so we
can evaluate the scalability of both approaches according to the density of the DataCubes (number of
records) and the topology (the dimensions)

As result we have the number of dimensions has a higher influence in the scalability of the algorithm
in time and memory. This situation is normal due to the method extract inter-dimensional association so
a higher number of dimensions introduce more possible associations. The use of fuzzy logic does not
change the order of efficiency of the method but introduce an overload in both cases.

Considering the density the influence in most of the domains is not very important (around 5.5% in
time and 3.5% in memory). Only for one domain the time needed have and overload around 33% which
may be consider significant.

If we change the topology (dimensions) the influence is higher but this is normal due to the underlying
multidimensional model has a more complex structure to model the hierarchy. In that case the influence
in the time is near 20% for two domains and 158% for the other. So the fuzzy logic modeling of the
hierarchies introduces an important overload but does not change the order of efficiency. The overload in
the memory needed is not very significant in two domains to (4.7% and 1.7%) but in the other is higher
(21.7%). So we can conclude that the overload depends on the complexity of the domain to model.

Although we would need more experiments to extends the results, the results indicates that, in the
case of extracting association rules over DataCubes using COGARE, the fuzzy logic allows to enrich
the data representation and, due to this fact, introduces an overload in the process but keeping the scal-
ability (order of efficiency) of the algorithm. As it was expected the influence depends on the complexity
of the domain to model.
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ABSTRACT

The last couple of years it is widely acknowledged that uncertainty and fuzzy extensions to ontology
languages, like description logics (DLs) and OWL, could play a significant role in the improvement of
many Semantic Web (SW) applications like matching, merging and ranking. Unfortunately, existing fuzzy
reasoners focus on very expressive fuzzy ontology languages, like OWL, and are thus not able to handle
the scale of data that the Web provides. For those reasons much research effort has been focused on
providing fuzzy extensions and algorithms for tractable ontology languages. In this chapter, the authors
present some recent results about reasoning and fuzzy query answering over tractable/polynomial fuzzy
ontology languages namely Fuzzy DL-Lite and Fuzzy EL+. Fuzzy DL-Lite provides scalable algorithms
forvery expressive (extended) conjunctive queries, while Fuzzy EL+ provides polynomial algorithms for
knowledge classification. For the Fuzzy DL-Lite case the authors will also report on an implementation
in the ONTOSEARCH? system and preliminary, but encouraging, benchmarking results.

INTRODUCTION

Nowadays, many applications and domains use some form of knowledge representation language and
exploit their inference mechanisms in order to improve their capabilities and simulate intelligent human
behavior. Many such examples exist, like knowledge-based multimedia analysis (Neumann & Moller,
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2006; Simou et al., 2008a), bioinformatics (Dameron et al., 2004) and databases (Calvanese et al., 1998)
and more. Nevertheless the most prominent example is undoubtedly the World Wide Web aiming for
intelligently managing the vast amount of information that lays on the Web. Among several proposals
for structuring knowledge in such applications, Description Logic based onfologies seem to be an ap-
proach that has gained considerable attention. Description Logics (DLs) (Baader et al., 2002) is a mod-
ern knowledge representation formalism that is a fragment of First-Order Logic, enjoying well-defined
model-theoretic semantics, decidability and practically efficient reasoning systems. Most importantly
expressive DLs form the logical underpinnings of the W3C standard language for representing ontolo-
gies in the Semantic Web, namely OWL (Bechhofer et al., 2004; Patel-Schneider et al., 2004). Although
several successful OWL DL reasoning systems have been developed, like FaCT++' and Pellet?, even
very basic and inexpressive DLs come with come with (at least) EXPTIME computational complexity.
Thus, their ability to scale in large application like the once found on the Web is still an open issue. For
those reasons the last years great research effort has been focusing in identifying fragments/clusters of
the OWL DL language for which it is known that reasoning is scalable and efficient. This research has
led to the development of several languages, but the two most interesting and predominant ones are EL+
(Baader et al.) and DL-Lite (Calvanese et al., 2005; Calavanese et al., 2007). The interesting thing is
that these languages will most likely form the logical underpinnings of the OWL 2 EL and OWL 2 QL*
recommendations which consist of profiles/fragments of the upcoming extension of OWL, OWL 24,

Although DLs are relatively quite expressive they feature limitations mainly with what can be said
about imperfect (uncertain, vague/fuzzy or imprecise) knowledge. Such types of knowledge appears in
many domains but also in several Semantic Web tasks, like in the representation of trust, in knowledge
fusion, assessing the similarity between resources and many more. For those reasons fuzzy ontologies
are envisioned to be useful in the Web (Stoilos et al., 2006) and fuzzy Description Logics (f-DLs) (Hol-
dobler et al., 2005; Straccia, 2001; Tresp & Molito, 1998) have been proposed as formalisms capable
of capturing and reasoning with such knowledge. Research in f-DLs was mainly focused on providing
reasoning support for very expressive fuzzy DLs, like reasoning with the f-DL f, -SHIN (Stoilos et al.,
2007; Stoilos et al. 2005b), reasoning with f_-SHI (Li et al., 2006), supporting reasoning in f-DLs that
allow for general concept inclusion axioms (Li et al., 2006; Stoilos et al., 2006), fuzzy extensions of
the OWL language (Stoilos et al., 2005a) supporting expressive datatypes (Wang et al., 2008) or adding
more expressive fuzzy features, like comparison expressions (Kang et al., 2006; Lu et al., 2008) and
concept modifiers (Holldobler et al., 2006; Wang et al., 2006). Interestingly, there also exist two f-DL
reasoners, FiRE® (Stoilos et al., 2007), which supports f, -SHIN and the fuzzyDL® (Straccia, 2008),
which supports f,-SHIf(D) and f -SHIf(D). Unfortunately, like their crisp counterparts, fuzzy-SHIN
and fuzzy-SHIf(D) come with (at least) EXpTIME computational complexity. Additionally, the practical
behavior of implementations of such logics would also have to deal with the degrees thus adding more
to the practical complexity.

Following current research developments in crisp DLs, there is an effort on developing lightweight
fuzzy ontology languages. In particular, today there exist two such languages, namely fuzzy DL-Lite (Pan
et al., 2008; Straccia, 2006) and fuzzy EL+ (Stoilos et al., 2008). Like their crisp counterparts, fuzzy DL-
Lite is specifically tailored for data intensive applications, offering for efficient instance retrieval services
by utilizing datbase technologies, while fuzzy EL+ is especially tailored for applications that require the
managements of large concept hierarchies/taxonomies offering for efficient classification services. Even
more interestingly, in the fuzzy case fuzzy DL-Lite allows for far more expressive and flexible queries
that utilize the power of the fuzzy component. For example, one can issue a query of the form:
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get me all e-shops that are popular [with degrees at least 0.8] and sell good books [with degree at least
0.9],

adding threshold criteria in the search, or expressing weight/preferences on query atoms like in the
query

get me all cars that are fast and fancy but consider speed more important [with weight 0.7] than design
[with weight 0.3].

Similarly important is the fact that in fuzzy EL+ we can support efficient classification over fuzzy
inclusion axioms. Such axioms can be proven very important is several Semantic Web related tasks
like in ontology matching (Ferrara et al., 2008), where algorithms establish fuzzy mappings between
ontologies like the following ones:

onto,: MobilePhone ? onto,: CellularPhone

onto: DarkGrey = onto,: Black

which (fuzzy) map concept MobilePhone from ontology onto, and CellularPhone from ontology onto,
with a degree 0.7 since an automatic procedure is not possible to assess the semantic correspondence
of these two entities. A different problem also arises in the case that there is no actual one-to-one cor-
respondence between all the concepts of two ontologies. For example in the above case one ontology
defines the concept DarkGrey while the other concept. Still one might want to match these concepts to a
certain degree. Similar representation mechanisms have also been used in other contexts and frameworks
like for example searching in Semantic Portals (Holi & Hyvonen, 2006), where again fuzzy subsumption
was used to define fuzzy mappings between concepts.

The current Chapter has the following two major objectives. On the one hand we want to show that
it is possible to provide efficient querying services over fuzzy ontologies, even in the case of using very
expressive queries allowing for thresholds, weights or preferences. For our purposes we will use the -
DL-Lite language (Pan et al., 2008; Straccia, 2006). On the other hand we also want to cover the second
most important inference problem of (fuzzy) ontologies, that of concept classification. Thus, we will
show that indeed there are classes of ontology languages for which such a problem can be decided in
an efficient way. In this case we will use the fuzzy EL+ (Stoilos et al., 2008) language. More precisely,
the Chapter focuses on the following major issues:

. It overviews some recent work about providing scalable query answering with very expressive ex-
tended conjunctive queries over lightweight ontologies created with the fuzzy DL-Lite language.
The framework is motivated by the field of fuzzy information retrieval (Cross, 1994) where weight-
ed Boolean queries (Waller & Kraft, 1979) have been proposed for retrieving fuzzy information
from fuzzy relational databases. Nevertheless, the presented approach is general enough to cover
most of the former popular approaches like the fuzzy implication-based approaches (Bookstein,
1980; Bordogna, 1996; Radecki, 1979; Yager, 1987) p-norm’s (Salton et al., 1983a), the geomet-
ric mean approach (Chen & Chen), weighted min queries (Sanchez, 1989) and fuzzy aggregation
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type queries (Vojtas, 2001), as well as to extend them by supporting threshold queries which are
a natural extension of the entailment problem. Thus, the main strength of the general fuzzy query
language is the openness on the semantics.

. In order to support queries of the above form in Semantic Web applications it presents a method to
extend the SPARQL (a well known Semantic Web query language) syntax for the proposed query
languages in the framework. The extension uses specially formatted SPARQL comments, thus the
fuzzy queries are still valid SPARQL queries, and it does not affect current SPARQL tools and
implementations.

. It presents the very first scalable query engine for fuzzy ontologies, based on the ONTOSEARCH2
system’ (Pan et al., 2006b), which consists of, among others, a query engine for DL-Lite and one
for fuzzy DL-Lite. The ONTOSEARCH?2 implementation of f-DL-Lite is known to be able to
handle millions of data and its performance has been tested against a benchmark, a fuzzy variant
of the Lehigh University Benchmark (LUBM) (Guo et al, 2005), called f-LUBM?, that has been
proposed in the literature (Pan et al., 2008).

. It overviews the syntax and semantics of a fuzzy extension of the lightweight fuzzy ontology
language f-EL+ (Stoilos et al., 2008). Additionally, it also overviews the reasoning algorithm
proposed for f-EL+ which is able to polynomialy classify a given fuzzy EL+ ontology which ad-
ditionally allows for fuzzy inclusion axioms (Straccia, 2005).

. It not only presents a detailed reasoning algorithm for classifying fuzzy EL+ ontologies which
allow for fuzzy inclusion axioms, but it also provides some necessary refinements for the basic al-
gorithm which are know from the classical EL+ language that greatly increase the performance.

Therest ofthe paper is organized as follows. First we introduce the reader to the necessary mathematical
background of the rest of the Chapter, by briefly introducing Description Logics and fuzzy Description
Logics. Then we present fuzzy-DL-Lite and a set of extended weighted query languages that have been
proposed in the literature for querying fuzzy-DL-Lite ontologies. We also show how querying can be
supported by the SPARQL language as well as a preliminary implementation of the idea. Subsequently,
we present a fuzzy extension of the EL+ language providing also a reasoning algorithm for supporting
classification over fuzzy EL+ ontologies. We also show how one can obtain a refined classification
algorithm which can be the base of an optimized procedure. Finally, we conclude the Chapter.

BACKGROUND
Description Logic Ontologies

Description Logics (DLs) (Baader et al., 2002) are a family of logic-based knowledge representation
formalisms designed to represent and reason about the knowledge of an application domain in a struc-
tured and well-understood way. They are based on a common family of languages, called description
languages, which provide a set of constructors to build concept and role descriptions. Such descriptions
can then be used to define axioms and assertions of DL knowledge bases and can be reasoned about with
respect to DL knowledge bases by DL systems. It is known that DLs consist of an expressive fragment
of First-Order Logic and more precisely a fragment that allows only for unary predicates (corresponding
to concepts), binary predicates (corresponding to roles), constants (called individuals), while addition-
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Table 1. Syntax, Semantics and naming of the most popular DL languages

DL Operator Syntax Semantics Language
top concept T =D/
bottom concept L 1=
negation -C O =D\ "
conjunction CcrD (CcmDyY=C'nD!
.. . ALC
disjunction CcuD (Cupy=C'u D’
existential restriction IrR.C (HR.C)[ = {a e | 3ba,b) € R' Abe Cl}
universal restriction VR.C (VRC) = {a e | Vb{a,b) € R' 5be CI}
transitive role axioms Trans(R) {(a,b), (b,C)} c R' > {a,c) e R’ ﬂLCR* orS
Role inclusion axioms RcS (a,b) e R' > {a,b) € S’ H
nominals {a} {a}’ = {LZ] } (0]
inverse roles R (a,b) e (R") = (b,a)e R’ I
at-least restrictions > nR > nR)I = {a e | |b |{a,b) € Rl| > n}
N
at-most restrictions <nR > nR)' = {a e | |b |{a,b) € Rl| < n}

ally also restricting the use of the connectives thus reducing their interaction and gaining in reasoning
efficiency and decidability. The most basic DL language is ALC which is the smallest propositionally
closed DL, allowing for negation (—) conjunction (), disjunction (U), existential quantification (3) and
universal quantification (V). Then ALC can be extended by adding more expressive means like for
example the ability to state that a role is transitive or that a role is a super-role of another role, inverse
roles, singleton concepts (called nominals) or by adding cardinality restrictions. Table 1 summarizes
the most important and common DL constructors. It presents their name, syntax and the naming scheme
that is followed in DLs in order to indicate the presence of such operators’. Using the expressivity of
these DL constructors one can represent the concept of humans who have exactly 3 children specifying
the concept

Human ™ > 3hasChild ™ < 3hasChild

where Human is a concept, and hasChild is a role, or the concept of faulty machines with the concept
Machine ™ 3hasPart. MachinePart ™ ¥ hasPartFaultyPart

or the concept of the days of week, writing

{Sunday} Y {Monday} Y ... Y {Saturday}
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where Sunday, Monday, ..., Saturday are individuals. Such complex concepts are called concept descrip-
tions. Moreover, we can state that roles hasPart is transitive by the axiom, Trans(kasPart), that role
hasChild is a sub-role of role hasOffspring, by the axiom hasChild hasChild & hasOffspring, or that
role hasParent is the inverse of role hasChild, writing hasParent C hasChild . We note here that the set
of transitive role and role inclusion axioms is usually referred to as RBox R.

Subsequently, one is able to use concept descriptions in order to define new concepts. This is done
with the aid of axioms. More formally we have: A SHOIN TBox denoted by T, is a finite set of concept
inclusion axioms, also called concept subsumptions of the form C < D, and concept equivalence axioms
of the form C ° D where C,D are SHOIN-concepts. With concept one can give names to the created
concept descriptions. For example in the above case we could have the concept equivalence:

FaultyMachine ° Machine ™ 3hasPart. MachinePart 1 ¥ hasPartFaultPart

Finally, DLs allow us to create individual axioms, which intuitively account for instance relations
between objects (pairs of objects) and concepts (roles). A SHOIN ABox 4, is a finite set of assertions of
the form a: C, called concept assertions, of the form (a,b): R, called role assertions, or of the form a =
b or a # b. Using such expressive means we can describe instance relation like for example that John is
a parent, by writing john: Parent or that he has Dora as a child, by (john, dora): hasChild.

A knowledge base X is a triple of the form > = (TR, A4), where T is a TBox, R an RBox and 4 an
ABox.

As a fragment of First-Order Logic Description Logics feature well-defined model theoretic seman-
tics which are defined with the aid of interpretations. An interpretation (written as /) is a pair of the
form (A’,") where D’ is a non-empty set of objects called the domain of interpretation while - is an
interpretation function which maps each individual a to an element @’ € D! each concept C to a subset
C!' < D' and each role R to a binary relation R’ < D’ x D. The interpretation function can be extended to
give semantics to concept and role description. Table 1 summarizes the semantics of DL constructors.
Furthermore, we say an interpretation 7 satisfies an axiom C < D if C' ¢ D/, while it satisfies an axiom
C °D if C'= D'. I satisfies a TBox T if it satisfies every axiom in T. Then we say that [ is a model of T.
Similarly an interpretation / satisfies an assertion a: C if a’: (7, an assertion (a,b): R if (a',b"): R', a = b
ifa’=b'and a # b if a' # b'. I satisfies a knowledge base 2. if it a model of T, R and A4.

Besides their formality knowledge representation languages and DLs also provide a number of infer-
ence services, which can be issued over a created knowledge base. The aim of such services is to extract
new implied information out of the explicitly stated one. Every knowledge representation language
usually offers a different set of inference services. Next we present the most common set of services
offered by Description Logics:

. KB Satisfiability: A KB X is satisfiable if and only if (iff) there exists a model 7 of . Similarly
we can define the notion of unsatisfiability.

. Concept satisfiability: A concept C is satisfiable with respect to X if there exists a model / of £
such that (s.t.) C' = &.

. Concept Subsumption: A concept C is subsumed by a concept D w.r.t. X if for every model / of
¥ it holds that C' < D'.

*  ABox Consistency: An ABox 4 is consistent if there exists a model for 4.
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. Logical Entailment: Given a concept or role axiom, or an assertion ¢, we say that X entails ¢,
writing X |= ¢ if for every model / of %, [ satisfies ¢.
» Conjunctive query answering: A conjunctive query (CQ) q is of the form

q(X) — IY.conj(X,Y) (D

where ¢g(X) is called the head, conj(X,Y) is called the body, X is a vector of variables called distinguished
variables, Y are existentially quantified variables called the non-distinguished variables, and conj(X,Y)
is a conjunction of atoms of the form A4(u), R(v,, v,), where 4,R are respectively named classes and
named properties, v,v,,v, are individuals in X'and Y or individuals in X. Given an evaluation of variables
[X — S] (where S is a set of individuals), if every model 7 of X satisfies ¢, ¢, we say X entails g,
in this case, S is called a solution of g. A disjunctive query (DQ) is a set of conjunctive queries sharing
the same head.

Conjunctive query answering actually consists of a retrieval task. Informally, one can understand a
query as “give me all X such as the conjunction of atoms conj(X,Y) holds.” Then, S will contain the set
of all individuals that substituted in X will make the body true for some other individuals S’ substituted
for Y. As it is known it consists of a generalization of the entailment task.

Today, there have been developed several reasoning systems that realize most of the above inference
problems for SHOIN knowledge bases. The most important and popular ones are FaCT++! and Pellet?
and RacerPro'’. These tools have shown that although the worst case complexity of reasoning in DLs is
exponential they can scale quite good in relatively big knowledge bases in most practical applications.
Nevertheless, it is still unknown if they could scale up to the millions or even billion of (Semantic) Web
data. Furthermore, regarding conjunctive query answering it is still an open problem if an algorithm
for answering queries over SHOIN knowledge bases exists. Even if it does we already know that the
complexity of query answering for SHIN is already 2-ExpTIME -hard (Lutz, 2008).

It is well known that expressive Description Logics form the logical underpinnings of the OWL DL
ontology language (Horrocks & Patel-Schneider, 2004). OWL is the W3C standard for expressing on-
tologies in the Semantic Web and is actually an XML like rendering of the constructors of the SHOIN
language, while additionally adding several syntactic sugar constructors for assisting inexperienced
user of the Web create ontologies. For example, on the one hand it provides the owl:instersectionOf
constructor for specifying the conjunction of two concepts while on the other hand it also provides the
rdfs:domain constructor for defining the domain of a role (property) which semantically is a combina-
tion of the existential constructor and a concept inclusion. For more information about OWL the reader
is referred to (Bechhofer et al., 2004; Patel-Schneider et al., 2004) while for its correspondence with
expressive DLs to (Horrocks & Patel-Schneider, 2004).

Fuzzy Ontologies

Fuzzy Description Logics (Straccia, 2001) have been proposed as powerful knowledge representation
languages capable of capturing vague (fuzzy) knowledge that exists in many applications. The intuition
is to interpret (fuzzy) concepts and (roles) not as subsets of D’ and D’ x D/, respectively, but with the
aid of membership function (Zadeh, 1965) giving a fuzzy meaning. Syntactically, one should at least be
able to specify degrees of membership for instance relations. Thus, fuzzy DL extensions usually keep
the same syntax for concept and role axioms as their crisp (classical) counterpart, while they extend the
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syntax of concept and role assertions with membership degrees creating fuzzy assertions (Holldobler et
al., 2005; Tresp & Molitor 1998; Stoilos et al., 2007; Straccia, 2001). For example, one is able to state
that a specific grass is seeing to be green to a degree greater or equal than 0.7, writing (grass:Green) >
0.7. Hence, fuzziness is added at the instance level. Some notable exceptions found in the literature are
fuzzy subsumption axioms (Straccia, 2005) and fuzzy nominals (Bobillo et al., 2006) which also extend
the syntax of concept inclusion axioms and the. Fuzzy subsumption extends classical subsumption with
degrees of truth. More formally a fuzzy subsumption is a concept axiom of the form (C < D,n), where
n € [0,1]. Note that we will not deal with fuzzy nominals in the current Chapter.

As with classical DLs fuzzy DLs have a formal semantics provided by fuzzy interpretation. Intuitiv-
elly, fuzzy interpretations map concepts to membership functions in order to provide a fuzzy meaning.
More formally a fuzzy interpretation consists of a pair 7 = (A’,") where D/ is as before, while / is a fuzzy
interpretation function, which maps:

. an individual a to an element a € D/,
e aconcept name 4 to a membership function 4" : A" —10,1], and
. a role name R to a membership function R’ : A’ xA" —[0,1].

Using well known fuzzy set theoretic operations (Klir & Yuan, 1995), like t-norms (t), t-conorms
(u), fuzzy complements (c) and fuzzy implications (J), fuzzy interpretations can be extended to inter-
pret f~SHOIN-concepts. Table 2 summarizes the syntax and semantics of concept descriptions, concept
axioms, roles axioms and fuzzy assertions for the fuzzy DL f-SHOIN. In Table 2, a is an arbitrary
individual of D’.

Now we can proceed to define the inference services of fuzzy Description Logics.

. KB Satisfiability: An f~-SHOIN knowledge base X is satisfiable (unsatisfiable) iff there exists
(does not exist) a fuzzy interpretation / which satisfies all axioms in Z.

. Concept n-satisfiabilty: An f- SHOIN -concept C is n-satisfiable w.r.t. X iff there exists a model
1 of ¥ in which there exists some a € D’ such that C' (a) =n, and n € (0,1].

. Concept Subsumption: An f~-SHOIN-concept C is subsumed by D w.r.t. X iff in every model / of
> we have that Va e A’,C'(a) < D' (a).

. ABox Consistency: An f-SHOIN is consistent (inconsistent) w.r.t. a TBox T and an RBox R if
there exists (does not exist) a model I of T and R which satisfies every assertion in A.

. Entailment: Given a concept or role axiom or a fuzzy assertion ¥, we say that X entails ‘P, writing
Y= V¥ iff every model / of X satisfies V.

. Greater Lower Bound (glb): The greatest lower bound of an individual a to a concept C w.r.t. £
is defined as, gIb(E,C,a) =sup{n|Z|=a: C > n} with supd = 0.

Similarly to OWL and DLs the fuzzy OWL (Stoilos et al., 2005a) proposal consists of an extension
of the OWL standard in order to represent fuzzy knowledge in the Semantic Web. As in the crisp case
the logical underpinnings of f~-OWL is f-SHOIN, while fuzziness can be captured in the instance level
in the form of fuzzy instance relations called fuzzy facts. For example, one can have the following f-
OWL instance axiom:
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Table 2. Semantic of fuzzy SHOIN -concept descriptions and axioms

Syntax Semantics
U (a)=1
1 1'(@)=0
-C (=)' (a) = ¢(C'(a))
o crp)’(a) =1(C'(a), D' (a))
cwp (cup)'(a) =u(C'(a),D’ (a))
IR.C IRC' (a) = sup, {t(R' (a,b),C" (b))}
YR.C VRC'(a) =inf, {J(R' (a,b),C' (b))}
{a} {a}' (b)=1ifbe {al }, {a}' (b) =0 otherwise
R (R (b,a) =R’ (a,b)
R (> pR) (@)= sup (1 R'(@,b), t {b#b,})
B, 1= i<j
+1
<R (< pRY (@)= sup (1t R'(ab), u {b=b,})
Bysensby i=1 i<j
Trans(R) R'(a,b) = sup, {t(R' (a,c),R' (c.b))}
RcS Ya,be A" R'(a,b)< S (a,b)
CcD VYaeA' .C'(a)< D' (a)
c°D VYaeA' .C'(a)=D'(a)
(@:C)zn Clla)>n
(a,b):R>n R’(a,b) >n

<HotPlace rdf:about="Athens” owlx:ineqType=">=" owlx:degree="0.85">

<closeTo rdf:resource="Larnaca” owlx:ineqType=">=" owlx:degree="0.75"/>

</HotPlace>

saying that Athens is a hot place to a degree at least 0.85, while it is close to Larnaca to a degree at least

equal to 0.75.

SCALABLE QUERY ANSWERING WITH FUZZY DL-LITE

In the current section we will review some recent developments on the f-DL-Lite language. More pre-
cisely we will present a framework of very expressive fuzzy conjunctive query languages over the fuzzy
DL-Lite language. We first introduce fuzzy DL-Lite as a restriction of f~-SHOIN and we briefly sketch
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its query answering algorithm. Then we present the syntax and semantics of the expressive weighted
query languages. Subsequently, we show how such queries can be supported through SPARQL, a well
known query language that will consist of a W3C standard, and finally we present an implementation
of the aforementioned framework.

The Fuzzy DL-Lite Language

In order to gain in reasoning efficiency it is obvious that the DL-Lite language (and its fuzzy extension)
consists of a restriction of the classical DL constructors.
A DL-Lite ontology (O)" is a set of axioms of the following forms'%:

1. class inclusion axioms: B < C where B is called a basic concept defined as:
B=A4|3R| 3K

and C is called a general concept and is defined as
C=B|-B|C,NC,

2. functional property axioms: Func(R), Func(R"), where R is a role, and
3. individual axioms: B(a) > n,R(a,b) > n where a and b are individuals.

Note that B(a) > n is just another syntax for (a:B) > n. As we can see in DL-Lite besides limiting the
number of the available DL constructors one additionally restricts the use of the allowed ones in con-
cept axioms. For example, negation is only allowed in the right-hand side of axioms and only in front
of basic concepts. Although DL-Lite is significantly restrictive, compared to OWL DL, it is known that
is expressive enough to represent most features of UML class diagrams. Furthermore, this restrictive-
ness is the reason that DL-Lite provides efficient query answering. More precisely, it is known (and we
will briefly sketch below) that after careful rewriting conjunctive query answering over DL-Lite can
be reduced to a set of SQL queries over a relational database system. Consequently, the complexity of
DL-Lite query answering is LOGSPACE w.r.t. data, which is obviously far more computationally easy
than that of SHIN.

Like in other fuzzy extensions to DLs, fuzzy DL-Lite (Straccia, 2006) (or f-DL-Lite for short), extends
DL-Lite with fuzzy assertions, as described in the previous section. The semantics of f-DL-Lite ontolo-
gies are again defined in terms of fuzzy interpretations. Since we have already presented the semantics
of most of the constructors used by f-DL-Lite we will not repeat them here. We only note that a fuzzy
interpretation / satisfies a functional property axiom of the form Fune(R) if Va e A’.#{o | R (a,0) > O} =1

Similarly to crisp DL lite, fuzzy-DL-Lite, provides means to specify role-typing and participation
constraints but interestingly it assigns fuzzy meaning on them. More precisely, a role-typing assertion
of the form 3R 4, (resp. IR™ < 4,) states that the first (resp. second) component of a relation R(a,b)
belongs to A, (resp. A,) at-least to the membership degree that the relation holds, i.e. R (a’,b") < 4/ (a")
(resp. (R (b',a')=R"(a',b") < 4 (b").

Similar to the crisp algorithm, the algorithm for answering conjunctive queries over f-DL-Lite on-
tologies consists mainly of three steps (Calvanese, 2005; Calavanese et al., 2007; Straccia, 2006), which
can be briefly summarized as follows:
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1. Normalization: During this step, axioms of the form B < C, A C, are replaced by two axioms of
the form B c C, and B c C,, while concept axioms are closed under subsumption (<) and under
the rule, if B, € B, € T and B, < —B, €T, then T U {B,  —B,}. Moreover, the ABox is normalized by
adding fuzzy assertions 3R(a) > n and 3R (b) > n for each R (a,b) > n € A (Calvanese et al., 2005;
Calavanese et al., 2007).

2. Query reformulation: In the second step the input query is reformulated by a process known as
perfect reformulation (Calvanese et al., 2005; Calavanese et al., 2007). The idea is to expand the
query according to the given concept axioms in order to obtain a set of queries which issued to the
ABox discarding the TBox will retrieve all the certain answers of the original query as if it was
issued over the overall knowledge base.

3. Query evaluation: Finally, the set of conjunctive queries is evaluated over the given ABox.

An important property of the (fuzzy) DL-Lite algorithm is that the ABox can be faithfully stored in a
data base. Hence, every step that involves assertions of the ABox, like consistency checking and query
evaluation can be performed by applying SQL queries to the data base.

Expressive Query Languages

How one can efficiently and effectively access fuzzy information has been a significant issue in the
fuzzy information retrieval community (Cross, 1994). The idea is that fuzziness allows for many new
capabilities for accessing information. More precisely, the fuzzy degrees can be used in order to provide
rankings of result sets. Furthermore, these degrees can be combined with degrees issued by the user
which intuitively represent their preferences about the elements of the query. For example, a user might
be more interested in retrieving objects that have a certain property than another, or although he/she
would prefer to see objects satisfying specific constraints he/she is also flexible if his/her criteria could
not be met to an absolute degree. Thus the results will be ranked according to fuzziness but also accord-
ing to user data. Consequently, approaches to weighted conjunctive queries (Waller & Kraft, 1979) have
been proposed and many proposals/strategies for combining the user specified degrees with the fuzzy
degrees have been developed (Bookstein, 1980; Bordogna, 1996; Chen & Chen; Radecki, 1979; Salton
et al., 1983a; Sanchez, 1989; Yager, 1987).

Pan et al. (2008) were inspired by weighted conjunctive query languages and the work in the field of
fuzzy information retrieval and extended the classical conjunctive query language of f-DL-Lite with two
very expressive query languages providing algorithms for evaluating such queries. On the one hand they
propose new query languages, which generalize the entailment problem, while on the other hand they
propose a general framework which encapsulates many of the query languages proposed in the literature
for fuzzy information retrieval. Implementation over f-DL-Lite shows that such expressive queries can
also be handled in a scalable and efficient way even in fuzzy ontology languages. In the following we
first introduce conjunctive threshold queries that were proposed in (Pan et al., 2008) and consist of a
totally new query language, while later on we introduce general fuzzy queries.

Threshold Queries: As it was noted in (Calvanese, 2005; Calavanese et al., 2007) in DL-Lite (and in
all DLs) the entailment problem s a special case of conjunctive query answering. Since f, -DL-Lite allows
for fuzzy assertions, it would be reasonable that our query language was an extension of the entailment
of fuzzy assertions. This implies that the query language should allow users to write the conjunction of
fuzzy assertions. Working that way we can define conjunctive threshold queries (CTQ) which extend
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the atoms A4(u),R(v,v,) in conjunctive queries of the form (1) to the following form A(u) = 1, R(v,,v,) 21,
where 7,t, € (0,1] represent thresholds. As it was proven these queries are very important since they
can be used in order to devise a reasoning algorithm for the fuzzy language fuzzy-CARIN (Mailis et
al., 2007).

Example. Using threshold queries we can ask a database of human models for all the models of that
are tall to a degree no less than 0.7 and light to a degree no less than 0.8 using the following conjunctive
threshold query:

q(x) < Model(x) 21 ATall(x) 2 0.7 A Light(x) > 0.8

Obviously, CTQs are more flexible than queries of the form (1) since users are allowed to specify
for different thresholds to each atom of the query.

Formally, given an f_ -DL-Lite ontology O, a CTQ ¢, and an evaluation [X — S], we say that O
entails g, (writing Ol=q,) if every interpretation / of O satisfies the following condition: for every atom
A(u) 2 1, R(uy,u,) 2 t, of g, we have A" (W) ys5y 2 1, Ry 551 2 1, Then we say that S is a solution of
q,- From the above we note that the solution set of a CTQ is crisp. i.e. a tuple either belongs or not to it.
Disjunctive threshold queries (DTQs) are defined accordingly.

Generalized Fuzzy Queries: Since f -DL-Lite allows for fuzzy assertions it would be useful if
we could find a way to assess a membership degree of a tuple to the result set of a given query. As we
show this is not the case for CTQs where a tuple either belongs or not to the solution set. For that rea-
son we introduce general fuzzy conjunctive queries. Syntactically, a general fuzzy conjunctive queries
(GFCQ) extends the atoms 4(u),R(v,,v,) of conjunctive queries of the form (1) with those of the form
A(u) :k, R(v,v,) 1k, , where ¢ ,t, € (0,1] are degrees called weights.

This extension of conjunctive query languages was already proposed in (Waller & Kraft, 1979) for
fuzzy databases and fuzzy information retrieval. All the approaches that followed argued in favor for
specific semantics for such queries (Bookstein, 1980; Chen & Chen; Radecki, 1979; Salton et al., 1983a).
Differently, we will try to use generalized fuzzy operators in order to keep the choice of the semantics
open. Thus in our case, conjunction of atoms will be performed by a general function denoted by G as
well as the degree of each atom with the associated weight will be denoted by a function a. To simplify
the presentation we will represent query atoms of GFCQs with atom, (i) . Given a f_-DL-Lite ontology
O, a fuzzy interpretation / of O, a GFCQ ¢, and an evaluation [X — S], the truth degree of ¢, in / for
the specific evaluation is given by:

I j—
d= sup G a(k, atom, ) xs5pss7)
S'gA’x...xA’

where for 1 </<n, k. and atom, are as shown before, G is a function that evaluates conjunctions of atoms
and a is a function that evaluates the weight associated atoms. S:d is called a candidate solution of q,.
When d > 0, then S:d is called a solution of ¢,. Additionally, the semantic function must also satisfy the

following condition:

If atom/ (it)y, sy, .y =0 for every valuation S"and 1 <7< n, then d = 0. 2)
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General fuzzy disjunctive query (GFDQ) is defined as a set of GFCQs that share the same head.

As we noted above Pan et al. (2008) have left the evaluation of conjunctions and degree associated
weights open. Consequently, there are many different ways to provide semantics and meaning to our
queries. In what follows we will briefly overview several such important choices that have been exam-
ined in (Pan et al., 2008).

1. Fuzzy threshold queries: As we show the result set of CTQs is always a crisp set. This implies that
if we have a fuzzy assertion of the form (a:C) > 0.18 and a CTQ of the form ¢, (x) <~ C(x) > 0.2 then
a will not be included in the result set. On the other hand if we choose a t-norm (t) as a function
for G and an R-implication as a function for a then we obtain fuzzy threshold queries, in which
the truth degree of g, in I is given by the equation:

n ers
d= sup 1 J(k;,atom; (i) y, sy, ,51)
S'gA’x...xA’

Given some set ', if for all atoms of the query we have atom; (@) s y_,s4 2 k,, then d = 1. On the other
hand, if for some atom it was the case that atom, (it) s y_,sy < k, then the R-implication would gradually
filter (penalize) the membership degree of the solution to the result set according to weight ..

As it was shown by Bordogna (1996) many of the proposed semantic functions found in the literature,
like those in (Bookstein, 1980; Buel & Kraft, 1981; Radecki, 1979), can be grouped under the general
framework of fuzzy threshold queries. Moreover, Pan et al. (2008) show that the (classical) conjunctive
query language used by Straccia (2006), is also a special case of fuzzy threshold queries if we set all
weights equal to 1.

2. Fuzzy aggregation queries: Another commonly used fuzzy operator in fuzzy set literature that
can be used as a semantic function for interpreting general fuzzy queries is that of fuzzy aggrega-
tion functions (Klir & Yuan, 1995). For example, if we use the weighted average we will get the
semantic function:

n

Z (k; % atomi] (ﬁ)[st,st'])
d= sup =

n
S'cAl .. xa! zk
i

i=1

Similarly to fuzzy threshold queries, Pan et al. (2008) show that many proposals for semantics of
weighted queries, like the ones of Salton et al. (1983a) and S.-J. Chen and S.-M. Chen (2000), are special
cases of the family of fuzzy aggregation queries.

3.  Fuzzyweighted t-norms: [fwe use the weighted t-norm operators proposed and studied by Chortaras
et al. (2006) as functions for conjunctions and for associated weights, then the truth degree of ¢,

in / is given by:

" " " I, —
d= sup n;}lrlu(k—ki,t(k,atomi () xs50s57)
S'cAl x.. xA! =
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Table 3. Example Consider the following set of fuzzy assertions

Tall hasFriend
Individual Degree Individual Individual Degree
george 0.8 goerge mary 0.8
tom 0.79 tom mary 0.9
mary 0.75 mary tom 0.9

where k =max!_ k,. For more information about these fuzzy operators the reader is referred to (Chor-
taras et al., 2006). Once more we can use this generalized class of query languages to show that several
approaches, like the one proposed by Yager (1987) and Sanchez (1989), fall into it

It is easily shown that the above fuzzy conjunctive query languages satisfy condition (2).

Table 3 depicts fuzzy assertions with the fuzzy concept Tall, while the second one with the fuzzy
relation hasFriend. Consider now the following GFCQ:

q(x) < Tall(x):0.8 A hasFriend(x,y):0.6

Table 4 summarizes the results of issuing such a query in the above fuzzy knowledge by using several
of the semantic functions introduced before.

From the above we see that different choices of semantic functions could lead to different ranking
results since the considered semantics are different. The first semantic function teats weight as thresh-
olds, penalizing the individuals that fail to satisfy them, while the second one aggregates all the degrees.
The choice of the semantic function is context dependent and as far as we know there are no criteria or
methodology found in the literature for choosing among them.

Supporting Querying with SPARQL

After presenting the abstract syntax and semantics of our proposed languages, and important issue is to
how such queries can be represented using Semantic Web standards. In the following we show how to
extend the syntax of SPARQL (Prud’hommeaux & Seaborne, 2006), a well known Semantic Web query
language, for the proposed languages. We call our extension f~-SPARQL. SPARQL is a query language
(candidate recommendation from the W3C Data Access Working Group'?) for getting information from
RDF graphs. SPARQL allows for a query to constitute of triple patterns, conjunctions, disjunctions and
optional patterns. A SPARQL query is a quadruple Q = (V,P.DS,SM), where V is a result form, P is a
graph pattern, DS a data set and SM a set of solution modifiers. Among others, SPARQL allows for select
queries, formed in a SELECT-FROM-WHERE manner. The result form represents the set of variables
appearing in the SELECT, the dataset forms the FROM part, constituted by a set of IRIs of RDF docu-
ments, while the graph pattern forms the WHERE part which is constituted by a set of RDF triples.

In order to maintain backward compatibility with existing SPARQL tools, we propose to use spe-
cially formatted SPARQL comments to specify extra information needed in our proposed languages (see
Table 5). Firstly, one should declare the query type before a select query. For example, #TQ# declares
a threshold query, while #GFCQ:SEM=FUZZY THRESHOLD# declares a general fuzzy query, with
the fuzzy threshold semantic functions. Secondly, following each triple in the WHERE clause, one can
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Table 4.

Fuzzy Threshold Queries with the Lukasiewicz operators
t(a,b) = max(0,a+b—1)
J(a,b) = min(1,1-a + b)

Fuzzy Aggregation Queries using weighted average

X d X d
george 1 tom 0.837
tom 0.99 mary 0.81
mary 0.95 george 0.8

use #TH# (resp. #DG#) to specify a threshold in a threshold query (resp. a degree in a general fuzzy
query). For instance, the threshold query presented in a previous Example can be represented by the
following f-SPARQL query:

#TO#

SELECT ?x WHERE ({

?x rdf:type Model . #TH# 1.0
?x rdf:type Tall . #TH# 0.7
?x rdf:type Light . #TH# 0.8
}

In the case of general fuzzy queries, one must specify the semantic functions (i.e. ¢ and G). Below
is an example fuzzy threshold query.

#GFCQ: SEM=FUZZYTHRESHOLD#
SELECT ?x WHERE {

?x rdf:type Model . #DG# 1.0
?x rdf:type Tall . #DG# 0.7
?x rdf:type Light . #DG# 0.8
}

Table 5 presents the f~-SPARQL syntax. f~SPARQL extends two of SPARQL’s elements, namely
the “Query” and the “TriplesBlock” element. As illustrated above, each select query is extended with

Table 5. Syntax of Fuzzy SPARQL

Query := Prologue (QueryTipe SelectQuery | ConstructQuery|
DescribeQuery | AskQuery)
QueryType o= #TQ# \n’ | ‘#GFCQ:SEM=" FuzzySemantics ‘# \n’
FuzzySemantics = ‘“AGGREGATION’ | ‘FUZZYTHRESHOLD’ |
‘FUZZYTHRESHOLD-1" | ‘FUZZYWEIGHTEDNORMS’
TriplesBlock = TriplesSameSubject (“." TripleWeight Degree TriplesBlock?)?
TripleWeight = ‘H#TH# | ‘#DG#*
Degree := real-number-between-0-and- 1 -upper-inclusive
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the element QueryType. In particular, for general fuzzy queries, the declaration "#GFCQ:SEM="is fol-
lowed by the element FuzzySemantics, which is used to specify the semantic functions, such as the ones
we presented in the previous section. More precisely, we use the keywords 'FUZZYTHRESHOLD’,
‘FUZZYTHRESHOLD-1’, 'AGGREGATION’ and 'FUZZYWEIGHTEDNORMS’ to indicate the four
fuzzy general queries we introduced in Section 3.1.2. When one uses 'FUZZYTHRESHOLD-1, the
fuzzy threshold is set as 1, and the values specified by the #TH# comments are ignored. Finally, the
“TriplesBlock” element is extended with the elements Triple Weight and Degree, which are used to as-
sociated a threshold or weight with each triple of the SPARQL query.

The ONTOSEARCH2 System

Our implementation is based on the ONTOSEARCH?2 system (Pan et al., 2006b; Thomas et al., 2007),
which is an infrastructure for supporting ontology searching and query answering. The f-DL-Lite query
engine is implemented as an extension of the crisp DL-Lite query engine in ONTOSEARCH2’ (Pan
& Thomas, 2007), so as to support threshold queries and general fuzzy queries. The core part of the
f-DL-Lite query engine includes implementations of algorithms that realize the expressive conjunctive
queries we have presented in the previous section over fuzzy DL-Lite (Pan et al., 2008). The system was
written in Java 5 and uses PostgreSQL 8.1 RDBMS for the repository storage. PostgreSQL was setup
with default installation, no additional configuration was performed.

Users of the f-DL-Lite query engine can submit f-DL-Lite ontologies via the Web interface of ON-
TOSEARCH2, and then submit f~-SPARQL queries against their target ontologies. Figure 1 depicts the
web interface of ONTOSEARCH?2.

The fuzzy query engine operates in two modes: TQ mode (for threshold queries) and GFCQ mode
(for general fuzzy queries). When users submit an f~-SPARQL query, the fuzzy query engine parses it,
so as to determine the query type (whether the query is a threshold query or a general fuzzy query), as
well as the thresholds (for threshold queries) or degrees (for general fuzzy queries), depending on the
query types. The implementation over ONTOSEARCH2 has been evaluated against a fuzzy variant of
the Lehigh University Benchmark (Pan et al., 2008). In brief, the LUBM benchmark has been enriched
with two fuzzy concepts, that of a “Busy” and a “Famous” for which fuzzy assertions are created. The
system has been shown to be highly scalable, being able to answer threshold queries and general fuzzy
queries over about 7,000,000 individuals in a matter of a few seconds, comparable to the query answer-
ing time of classical DL-Lite.

Besides the DL-Lite and the f-DL-Lite query engine, the ONTOSEARCH2 system consists of other
components, such as the ontology search engine. According to this functionality the implementation has
been tested with a realistic Semantic Web scenario, which we briefly sketch below.

One of the major limitations of existing ontology search engines is that searching is only based on
keywords and metadata information of ontologies, rather than semantic entailments of ontologies (e.g.,
one wants to search for ontologies in which Bass Clarinet is a sub-class of Woodwind). On the other
hand, searching only based on semantic entailments might not be ideal either, as synonyms appearing
in the metadata could not be exploited.

By making use of the f-DL-Lite query engine, our ontology search engine supports keyword-plus-
entailment searches, such as searching for ontologies in which class X is a sub-class of class Y, and class
X is associated with the keywords “Bass” and “Clarinet”, while class Y is associated with the keyword
“Woodwind”. The search could be represented as the following threshold query:
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Figure 1. The ONTOSEARCH?2 Web Interface

ONTOSEARCH2

Statistics Register Submit a URL

Welcome to ONTOSEARCH2

ONTOSEARCHZ is a project at the University of Aberdeen Computer Science Depament to help facilitate reuse of ontologies on the Semantic Web by allowing structures searches of a large
database of antel and other ticweb d

Please use the form below to submit a keyword based search of the respoitory or a basic SPARGL query (feel free to use example query below).

Search Engine

Query:

Search Reset

Query Engine

Queny:

#TQ#

PREFIX rdfs: <http://wuw.w3.org/2000/01/rdf-schema#>
PREFIX os: <http://ummr. ontosearch.org/NS/>

3

SELECT ?X ?Y¥ WHERE {

?Y¥ os:hasKeyword “person” . #TH# 0.6

X rdfs:subClass0f 2Y¥ . =
} v

Search Reset

ONTOSEARCH2 @ Aberdeen University

#TO#

SELECT ?x WHERE ({

?x hasKeyword i-bass . #TH# 0.6

?x hasKeyword i-clarinet . #TH# 0.6
?x rdfs:subClassOf 2y

?y hasKeyword i-woodwind . #TH# 0.7
}

where i-bass, i-clarinet and i-woodwind are representative individuals for keywords “Bass”, “Clarinet”
and “Woodwind”, resp. The thresholds 0.6 and 0.7 can be specified by users.

In order to support keyword-plus-entailment searches, our ontology search engine, for each indexed
ontology, stores its semantic approximation (in DL-Lite) (Pan & Thomas, 2007) and accompanies each
ontology in itsrepository with an f-DL-Lite meta-ontology, which (i) materialises all TBox reasoning based
on the semantic approximation and, most importantly, (ii) uses fuzzy assertions to represent associations
of each class (property) and keywords'* appearing in the metadata of the ontology, with some degrees.
Keywords appearing in the ontology metadata are associated with scores based on ranking factors'>. We
use these scores to calculate the ¢/ -idf (Salton & McGill, 2983b) for each keyword, and normalise them
using a sigmoid function such as the one shown in the following to a degree between 0 and 1.

wn) =———-
®) 1.2 +1
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Hence, the ontology search engine can use the f-DL-Lite query engine to query across all the meta-
ontologies in its repository, so as to support keyword-plus-entailment searches. Further discussions of
this use case go beyond the scope of this paper.

Concluding our presentation in expressive querying over f-DL-Lite ontologies, we would like to
point out that the respective querying framework is not specifically tailored for f-DL-Lite ontologies.
This framework has also been implemented in the FiRE® fuzzy DL reasoner and queries are realized
through the Sesame RDF triple store'®. More precisely, expressive reasoning is firstly applied in order
to extract new implied information from the facts and axioms, then the knowledge base is stored in a
proper form in Sesame and finally FiRE uses SPARQL queries to Sesame in order to implement expres-
sive weighted queries (Simou et al., 2008b). The respective implementation has been evaluated against
an industrial strength scenario about casting actors for TV spots and commercials and its performance
has been assessed.

SCALABLE KNOWLEDGE CLASSIFICATION WITH FUZZY EL+

In the current section we will present a fuzzy extension of the EL+ language. EL+ (Baader et al.) is
another very famous tractable Description Logic that has been proposed in the literature. It actually
consists of one member of the EL family of languages consisting of EL, EL+ and EL++ (Baader et al.,
2005). The EL family has been developed by an effort to identify the fragment of Description Logics
that is usually used in creating medical ontologies, like the SNOMED!” (Systematized Nomenclature of
Medicine) and the Galen'® ontologies. It was only later proved that the used fragment enjoys polynomial
algorithms for concept classification. This was a very important feature since concept classification is
a very important (if not the most important) reasoning problem in medical applications, where the clas-
sification of medical terms within the ontologies is required, rather than performing retrieval tasks, as
is the case for DL-Lite. Thus, differently than DL-Lite, EL+ offers for more expressive means of repre-
senting knowledge (see next section), but still no more than is required to allow for polynomial concept
classification. Regarding, query answering it has been later shown that conjunctive query answering
over EL+ ontologies is undecidable (Rosati, 2007), which also justifies the fact that EL+ is not tailored
for query answering tasks.

In the following we present the fuzzy EL+ language. First we introduce the syntax and semantics,
while later we focus in providing an algorithm that computes the concept hierarchy of f-EL+ ontolo-
gies. The interesting feature is that the algorithm manages to classify f-EL+ ontologies that allow for
fuzzy subsumption. Finally, we present some refinements of the algorithm that can be the base for an
optimized implementation, as in the crisp case.

The Fuzzy EL+ Language

In this section we introduce a fuzzy extension to the EL+ DL. Our semantics will be tailored for the
operators of the Godel logic we call our language f, — EL+.

As is the case with DL-Lite, the high efficiency of EL+ is attributed to the restriction of the avail-
able set of constructors. More precisely, f, — EL+ only allows for the top concept (T), for full existential
restrictions (3R.C) and conjunction (CT1D). We note that unlike DL-Lite the use of these constructors
in EL+ concept axioms is unrestricted. Furthermore, in comparison with DL-Lite, EL+ allows for fu//
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existential quantification, thus significantly more complex concepts can be defiled. We clarify here that
since EL+ is more expressive w.r.t. what can be said about concepts, f-DL-Lite classification is also
tractable (polynomial), but due to the very restricted constructors, not of great interest.

An f, — EL+ ontology consists of a finite set of concept and role axioms. Differently, than f-DL-Lite
we allow for fuzzy general concept inclusions (f-GCls) of the form (C  D,n), where n € [0,1]. Intuitively,
these axioms say that the degree of subsethood of C to D is at-least equal to #. In contrast to what we
have seen until now EL+ allows for what is called complex role inclusion axioms (RIAs) of the form
R o...oR < §,where o denotes the composition of two roles. Again, we note that EL+ allows for opera-
tors over roles, and more precisely for role composition which is a significant expressive constructor.
With RIAs one is able to state that a role R is transitive, by Ro R < R or express right- and left-identity
rules, which are very important in medical application, by axioms of the form RS c R.

The semantics of f, — EL+ are again provided by the aid of fuzzy interpretations. Again using fuzzy
set theoretic operators we are able to interpret complex f; — EL concepts. Table 6 summarizes the se-
mantics. Most of them have already been presented in previous sections. Nevertheless the semantics
of fuzzy inclusion axioms and complex role inclusion axioms are new. In Table 6 o' denotes the sup-t
composition of two fuzzy roles (Klir & Yuan, 1995). Given an interpretation / we say that / is a model of
an f, — EL+ ontology if for each f~-GCI and RIA, the conditions in this table are satisfied. For example,
a fuzzy interpretation / satisfies (C < D,n) if inf, (C'(a), D' (a)) = n, where ] is a fuzzy implication.

The basic inference problem of f;, — EL+ is fuzzy concept subsumption: A concept C is fuzzy
subsumed by a concept D to a degree n € [0,1] w.r.t. an f, — EL+ ontology O, written (C <, D,n) if
inf, 7(C’ (a), D' (a)) > n for every model I of O. Moreover we are also interested in the problem of clas-
sifying an f, — EL+ ontology which contains fuzzy-GCls, i.e. compute all fuzzy subsumptions between
concepts of the ontology.

As we see, we interpret fuzzy GCls with the aid of R-implications. This semantics is derived by
translating C < D into the First-Order formula Vx.C(x) — D(x) and then interpreting — with an R-im-
plication and V with inf (Straccia, 2005). Although fuzzy subsumption for fuzzy DLs was first proposed
by Straccia, several works in the fuzzy set literature regarding this issue already existed. The first idea
was presented by Bandler and Kohout (1980). Similarly to Straccia, Bandler and Kohout used fuzzy
implications to give semantics to fuzzy set inclusion. The first attempt to provide axioms that character-
ize the operators used to interpret fuzzy subsumption was presented by Sinha and Dougherty (1993).
Many of these axioms are satisfied by R-implications, but only the Lukasiewicz implication satisfies
all of them. A different set of axioms was proposed by Young (1996). Again R-implications are quite

Table 6. Semantics of f-EL+

Constructor DL Syntax Semantics
top concept T T(a)=1
conjunction CrD (Cn D) (a)=t(C'(a),D'(a))
existential restriction IR.C IR.C' (a) =sup, {t(R' (a,b),C" (b))}
Fuzzy GCls (C < D,n) inf, 7(C'(a),D'(a)) 2 n
RIAs Ro..oR S R' o ...o' R (a,b)  S'(a,b)
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close to satisfying all proposed axioms. Thus, we see that each author provided different set of axioms
according to the specific problem they wanted to tackle. Sinha and Dougherty (1993) wanted to define
new mathematical morphology operators, while Young (1993) was studying fuzzy entropy. We conclude
that R-implications generally provide a good intuition for semantics of fuzzy subsumption.

The use of fuzzy inclusion axioms in fuzzy EL+ was motivated by the field of ontology matching
and ontology alignment. Ontology matching consists of the process of identifying semantic similarities
between heterogeneous ontologies. More precisely, an ontology alignment algorithm is never capable
of assessing the similarity of two entities with 100% confidence. What is more likely is to have degrees
of confidence for each mapping. For example, in a realistic ontology alignment example and for two
relatively simple ontologies, o, and o,, about mobile phones an algorithm can produce the following
(fuzzy) mappings:

map(o,: MobileDevice, o,: ElectronicDevice, 0.7)
map(o,: MobilePhone, o,: Phone, 0.6)
map(o,: MobilePhone, o,: CablePhone, 0.4)
map(o,: MobilePhone, o,: CellularPhone, 1.0)

Ferrara et al. (2008) have already proposed the use of fuzzy inclusion axioms of fuzzy DLs in order
to provide formal semantics to such fuzzy mappings and interpret them. For example, the first mapping
could be represented by the following fuzzy inclusion axiom(ol : MobileDevice < 02 : ElectronicDevice,0.7)
. Ferrara et al. (2008) then use the semantics of such axioms together with standard fuzzy reasoning
services in order to perform fuzzy validation, i.e. to refine or remove a mapping according to whether
it causes inconsistencies of the fuzzy knowledge base. Although, they did not use fuzzy classification
services, itis quite evident that if such services could be supported then new (inferred) mappings between
the two ontologies could be identified. Furthermore, Holi & Hyvonen (2006) have also proposed the use
of fuzzy inclusion axioms for representing fuzzy mappings between search views in Semantic Portals.
Again no reasoning over fuzzy subsumption was performed. Consequently, from both applications we
can note that the use of fuzzy inclusion axioms with f-EL+ (that allows for efficient classification) is
of great interest.

Classifying Knowledge with Fuzzy EL+

In the current section we will provide a detailed presentation of the algorithm for classifying fuzzy sub-
sumption in f-EL+ ontologies. As we will see in the following the algorithm for f, — EL+ is quite similar
to the algorithm for classical EL+ modulo the degrees of fuzzy-GCls. This is to some extent expected
since on the one hand fuzzy logics are generalization of classical logics which is different compared to
uncertainty handling logics (probabilistic, possibilistic), thus at the extremes of 0 and 1 they provide
the same results. On the other hand EL+ is already a sub-boolean logic (it is not propositionally closed
under negation) so the logical differences with f, — EL+ cannot be revealed. Nevertheless, discover-
ing the degrees of membership in the inference rules (see Table 8) and generalizing the algorithm was
extremely difficult and involved deep investigation of the properties of fuzzy operators.
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Before applying the polynomial algorithm for classification a f, — EL+ ontology needs to be normal-
ized (Baader et al.). Given an ontology O, we write CN,, and CN,, to denote the set of concept names
with and without the top concept (T), respectively. Then, an f, — EL+ ontology O is in normal form if

1. all fuzzy GCIs in O have one of the following forms, where 4, € CN; and B € CN, o
A4, m..ncBn)A,

(4, € 3RA,.n)

(AR.A, c B,n)

2. all role inclusions are of the form R — Sor R R, = S.

As shown in (Baader et al.) every EL+ ontology O can be turned into a normalized one O’ by exhaus-
tively applying proper normalization rules, which introduce new concept and role names in the ontology.
The complete set of normalization rules for f; — EL is described in Table 7.where C,Dg CNy,C,,C,D are
arbitrary concepts, B € CN,, , P denotes a new role and A denotes a new concept name.

Lemma. An f, — EL ontology O is satisfiable iff the normalized one O’ is satisfiable.

Theorem. Subsumption w.r.t. f; — EL ontologies can be reduced in linear time to subsumption w.r.t.
normalized ontologies in f, — EL.

In the following we assume that an input ontology O is in normal form.

Let O be an f, — EL ontology in normal form. Our subsumption algorithm for normalized f; — EL
ontologies can be restricted to subsumption checking between concept names. More precisely,(C <, D,n)
iff (4 <, B,n), where O'= 0u{<A cC,n),(Dc B,n)} and 4, B are new concept names.

Let RN, be the set of all role names occurring in O. The algorithm computes:

. A mapping § assigning to each concept name of CN,, a subset 5(4) of CNy x[0,1], and

. A mapping r assigning to each role name R of RN, a ternary relation 7(R) which is a subset of
CN, xCN, x[0,1].

Table 7. Normalization rules for f. — EL

NF1 | Ro...oR S Ro...oR  cP,PoR S

NF2 (G C .0 CcDin) (Ccam (Cr.n An.nC cDn)

NF3 | (3R.C = D,n) (C c 4,n),(3RAC D,n)

NF4 | (C c D,n) (Cc 4,n),(Ac D,n)

NF5 | (B c3RC,n)
NF6 |(BcCn D,n)

(BC3RA,ny (A C,n)
(B C,n) (B< D,n)

N U I I I
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Table 8. Completion rules for f. — EL+

Rule Description
R1 If{4,n) e SX),....(4,,n,) e S(X),{4...n A < B,k) € O and (B, m) ¢ S(X), where
m =min(n,,...,n,,k) then §(X) = S(X)U{(B,m)} where m =min(n,,...,n,,k)
R2 If (4,ny € S(X),{A < 3IRB,k) € O and (X, B,m) & r(R), where m =min(n,k) then
r(R) =r(R)V{{X,B,m)}, where m = min(n, k)
R3 If(X,Y,n)er(R),{(4,n,)eSY),(IR.Ac .B,n,) € O and (B,m) ¢ S(X), where

m =min(n;,n,,n,) then S(X):=S(X)U{(B,m)}, where m =min(n,,n,,n,)
R4 If{X,Y,n)er(R),Rc S0, and(X,Y,n) ¢ r(S)then r(S) =r(S)U{{X,Y,n)}

RS If(X,Y,n)er(R),(Y,Z,n,)er(S),RoS c FeOand(X,Z,m) ¢ r(F), where m = min(n,,n,)
then 7(F) =r(F)U{{X,Z,m)} where m = min(n,,n,)

As we can see, due to the presence of fuzzy subsumptions we have extended the mappings S(4), 7(R)
to range over subsets of CN;, x[0,1] and CN, xCN,, x[0,1], respectively. As with crisp EL+ intuitively,
these mappings make implicit fuzzy subsumption relationships explicit in the sense that

. (B,n) € S(A) implies (4 < B,n) and
(4,B,n) € r(R) implies (4  3R.B, n).

The mappings are initialized as follows:

S(4) = {{4,1), (7,1)}, foreach 4 € CN,,
. "(R) =, foreach R € RN,

Then, the sets S(A4) and r(R) are extended by applying the completion rules shown in Table 8 until
no more rules are applied.

Theorem. The algorithm runs in polynomial time and it is sound and complete, i.e. after it terminates
on input O, we have for all 4,Be CNy, n e (0,1],(4 <, B,n) iff (B,n") € S(A), for some n’ € (0,1], with
n' > n.

A Refined and Optimised Algorithm

As it was pointed in (Baader et al.) although EL+ is a tractable DL, in practice the above algorithm might
fail to provide truly tractable, scalable and efficient reasoning. This is due to the fact that the application
of rules is performed using a naive brute-force search. This effect is remedied by proposing a refined
algorithm which is shown to provide truly scalable practical reasoning. The algorithm is realized by
introducing a set of queues, one for each concept name, which intuitively guide the application of the
expansion rules. In the following we sketch the necessary modifications to the EL+ refined algorithm
in order to also provide optimisations for the f, — EL algorithm. Our entries of the queues are of the
form:

B,....B —(B',n"yand (AR.B, n)
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with B,...,B and B’ concept names, R role name, m > 0 and n" € (0,1]. For m =0 we simply write (B’,
n"). Intuitively,

. an entry B,,....B, — (B', n') € queue(4) means that (B’, k), with k = min(n’, n,...,n ) has to be
added in S(4) if S(A) already contains information for B ,...,B , i.e. entries (B ,n),...(B .n ),
and

. (AR.B, n) € queue(A) means that (4,B,n) has to be added to #(R).

Similarly to the optimised algorithm of EL+ we use the mapping O from concepts to sets of queue
entries as follows:
For each concept name 4 € CN,, A4 is the minimal set of queue entries such that:

. if{4,M..n4 < Bn)e Oand 4 = A4, then

A, A A, A —(B,n)eO(4)and

e if{4 < 3R.B,n) € O, then (IR.B,n) € O(A).

Similarly, for each concept IR.4, O(3R.A4) is the minimal set of queue entries such that, if 3R.A < B
€ 0, then (B,n) € O(3R.A).

Using the above changes the refined algorithm of EL+ can be changed accordingly in order to also
take into account fuzziness in subsumption axioms and provide an algorithm for processing the queue
entries.

Theorem. The refined algorithm runs in polynomial time and it is sound and complete, i.e. after it
terminates on input O, we have for all 4,BeCN,, n € (0,1] that (4 <, B,n) iff (B,n") € S(4), for some
degree n' € (0,1], with n' > n.

DISCUSSION AND FUTURE WORK

How to apply Description Logic based ontologies in the Web has been a pressing issue for the Semantic
Web community (Mika, 2005). On the one hand (Semantic) Web applications would require ontologies to
be able to handle hundreds of thousands of data in reasonable amount of time in order to deliver services
to end users, while on the other hand they should be able to deal with fuzzy and imprecise data which
emerge from automated procedures or are inseparable part of every-day, common, human reasoning.
Our current Chapter tries to provide the state-of-the-art of works tackling such a problem. On the one
hand we want to show that handling fuzziness in Semantic Web applications is feasible and we have
presented a number of fuzzy extensions of popular ontology languages. Nevertheless, our main aim is
to show that handling vagueness although it adds more expressivity over the crisp (classical) approaches
can still be done very efficiently and in a way that can scale up to millions of data. Hence, for a certain
class of fuzzy ontology languages fuzziness and scalability are not antagonistic concepts.
The contribution of the Chapter is divided in two major parts.
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. On the first part we present a fuzzy extension of the DL-Lite language that has been proposed in
the literature (Straccia, 2006). The DL-Lite language is particularly interesting since it can pro-
vide efficient query answering services and can scale over millions of data. The power of DL-Lite
lies in the fact that its constructors have been carefully selected such that after careful rewrit-
ing queries over DL-Lite ontologies can be reformulated and issued over a relational database.
Thus one can exploit the vast amount of research and optimizations that have been developed in
this field for many years. After reviewing its syntax and semantics we take the fuzzy-DL-Lite
proposal one step further and present a proposal for performing very expressive weighted/fuzzy
conjunctive queries over fuzzy-DL-Lite ontologies (Pan et al, 2008). Many of these languages
have been proposed many years ago in the field of fuzzy information retrieval and querying over
fuzzy databases (Cross, 1994). Taking these approaches even further we have shown that these
can be represented under a general framework and the semantic possibilities are merely endless
adding more, like conjunctive threshold queries which have been proven very important (Mailis
et al., 2007). Overall, we have shown that evaluating very expressive extended queries over fuzzy
ontologies are not antagonistic concepts and can be done in a very efficient and scalable way for
the fuzzy-DL-Lite language.

. On the second part of the Chapter we have focused on the second most important inference service
of (fuzzy) ontology languages, that of concept (class) classification (i.e. computing the implied
concept hierarchy). To this extend we focused on the EL+ language, which is known to be able to
solve such a problem in a very efficient way (Baader et al). Consequently, we present the fuzzy
EL+ language (Stoilos et al., 2008). Besides the syntax and semantics we also focus in providing
a classification algorithm for fuzzy EL+ ontologies in order to realize such a problem in the fuzzy
case. The interesting part in this approach is that fuzzy EL+ ontologies are extended to allow
for fuzzy subsumption, that is important in several Semantic Web tasks like ontology matching
(Ferrara et al., 2008) and semantic portals (Holi & Hyvonen, 2006). Furthermore, we have pre-
sented the refinements/optimizations that have been proposed for the classification of the fuzzy
EL+ algorithm (Stoilos et al., 2008) and can be the base for an efficient implementation. Hence,
again in this case we have shown that there exist fuzzy ontology languages which can support
concept classification over fuzzy subsumption in a scalable manner.

In conclusion we have shown that scalability and reasoning over fuzzy ontologies are two concepts
that can indeed live together. Both of the aforementioned fuzzy ontology languages provide ways to solve
efficiently the two most important inference problems of ontology languages and Description Logics,
namely, query answering and entailment and classification.

The main aspect of future work is to investigate how the aforementioned languages and algorithms
can be extended in order to support in a scalable and efficient way more expressive ontology languages.
Regarding fuzzy-DL-Lite, scalable querying services for more expressive fuzzy ontology languages, such
as fuzzy-OWL (Stoilos et al., 2005a), can be performed along the lines of semantic approximation (Pan
& Thomas, 2007), which is a technique to reduce query answering over OWL DL ontologies to query
answering over DL-Lite. Regarding fuzzy EL+ an obvious way would be to extend the algorithm for
supporting classification over fuzzy EL++, which is a fuzzy extension of the well known extension of
EL+, EL++ (Baader et al., 2005). Although such a fuzzy extension exists in the literature (Mailis et al.,
2008) it is well known that the reasoning algorithm of (fuzzy) EL++ does not usually scale in practical
settings due to the lack of refinements (Baader et al.). Investigating such refinements is still an open
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problem even for the classical EL++ language.
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ABSTRACT

This chapter proposes a new interpretation of quantified linguistic queries based on a combination of
random set theory and prototype theory and which is consistent with the label semantics framework. In
this approach concepts are defined by random set neighbourhoods of a set of prototypes and quantifiers
are similarly defined by random set constraints on ratios or absolute values. The authors then propose
a computationally feasible method for evaluating quantified statement describing the elements of a
database.

INTRODUCTION

The term computing with words was introduced by Zadeh (Zadeh 1996), (Zadeh 2002) to refer to com-
putation involving natural language expression and queries. Such an approach allows for a high-level
and intuitive representation of information which is vital for the development of transparent human-
understandable decision making software tools. Zadeh proposed a methodology for computing with
words incorporating fuzzy set theory and fuzzy quantifiers. Label semantics (Lawry 2004), (Lawry 2006)
is an alternative framework for linguistic modeling based on random set theory and where emphasis is
given to decisions concerning the appropriateness of labels to describe a particular instance or object.
Recent work has demonstrated a clear and natural link between label semantics and the prototype theory
of concepts. In this paper we will propose a new methodology for evaluating queries about a database
which involve both linguistic expressions and generalized (linguistic) quantifiers. This approach will
be based on the combination of prototype theory and random set theory underlying the interpretation of
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label semantics proposed in (Lawry & Tang 2008), (Lawry & Tang 2009). Furthermore, we will show
that, given certain assumptions, the evaluation of appropriateness measures for quantified statements is
computationally tractable. This suggests that the proposed approach has practical potential as a means
of linguistic query evaluation in information retrieval.

An outline of the paper is as follows: An introduction to label semantics is given, with a brief discus-
sion of the underlying philosophy together with basic definitions including appropriateness measures
and mass functions. In the next section we describe the prototype theory of label semantics whereby a
label L is deemed appropriate to describe an instance x, provided x is sufficiently close to the prototypes
of L. In this interpretation linguistic descriptions are represented by random set neighborhoods of a set
of prototypes. Following this we then propose a random set, prototype theory interpretation of quanti-
fied linguistic expressions and define measures of the appropriateness of such expressions to describe a
given set of data elements. We show that such measures can be evaluated using a simple computational
procedure. Finally, we present conclusions and indicate possible directions for future research.

LABEL SEMANTICS

In contrast to fuzzy set theory, label semantics encodes the meaning of linguistic labels according to how
they are used by a population of communicating agents to convey information. From this perspective,
the focus is on the decision making process an intelligent agent must go through in order to identify
which labels or expressions can actually be used to describe an object or value. In other words, in order
to make an assertion describing an object in terms of some set of linguistic labels, an agent must first
identify which of these labels are appropriate or assertible in this context. Given the way that individuals
learn language through an ongoing process of interaction with the other communicating agents and with
the environment, then we can expect there to be considerable uncertainty associated with any decisions
of this kind. Furthermore, there is a subtle assumption central to the label semantic model, that such
decisions regarding appropriateness or assertibility are meaningful. For instance, the fuzzy logic view is
that vague descriptions like ‘John is fall’ are generally only partially true and hence it is not meaningful
to consider which of a set of given labels can truthfully be used to described John’s height. However,
we contest that the efficacy of natural language as a means of conveying information between members
of a population lies in shared conventions governing the appropriate use of words which are, at least
loosely, adhere to by individuals within the population.

It cannot be denied that in their use of linguistic labels human’s posses a mechanism for deciding
whether or not to make assertions (e.g. ‘John is fall’) or to agree to a classification (e.g. ‘Yes, that is
a tree’). Further, although the concepts concerned are vague this underlying decision process is fun-
damentally crisp (bivalent). For instance, you are either willing to assert that ‘x is a tree’ given your
current knowledge, or you are not. In other words, either tree is an appropriate label to describe x or it
is not. As humans we are continually faced with making such crisp decisions regarding vague concepts
as part of our every day use of language. Of course, we may be uncertain about labels and even express
these doubts (e.g. ‘I’m not sure whether you would call that a tree or a bush, or both”) but the underly-
ing decision is crisp.

Given this decision problem, we suggest that it is useful for agents to adopt what might be called an
epistemic stance as follows:
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Each individual agent in the population assumes the existence of a set of labeling conventions, valid
across the whole population, governing what linguistic labels and expression can be appropriately used
to describe particular instances.

Of course, such linguistic conventions do not need to be imposed by some outside authority, but
instead would emerge as a result of interactions between agents each adopting the epistemic stance.
Hence, label semantics does not attempt to link label symbols to fuzzy set concept definitions but rather
to quantify an agent’s subjective belief that a label L is appropriate to describe an object x and hence
whether or not it is reasonable to assert that ‘x is L’. Further discussion of the epistemic stance and the
philosophical underpinnings of label semantics can be found in (Lawry 2008).

Label semantics proposes two fundamental and inter-related measures of the appropriateness of labels
as descriptions of an object or value. Given a finite set of labels L4, a set of compound expressions LE
can be generated through recursive application of logical connectives. The labels L, € L4 are intended
to represent words such as adjectives and nouns which describe the underlying universe €. In other
words, L, corresponds to a description label for which the expression “x is L is meaningful for any ele-
ment x € Q. The measure of appropriateness of an expression § € LE as a description of the element
x is denoted by u, (x) and quantifies the agent’s subjective belief that 6 can be used to describe x based
on his/her partial knowledge of the current labeling conventions of the population. From an alternative
perspective, when faced with an example to describe, an agent may consider each label in L4 and attempt
to identify the subset of labels which are appropriate to use. Let this set be denoted by D . In the face of
their uncertainty regarding labeling conventions the agent will also be uncertain as to the composition
of D , and in label semantics this is quantified by a mass function m_: 24 — [0,1] on subsets of labels.
The relationship between these two measures is described below.

Definition 1. Label Expressions.

Given a finite set of labels LA the corresponding set of label expressions LE is defined recursively
as follows:

« IfLelAthenl c LE
- If6,¢ € LE then ~0,0 A$,0V ¢ € LE

The mass function m_on sets of labels then quantifies the agent’s belief that any particular subset of
labels contains all and only the labels with which it is appropriate to describe x.

Definition 2. Mass Function on Labels.

Vz € Q a mass function on labels is a function m_: 2" — [0,1]such that Z m, (F ) =1 and
where for F' C LA, m (F) is the belief that D_= F. rera

The appropriateness measure, [, (:13) , and the mass function m_are then related to each other on the
basis that asserting ‘x is &’ provides direct constraints on D . For example, asserting ‘x is L, A L,’, for
labels L, L, € LA is taken as conveying t:he information that both L, and L, are appropriate to describe

X, so that {Lv L2} C D, . Similarly, ‘x is =L’ implies that L is not appropriate to describe x, so that
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L ¢ D_. In general, we can recursively define a mapping A : LE — 22" from expression to sets of
subsets of labels, such that the assertion ‘x is 6’ directly implies the constraint D_ e M6) where A(0) is
dependent on the logical structure of 4.

Definition 3. A-mapping.
\: LE — 2% is defined recursively as follows: V0,¢ € LE

- VL eLANL)={FcLA:L eF}
- A(0r)=(8) (o)

+ Moo =(0)urle)

- A(R0)=2(0)

Based on the A-mapping we then define the appropriateness measure z, (x) as the sum of m_over
those sets of labels in A(6).

Definition 4. Appropriateness Measure.

The appropriateness measure defined by the mass function m_is a function p: LAX — [0, 1]
satisfying:

VO € LE Nz € () u9<z>: Z mI(F>

Fe()

and where y,(x) is used as shorthand for u(6, x).

Note that in label semantics there is no requirement for the mass associated with the empty set to be
zero. Instead, m (J) quantifies the agent’s belief that none of the labels are appropriate to describe x.
We might observe that this phenomenon occurs frequently in natural language, especially when label-
ing perceptions generated along some continuum. For example, we occasionally encounter colours for
which none of our available colour descriptors seem appropriate. Hence, m (<) is an indicator of the
describability of x in terms of the labels in LA.

A PROTOTYPE THEORY INTERPRETATION OF LABEL SEMANTICS

Prototype theory was proposed by Rosch (Rosch 1973) as a means of defining concepts in terms of
similarity to prototypical cases. A prototype theory interpretation of label semantics has been proposed
(Lawry & Tang 2008), (Lawry & Tang 2009) in which the basic labels LA correspond to natural catego-
ries each with an associated set of prototypes. A label L is then deemed to be an appropriate description
of an element x € Q provided x is sufficiently similar to the prototypes for L. The requirement of being
‘sufficiently similar’ is clearly imprecise and is modeled here by introducing an uncertain threshold
on distance from prototypes. In keeping with the epistemic stance this uncertainty is assumed to be
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Figure 1. with prototypes P,...,P,. D’ as ¢ varies is defined as follows: For ¢, ¢, and ¢, shown in the
diagram we have that D = @, D* = {Ll,L2} and D = {L L,L, L }

1777277737774

P; Rl R P

P
5 P

probabilistic in nature. In other words, an agent believes that there is some optimal threshold of this
kind according to which he or she is best able to abide by the conventions of language when judging
the appropriateness of labels. However, the agent is uncertain as to exactly what this threshold should
be and instead defines a probability distribution on potential threshold values.

A distance function d is defined on Q such that d : ° — [0, oo) and satisfies d(x,x) = 0 and d(x,y) =
d(y,x) for all elements x,y € Q. This function is then extended to sets of elements such that for S, 7 C €,

d (S, T) = inf {d (a:, y) txeSye T} .Foreach label L, € LA let there be aset P, C € corresponding
to prototypical elements for which L, is certainly an appropriate description. Within this framework L,
is deemed to be appropriate to describe x € Q provided x is sufficiently close or similar to a prototypi-
cal element in P, This is formalized by the requirement that x is within a maximal distance threshold &
of P, i.e. L is appropriate to describe x if d (a:, B) < e where € > 0. From this perspective an agent’s
uncertainty regarding the appropriateness of a label to describe a value x is characterized by his or her
uncertainty regarding the distance threshold €. Here we assume that € is a random variable and that
the uncertainty is represented by a probability density function J for & defined on [0,00). Within this
interpretation a natural definition of the complete description of an element D_and the associated mass
function m_can be given as follows:

Definition 5. Prototype Interpretations of D and m .

For ¢ € [0,00), xeQlet D = {Li € LA: d(a:,Pi> < 5} and m_ (F) = 6({5 D= F}) (see
figure 1)

Appropriateness measures can then be evaluated according to definition 4. Alternatively we can de-
fine a random set neighborhood for each expression € € LE corresponding to those element of Q which
can be appropriately described as 6, and then define y, (x) as the single point coverage function of this
random set as follows:
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Figure 2. Random set neighborhood N, as ¢ varies: N} C N C N}

€3

p——
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~
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Definition 6. Random Set Neighborhood of an Expression.

Forf e LEand € € [0, oo) N, CQ is defined recursively as follows: V0,6 € LE, Ve € [0, oo)

. VLieLA,Ni:{zéQ:d(az,B)ﬁs} (figure 2)
© Ny, =N, NN

© N, =N UN,
* Niaz(N(j)

Theorem 1. Random Neighborhood Representation Theorem (Lawry & Tang 2009).
VlgELE,VJEEQ,/LH(CL’>=5({€:$EN;}>1

Clearly D; and N, are both random sets (i.e. set valued variables), the former taking sets of labels
as values and the latter taking subsets of N, as values. Theorem 1 shows that appropriateness measures
can be interpreted as single point coverage functions of the random set N, . This links label semantics
with the random set interpretation of fuzzy sets proposed by Goodman and Nguyen (Goodman 1982),
(Goodman & Nguyen 1985) and (Nguyen 1984) in which membership functions are interpreted as single
point coverage functions.

QUANTIFIED STATEMENTS AND QUERY EVALUATION

The use of quantifiers significantly enhances the expressive power of natural language allowing for the
representation of statements identifying general facts and rules. Linguistic statements can include a wide
variety of quantifiers, in fact many more that standard universal and existential quantifiers of classical
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logic. Furthermore, general quantifiers can apply to imprecise expressions and can also be themselves
imprecisely defined. For example, statements such as most men are tall, and about 30% blonde men are
tall, involve imprecise quantifiers most and about 30% as well as imprecise labels tall and blonde. The
idea of introducing general quantifiers into formal languages as a means of enhancing their knowledge
representation capabilities dates back to Barwise and Cooper (Barwise & Cooper 1981). Following
Zadeh’s original proposal (Zadeh 1983), fuzzy logic has been widely applied to model vague quanti-
fiers such as most, few many etc. See (Liu & Kerre 1998) for an overview of different fuzzy logic based
interpretations of quantifiers. Indeed, information processing involving fuzzy quantified expressions is
central to Zadeh’s original formulation of computing with words (Zadeh 1996). However, the methods
outlined in (Liu & Kerre 1998) do not tend to be based on a clear operational interpretation of fuzzy sets,
but rather take membership values as primitives. This makes it difficult to assess the validity of defini-
tions from a semantic perspective. Dubois and Prade (Dubois & Prade 1997) identify three potential
semantics for fuzzy sets as being likelihood, similarity and random sets. In the following we propose a
concrete model of quantified linguistic queries motivated by and based on a combination of the similar-
ity and the random set view. This provides a clear interpretation of such queries from the perspective of
the epistemic stance as discussed in a previous section.

Information retrieval and database querying are significant application areas for linguistic quanti-
fiers (see for example (Bosc, Lietard & Pivert 1995) and (Losada et. al. 2004)). A formal framework for
representing quantified linguistic statements can allow us to define measures of the applicability of such
statements to a particular database. This can in turn allow users the flexibility to formulate and evaluate
intuitive natural language queries. In recent work Diaz-Hermida etal (Diaz-Hermida et. al. 2005) have
proposed a probabilistic approach to fuzzy quantifiers. In this section we propose a new model of lin-
guistic quantified expressions based on the prototype theory interpretation of label semantics described
in previously. In particular, we introduce measures of the appropriateness of quantified linguistic state-
ment for describing a data set where both quantifiers and basic labels are defined in terms of random
set neighborhoods.

Suppose we are given a database DB C ) corresponding to a finite sample of elements from Q.
For S CQ let ‘S ‘m} = ‘S N DB‘ denote the number of elements from DB contained in S. As in earlier
sections we assume that the elements of Q are described in terms of a set of labels L4 and where for
each label L, € Q there are a set of prototypical cases P. We now consider the application of classical
universal and existential quantifiers to expressions in LE. For § € LE consider the statement ‘All ele-
ments of DB are 6’. Given the random neighborhood representation of the meaning of 8, according to
which #identifies the set N, C € (definition 6), then a natural interpretation of this quantified statement
would be that every element in DB is contained in N, i.e. DB C N, . Hence, the appropriateness of a
universally quantified statement of this kind would depend on the probability of the similarity threshold
e being such that DB C N, . Similarly, we propose to interpret existentially quantified statements of the
form ‘Some element of DB are ¢ as meaning that DBN N, = & .

Definition 7. Classical Quantifiers.

. For 0 € LE let <V)DB 0 denote the statement ‘All elements of DB are 6°. The appropriateness of
this statement to describe DB is given by: Hioy (DB) =0 ({5 : DB C N;})
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. For 6 € LE let (EI)DB 0 denote the statement ‘Some elements of DB are 6. The appropriateness of
this statement to describe DB is given by: Hiapo (DB) =0 ({5 :DBNN, = @})

We now introduce quantifiers describing the proportion of a database which can be described by
a given expression 4 e.g. at least 50% of the men in DB are tall. In fact, this paper focuses entirely on
proportional quantifiers and their generalizations and does not consider absolute quantifiers e.g. less
than 10 men in DB are fall. Random set definitions of absolute quantifiers can be given but these lie
beyond the scope of the current study.

Definition 8. Proportional Quantifiers.

. For a € [0,1], & € LE let (o), 0 denote the statement “The proportion DB which are 6 is (exactly)
o’. The appropriateness of this expression to describe DB is given by:

. For o € [O, 1] ,0 e LE let (2 oz)DB # denote the statement ‘The proportion DB which are 0 is at
least a’. The appropriateness of this expression to describe DB is given by:

€
‘Ne DB
>

Foa) (DB) =0l4e: W

. For I C [O, 1] ,0 € LE let (I )DB f denote the statement ‘The proportion DB which are 6 is in I’
The appropriateness of this expression to describe DB is given by:

‘N; DB c I

[p5

Relative quantifiers describe the proportion of the database which given it is describable using one
expression is also describable by a second expression e.g. At least 80% of Swedes in DB are tall.

Hyy (DB) =61

Definition 9. Relative Quantifiers.

e For 6,9 € LE, let (V) (QS‘Q) denote the statement ‘All elements in DB describable as 0,

DB
are also describable as ¢’ The appropriateness of this expression to describe DB is given by:

g (PB) =0 ({e: v, = v}
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e For 6,0 € LE, let <E|>DB (qzﬁ‘ 9) denote the statement ‘Some elements in DB describable as 6,
are also describable as ¢’ The appropriateness of this expression to describe DB is given by:

ey (DB)=8({e: N, = o})

. For o € [O, 1] , 0,0 € LE, let (a)DB (qﬁ‘ 9) denote the statement ‘The proportion of elements in
DB describable as 0, which are also describable as ¢ is exactly a’. The appropriateness of this
expression to describe DB is given by:

. For a € [0, 1] , 0,0 € LE, let (Z a) (qb‘ 9) denote the statement ‘The proportion of elements
in DB describable as 6, which are also describable as ¢ is at least a’. The appropriateness of this
expression to describe DB is given by:

€
] ‘Naw

T

DB):5 DB >

H (>a)(dl0) (

DB

. For I C [0, 1] ,0,0 € LE ,let (I )DB (qﬁ‘ 9) denote the statement ‘The proportion of elements in DB
describable as 8, which are also describable as ¢ is in I’. The appropriateness of this expression to

describe DB is given by:
‘NE
oA
DB)=6|1e: — 2 eI
“(1)(@\9) ( ) ‘ N©
1pp

The following theorem shows that, using the combined random set and prototype theory approach,
certain natural properties of quantifiers are preserved from classical logic.

Theorem 2.

1. If|=0 (i.e. O is a tautology in Boolean logic) then vy <DB) =1
2. If|=—0(i.e. O1is a contradiction in Boolean logic) Hizp (DB) =0
3. Forall 6 € LE i, (DB) =1

4. Forall 0 € LE iy, (DB)=0

5. If0=¢then Vae[01] ., (DB)<u_, (DB
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Proof.

From (Lawry & Tang 2008) and (Lawry & Tang 2009) we have that:

If [=0 then Ve >0 N, =2 and hence DB C N,
If If [= —0 then Ve 20 N, = & and hence N, N DB = &
V0 € LE,Ye >0N, =N,

(24

Ve LENe>0N, =9

ON—0

el S

In the following definition we introduce linguistic quantifiers in the form of labels describing propor-
tion of the database e.g. about 50% of men in DB are tall or Most Swedes in DB are tall.

Definition 10. Linguistic Quantifiers.
Let LR = {R,,....,R } be a set of labels for proportions from the universe [0,1], where label R, has

prototypes PR.. Let d": [0,1]* — [0,1] be a distance function defined on [0,1] and let &’ be the threshold
random variable for d' with density ¢'.

. Let (R ) ¢ denote the statement ‘R, of DB are §” or more precisely ‘the proportion of DB which
is  can’be described as R’. The approprlateness of this expression to describe DB is given by

(DB):(SX(S’ (56')“N;DB€N5/ :]\6'<€')§ 5"N;DB€N6/ de’
R s

Hin
. Let ( ) (gb‘ 9) denote the statement ‘R, of DB which are 0 are also ¢’. The appropriateness of
this expressmn to describe DB is given by

1 ‘ :

M(R,,)((/'\()) (DB) - [6/(5/)6 ond )

L DB = e bige!
;

DB

Note that definition 10 makes an assumption of independence between the threshold variables ¢ and
¢'. This would see justifiable here, since we would expect labeling decisions concerning individual ele-
ments of DB and overall proportions to be taken independently.

When evaluating statements involving proportional quantifiers it is necessary only to consider the
relevant proportion values within the range of the quantifier, defined as follows:
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Definition 11. Relevant Proportions.

Theorem 3.

For I CQ and 0,¢ € LE

Hirp (DB): > Fsy (DB>

BePP,NI

g (PB) = 2(:] Hoyg (PB)

N,
€ DB eIt =
e

Similarly replacing PP, with P]D(O‘a)

Proof

€
0

NDB
= ‘DB‘ =F

* o Hay (DB> =4

:

BePF,NI

- Z Fsy (DB>

gepPP,Nl

Theorem 4.

For R € LR and 0 € LE, let PP, ={B,,--,3

) t} ordered such that d'(ﬂj,PRi) < d’(ﬁjﬂ,PRj)
then

Hiayo (DB) = a175’ (5’)d5/ +..+a_, 7‘ 6’(5’)(15’ + atjl‘é’ (5’)d5/
Y v,

Y1

where a, = 2 Mg (DB) and y, = d’(ﬁj,PRi)
Proof.

Since R, is a basic label we have that:
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{ l
N, nPF, ={8,.8,}: <" €|d'(8,,PR).d' (8, PR,))

0:¢ <d'(B,PR,)
0 (DB): < € |@'(8,PR,).d' (5, PR,))
L (DB)+ Hi (DB): ' €|d'(8,,PR)).d'(3,, PR))

) 5.‘N§‘DB EN&J —
' \DB\ B

0:¢ <y,
a, :5'E[y1,y2)
=a, :E/E'[yQ,y3>

Zt:“(%)e (DB): € €|d'(8, PR).1]

a, € 6 [yt,l]

Therefore

1 N
;|
DB:ch’ H'\I;E’TEN

0

= alf 8’ (6’>d5’ +... —l—at_lfé’(e’)ds’ +atj6’(5’)ds'
Y Y, Y,

de’

Corollary 1.
If ), (DB) =1 then y, , (DB) =1 where §, = argmin{d'(8, PR,): € PF,}
Proof.

By theorem 4 we have that:
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iy (DB) = aljé’ (5’>d5' +...+a_, yf (‘5'(5')(15' + atjél (5’)d5'
v Y, v,
< [ s [+ [ (e = [ (e <
Y Y Y, Y

and hence]é’ "Me' =1
Also uﬂfl(ﬂ) ([d' (5 PR )) f6 )ds =1 as required. []

The following theorem show that an 1mpr601sely quantified expression (R )0 is certainly appropriate
to describe DB exactly when an associated (simpler) expression (/)6 is certainly appropriate, where I is
the set of proportions in PP, which can certainly be described by R..

Theorem 5.
Hir)o (DB) =1iff Hiry (DB) =1wherel = {ﬂ € PP, : Fy (ﬂ) = 1}
Proof.

Clearly, if [ # D then I = {f,,...,B,} where 3, = argmax {d’(ﬁ,PRi) :pe I}. In this case, i, (ﬂk) =1

(5’(5')615’:0
implies that o' {[d’(8,, PR),o0)) = f §'(¢'}de’ =1 which implies that % . Hence,

()(DB—af(S’ e +.. —i—afé'

Y

(:>) Suppose Fir)o (DB) = 1then [ # O since if / = & then p, (ﬁl) < 1 which is a contradiction by
corollary 1. Hence,

akyjf ' (5/)d5’ 4.+ aljél (5')6!5’ =1
Ui Y

Yki1

Also, since o8 (ﬂm)<1 then f&’(s’)ds’>0 and hence a, = 1 since otherwise
Yy

() DB <f§ )de <1 Hence

e (D) = 1, (D) =0, =1

as required.
(ﬁ) Suppose Hirjo (DB) = L then clearly / # &. Hence, a, = 1 and since aza, for j > k then a=1 for
j 2 k. Therefore,
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= f&’(e’)ds’ =, (ﬁk) =1

as required.

Example 1.

Liee [0 1] Let high € LA be a label describing elements

Let Q =10,10], d(x,y) = ||x — y|| and 6(5)
of Q such that Phigh =[7,8].

Now consider the queries (V),,, high and (3),, high for the following database:
DB={0.1795, 1.051, 1.075, 7.367, 7.5, 7.57, 7.66, 7.86, 8.06, 8.61}

Now quh [7—¢ 8+5] so that DBC Ny, iff 7 — & < 0.1795 iff ¢ > 6.8205. Therefore,

o0
}”gh f 5 =0.
6.820:

Also, DBN P, , = {7 367,7.5,7.56,7.66, 7.86} =@ and hence N, N DB =@ for all ¢ > 0.

Therefore, ) f 5 5 =1

10:¢' € [0,0.1]

Let most € LR where P = =[0.6,0.8]. Also let d'(x,y) = [|x — || and 6’(5’) =1 0.¢'> 01

. (see figure
3)

Now consider the query (most) ,, high

Figure 3. Appropriateness measures for high together with DB (top) and most (bottom) together with
PP as defined in example 1
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Now £, = |5 8 b8 & and a1, ) =020 [ p. | =ona(Sr <o el T | <o

6 5
d,[]_()’})mosl] = O’ d/ [m’RnosL] = 01' Hence’ we let

8 7 6 9 5
- T = — - — = — . = T ,8:131’1(1
b 102 1oﬁ* 1oﬁ4 106" 10 °

»,=0,y,=0,y,=0,y,=0.1,y,=0.1,y,=0.2

Therefore, from theorem 4

0.1

s ( ) agfé’ )de +a, f& )de +a, f&’ )ds =a,

0

where a, = u[g}w (DB) + u[ (DB)

— |hig
10

(DB) + u[

high h
10] o 10} o

:% if7—e<1.075and 7—&>1.051 if 5.925 <& <5.949. Hence,

€
‘N}J'igh B

Now

5.949

M[ﬁ]mm (DB): f5(€>d5:
10 5.925

‘Nf!ﬂ DB __
= 1f8+g>861 ife > 0.61. Hence,
||

Moy (DB) = f §(c)ie = ]de =0.39

[10} 0.61 0.61
Nng;BDB f—1f8+g> 8.06 and 8 + &> 8.61 if 0.06 < ¢ < 0.61. Hence
M (DB) = T&(a)ds = Tds = 0.55. Hence

[ﬁ]mm 0.06 0.06

Hopapug (DB) = ;= 055 +0.39 = 0.94

Let the label very low be defined by the prototypes P ooy = [0,1]. Consider the query (20.5),, (very
low|~high) (i.e. At least 50% of the not high elements in DB are very low). Now N|_, = [O, 1+ 5] and

N, =[07-c)u(8+¢c10and for e <3NT = N° AN, =[0.1+e| Therefore,
‘N;m lowA=high | HO 1+ 8” DB
i HO [ ‘ +‘ 8 te 10”173 so that
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0.25:¢<0.051
0.5:0.051 < e <0.06
D5 —10.4:0.06 <e<0.075
DB 0.75:0.075 < e < 0.61
0.6:¢>0.61

€
very lowA—high

€
—high

From this we have that PP

very lr)w‘ﬁhi,_qh

= {0.25, 0.4,0.5,0.6, 0.75} and from theorem 3 it follows that:

K (>0.5)(very low|-~high) (DB> =K (0.5)(very tow|-high) (DB> TH (0.6)(very tow|=high) (DB) +u (0.75)(very tou|=high) (DB)

where

0.06

1
DB) = f de = 0.009 M(U.ﬁ)(very low|~high) (DB) = f de = 0.39

Mu_r low|—high (
( o)(very ou‘ l!]) , 0.61 and

0.051
0.61

DB) = f de = 0.535

0.075

M(O.?S)(wm‘y luw‘ﬁhigh) (

(DB) = 0.009 + 0.39 + 0.535 = 0.934

Versions of theorems 4 and 5 can be proved for the case of relative quantifiers by replacing P, with

P, Hence we also have the following results:

Hence, ,u(

20.5)(7187“1/ low‘—‘high)

Theorem 6.

ForR € LRand ¢,0 € LE,let P, =

oy (DB) = 0 [ 8/ (e 40, [/ (Yi o, [ 8

Y1 Y

! !
1B,s--., B} ordered such that d (ﬂf’PRf) <d (ﬂm’PRz‘) then

where a; = Zj:'u(ﬂ,)((»\e) (DB) and Y, = d’ (ﬂj’PRi)
i=1

Theorem 7.

Hi ) (DB) =1iff Moyl (DB)=1where I = {ﬂ € PP, iy ()= 1}

A SCALEABLE ALGORITHM FOR EVALUATING SIMPLE LINGUISTIC QUERIES

In this section we propose an algorithm for evaluating linguistic queries on a database which only involve
basic labels. By considering the computational complexity of this algorithm we show that, for simple
linguistic queries of this kind, the approach is scaleable to databases with a large number of elements.
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Consider a basic label L, € L4 with prototypes P. Also consider a database DB of N elements ordered
such that DB = {1:! D= 1,~--,N} where d(x/,P) < d( 4 ) In this case, denoting d( ) =d ,we
clearly have that:

T:re<d,
{Ii,l} : di,l <e< dx,z

From this the set of relevant proportions for L, in DB (definition 11) is then given directly by:

J
PP, _[N d <le+1}

Now consider the computational complexity of this algorithm to determine the relevant propor-
tions PP, . Initially, the elements of DB must be sorted on the basis of their distance from P. Using the
qulcksort algorithm this has average computational cost O(N log (N)). Determining PP, then requires
only N checks for d, < d, . with cost O(N). Hence, the overall computational cost of determmmg PP
1s0(N10g(N)+N) O(Nlog(N))

Given PP, we know from an earlier section that the evaluation of quantified queries is straightfor-

ward. For exa7mple, for L ¢ PP we have that:
N i
d1.7+1
1 (DB) = f 6(5)d5
(7 ,

Now assuming that, for a well behaved density function J, integrals of the above form can be ef-
fectively evaluated in one computational step then for any 7 C [0, 1] the computational cost of evaluating
o, (DB) is at worst O(N). To see this, recall from theorem 3 that:

(D B ) - Por,

pePP, NI
i

M(I)g (DB)

The cost of this calculation is then bounded by L]‘DP <N.
To evaluate linguistically quantified theory of the form Hia ), (DB ), we see from theorem 4 that this

only requires us to evaluate ,u{ ; ] (DB ) for each -2 v € PP with the additional computational cost of sorting
=R, i

|
the elements of PP, relative to their distance from PR, (the prototypes of R). Again by using quicksort
the average computatlonal cost of this operation is O(N log N).

We now consider the evaluation of relative quantifier queries involving basic labels. Let L € LA be
a second label with prototypes P . As before order the elements of the database in terms of their distance
from P so that DB = {xm k= 1,~-~,N} where d , = d(%,k»PT) < d(m P) = In this case:

rk+17 r k41
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N;AL, = {17111,"',13[_]} N {zy_rl,---,zr‘k_} if max (di_’j,dmk) < e <min (dwﬂ,dnkﬂ)
Hence,

b]k .
PRy =17, < dd, <d g min (d.d,) <max(d_,.d_.)

where b_j,k, = Hmi,ﬁ ) x,-,j} n {wmﬂ ) xr,ﬂl}

From this we see that the computational cost of determining PP( .1, 18 as follows: The elements DB

L
must be sorted twice, once with respect to distance from P, and once v)vith respect to distance from P.
Using quicksort the combined cost of this repeated operation is still O(N log (N)). b/_' , must then be calcu-
lated and distances compared for each pair j,k with cost O(N?). Consequently the overall computational
cost of calculating PP(LM) is O(N?).

Given PFELJLT) the appropriateness of a simple query such as (I)(Ll.|Lj) is then determined by:

lnln(dz./+l ’d7».z+1)

Moy (PB)= 22 [ 6(e)ae

j.,k:]T”el max(d,  d, ,)

This requires at most a further | PP

(2

ing such queries from DB, including determining PFE,

(

< N?calculations and consequently the entire cost of evaluat-

,is O(V).

I )

CONCLUSION

In this paper we have introduced a new model of linguistic quantified statements based on a combina-
tion of random set theory and prototype theory. The theory is a generalization of Lawry’s label semantic
framework. We have shown that the proposed model is computationally feasible and hence potentially
has practical applications in information retrieval.

Overall the proposed model makes a number of simplification assumptions. For instance, we have
only investigated a limited range of quantifiers essentially based on proportions. In future work a
thorough study of a wide range of quantifiers should be carried out. Furthermore, we have assumed
that the appropriateness of labels to describe an example in the database is always judged on the basis
of the same shared characteristics. In other words, there is one single distance function for comparing
elements to prototypes for every single label. In many cases the applicability of different labels may be
judged on the basis of different distance functions defined on different sets of attributes. Future work
will investigate extending the proposed methods to the multi-criterion case and consider the impact of
this generalization on computational costs.
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ABSTRACT

Inthis chapter the authors consider the problem of defining a flexible approach for exploring huge amounts
of results retrieved by several Internet search services (like search engines). The goal is to offer users
a way to discover relevant hidden relationships between documents. The proposal is motivated by the
observation that visualization paradigms, based on either the ranked list or clustered results, do not allow
users to fully appreciate and understand the retrieved contents. In the case of long ranked lists, the user
generally analyzes only the first few pages. On the other side, in the case the documents are clustered,
to understand their contents the user does not have other means that looking at the cluster labels. When
the same query is submitted to distinct search services, they may produce partially overlapped clustered
results, where clusters identified by distinct labels collect some common documents. Moreover, clusters
with similar labels, but containing distinct documents, may be produced as well. In such a situation, it
may be useful to compare, combine and rank the cluster contents, to filter out relevant documents. In
this chapter the authors present a novel manipulation language, in which several operators (inspired
by relational algebra) and distinct ranking methods can be exploited to analyze the clusters’ contents.
New clusters can be generated and ranked based on distinct criteria, by combining (i.e., overlapping,
refining and intersecting) clusters in a set oriented fashion. Specifically, the chapter is focused on the
ranking methods defined for each operator of the language.
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INTRODUCTION

Retrieving useful and relevant information over the Internet is not an easy task by using current search
engines. Too often, the relevant documents are merged and hidden in the long ranked list of retrieved docu-
ments. The list can span over hundreds of web pages, each one containing just few retrieved items.

To discover the relevant documents, users have to browse the titles of the documents, but generally
only the first two or three web pages are analyzed, while the content of the successive ones is missed.
Thus, if users do not find what they are looking for in the first pages, they reformulate a new query try-
ing to capture what they are looking for in the top ranked items.

Some users turned to using meta-search engines, such as mamma, dogpile, Metacrawler etc., in an
attempt to optimize their search effort. The assumption is that, if one regards a search engine as an expert
in finding information, by using several experts together one should achieve better results. However this
is not generally true, since meta-search engines fuse the individual ranked lists of documents retrieved
by each underlying system by applying rigid and static fusion functions, applying criteria that are not
transparent to the user. The side effect of list merging is to augment the number of retrieved documents,
leaving the user skeptics as far as the actual correspondence of the ranking to her/his relevance judg-
ments is concerned. Furthermore, the retrieved documents besides the first page will be hardly analyzed
by users; thus, this makes much of the meta search engine’s effort useless.

To overcome this problem, some search services such as vivisimo, Snaket, Ask.com, MS AdCenter
Labs Search Result Clustering etc., have shifted from the usual ranked list to the clustered results para-
digm. This consists in organizing the documents retrieved by a query into containers (i.e., clusters),
possibly semantically homogeneous with respect to their contents, and in presenting them labeled, so
as to synthesize their main content focus (Osinski, 2003).

Clustering is often proposed as a viable way of narrowing a search into a more specific query, like
in Ask.com (Chen &Dumais, 2000; Zamir & Etzioni, 1999; Coates et al., 2001).

On the other side, one problem users encounter with such clustered results, is the inability of fully
understanding and appreciating the contents of the clusters. This is mainly due to the short and some-
times bad quality of the labels of the clusters, which generally consist of a few terms, or individual short
phrases, which are automatically extracted from the documents of the cluster based on statistics and
co-occurrence analysis. Often, several clusters have similar labels that differ just for a single term. To
effectively explore the cluster contents, users have no other means than clicking on the cluster labels
and browsing the clusters themselves.

This problem is much more apparent when submitting the same request to distinct search engines,
each one producing a group of clustered results reflecting distinct criteria. For example, the Gigabits
search engine clusters retrieved documents by their freshness dating (Last Day, Last Week, Last Month,
Last Year, etc.), the vivisimo search service presents clustered documents. In such a situation, one may
want to explore if a given cluster contains documents that are fresh or not; this necessity may occur quite
frequently in analyzing news streams (RSS) to find out the frequency of a given news story reported by
media as a function of time.

When the groups of clusters are generated by distinct search services, users may be faced with distinct
clusters, possibly with the same labels. In this situation, it becomes necessary to explore the relation-
ships between the contents of these clusters to identify common and distinct documents, and re-rank the
contents of the clusters based on distinct criteria. This may require the application of several manipula-
tion operations, such as the intersection and join of clusters, as well as their union and re-clustering,
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and so on; the different ranking options for these operations are an important feature, to re-rank the
content of clusters, and the clusters themselves, so as to make new documents and clusters emerge in top
positions, depending on distinct criteria. But, currently, there is no means to carry out this exploratory
activity. This exploratory activity can be useful also in the case in which one formulates distinct queries
(expressing the same information needs) to the same search engine and wants to explore the contents
of the retrieved ranked lists.

These considerations motivate our proposal of defining and implementing an interaction framework
based on a flexible exploratory language for carrying out manipulation operations of groups of clustered
results, retrieved by one or several search services (basically search engines) over the internet, correlated
with several ranking functions that can be explicitly specified by users.

It is an exploratory language, since the richness of operators and ranking functions makes it possible
to either reveal common and implicit contents of the clusters, and implicit relationships between clusters,
such as similarity and inclusion (i.e., similar, more specific or more general contents).

The language is also flexible, since it allows the application of several ranking criteria to re-organize
the documents inside each cluster, and the clusters inside each group of retrieved clusters, reflecting
a distinct semantics, such as content relevance, exhaustiveness of retrieval, novelty of the new cluster
with respect to the original ones. For example, one can apply a ranking that favors the exhaustivity
of the clusters’ contents, i.e., the number of documents they group. Another choice could be to rank
first the clusters obtained by a join of two original clusters, which have a high degree of correlation;
conversely, one could rank first the clusters exhibiting a greater degree of novelty with respect to the
common contents of the original clusters. The application of different ranking functions when applying
a combination operation between clusters allows one to highlight different elements in the top position
in a controlled manner, reflecting different properties of the clusters.

The formalization of ranking criteria is consistent with the basic operations of intersection and union
of fuzzy sets, since we regard each cluster as a fuzzy set of documents, and each group, as a fuzzy set
of clusters (Zadeh, 1965).

Since manipulation operations may require the reuse of intermediate results several times, we have
conceived the storing of the intermediate results into a database as an essential phase for successive
manipulation. Furthermore, the local manipulation of results avoids useless network and search services
overloading; in fact, in current practice, several modified queries are submitted to the search engines,
trying to capture relevant documents in the first positions of the ranked list, documents that were already
retrieved by the previous queries, although hidden to the user since they did not occurred in the first
positions.

In our view, the usual ranked list, produced by search engines is regarded as a group consisting of a
single cluster that has the query itself as label. Thus, our language can be used to compare the results of
any search service producing ranked lists too.

While, in (Bordogna, Campi, Psaila, & Ronchi, 2008a) we first proposed the data model and the op-
erators of the language, in this chapter we recall the language and focus on the semantics of the distinct
ranking methods.

In the next paragraph the background literature related to the proposal is reviewed. Further, a use
case is introduced to exemplify the usefulness of the language. The successive paragraph defines the
language, in terms of basic operations, group operators, ranking methods, and group functions, and we
report about the experimental evaluation about scalability of the algorithms. Finally, the conclusions
summarize the main achievements.
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BACKGROUND OF THE PROPOSED LANGUAGE

In this paragraph, we review works that are somehow related to our proposal, although they have been
conceived either with a different purpose than the analysis of web documents retrieved by search services,
or with distinct functionalities. In fact, to the best of our knowledge, there is not a language similar to
our proposal.

In conceiving our approach we started from the consideration that “many IR problems are, by nature,
ranking problems”. This is the starting point also of the approaches known as “to learn how to rank docu-
ments” presented within the ACM SIGIR 2008 Workshop “Learning to rank for information retrieval”
(Li, Liu, Zhai, 2008), that propose to use learning methods to adapt the ranking of retrieved results in
order to enhance effectiveness of IR.

Our proposal also shares the idea of the works presented within the ACM SIGIR 2008 Workshop
“Aggregated search” (Lalmas, Murdock, 2008) that pursue the task of searching and assembling informa-
tion from a variety of sources, placing it in a single interface to improve the effectiveness of retrieval. In
(White et al., 2008) they propose a metasearch framework directing the search to the engine that yields
the best results for the current query.

Our solution however is different, since it does not exploit the strict ranking of documents, but it
exploits the application of clustering techniques to group documents that are homogeneous as far as
their contents are concerned, and furthermore we propose the use of a manipulation language of group
of clusters, to re-rank the documents within the clusters based on personal preferences of the user.

A motivation of the utility of our proposal can be found in (Leouski & Croft, 1996). In this pioneer
work, the authors advocate the need of tools for giving the user more immediate control over the clus-
ters of retrieved web documents; such tools should serve as means for exploring the similarity among
documents and clusters. They also consider giving the user some means to correct, or even completely
change, the classification structure. To support the manipulation of clusters, they suggest the develop-
ment of graphic user interfaces.

Indeed, the literature on visual paradigms for the presentation of textual search results is too extensive
to review; for a survey, the reader can see (Card, Mackinlay, & Shneiderman, 1999; Staley, & Twidale,
2000). One goal of these approaches is to perform some kind of text mining based on conceptual maps
visualization (Chung, Chen, Nunamaker, 2003; Kampanya, Shen, Kim, North, & Fox, 2004).

Nevertheless, our proposal is different, since we do not exploit a graphical representation of rela-
tionships between documents at this level, but we provide a language for flexibly exploring the hidden
relationships. The work presenting the NIRVE prototype (Sebrechts, Cugini, Laskowski, Vasilakis, &
Miller, 1999) evaluates and compares several graphical interfaces for showing the retrieved results of
NIST’s PRISE search engine. In the conclusions, it states that ”a good visualization of search results
depends on a good structure and what often happens is that developers perform a deeper analysis of
results in order to generate that structure”.

In this respect, we envisage that our proposed language could be employed for the purpose of ex-
ploring and finding a good structure of results that can then be presented by taking advantages of the
proposed graphic visualization techniques.

Personalization is a distinctive characteristic of our approach, since the manipulation of the clustered
documents, possibly retrieved by multiple search services, is demanded to the user, who can perform
distinct kinds of combinations by means of the operators of the language. In this sense, we can regard
the application of the operators on the retrieved results as a kind of a personal information filter defined
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by the user or, in other words, the manipulation language can be seeing as a means to define personal-
ized information filters (Agichtein, Brill, Dumais, 20006).

An approach that shares some similarity of intent to our proposal is the Scatter/Gather algorithm
(Hearst & Pederson, 1996), in that it allows doing dynamic clustering and refinement of search results.
Its distinctive feature is the way it allows clusters to be selected, recombined (gathered) and re-clustered
(scattered) by the user. However, the user has to decide which clusters have a relevant theme based solely
on keywords and titles. No functionality is available to detect the degree of sharing between clusters.
Furthermore, since new clusters are generated based on re-clustering, the generation criteria remain
implicit and unknown to the user. On the contrary, in our approach, the user is perfectly aware of the
criteria that generated the new clusters, since they depend on the applied group operator and the speci-
fied ranking method. Moreover, the intersection and union operations between cluster representatives
generate the label of the resulting cluster through the processing of its items (titles and snippets), so as
to reveal and synthesize its hidden semantics. In facts, the label conveys new information previously
not known on the common contents of the documents in the cluster.

We can also find some similarity of our approach with respect to clustering ensemble techniques,
that have been defined to compare either the results obtained by the application of distinct clustering
algorithms on the same set of items, or to compare distinct partitions of the same set of items obtained
based on distinct views (representations) of the items (Punch, Jain, & Topchy, 2005; Strehl & Ghosh,
2002; Pagani, Bordogna, & Valle, 2007). The main goal of these techniques is to achieve a robust and
consensual clustering of the items. Robust clustering is achieved by combining data partitions (form-
ing a clustering ensemble) produced by multiple clustering. The approaches are defined within an
information-theoretical framework; in fact, mutual information is the underlying concept used in the
definition of quantitative measures of agreement or consistency between data partitions. The group
intersection operator of our language takes inspiration from these ideas, since its goal is, given two dis-
tinct partitions (i.e., groups of clusters), to identify the common partitions, i.e., those sharing the same
sets of documents. If we iteratively apply the intersection operator to a set of groups, we thus find the
consensual partitions among these groups. As far as the join operator is concerned, it can be regarded as
the generation of a new partition (group) containing only the unions of the original clusters that have a
non-empty intersection. Its meaning is that of expanding the result of the intersection operator between
groups, so as to consider indirect correlations among the items of the original clusters.

As ameans for exploring the set of retrieved documents, also the ranking methods have a central role:
they allow rearranging the ordering of clusters within groups by highlighting either some inner property
of the clusters themselves, e.g., their exhaustivity in terms of cluster cardinality, or their reliability/qual-
ity in satisfying the search needs of the user, or even their degree of novelty or specificity. To define the
ranking methods, we based on the literature regarding information retrieval with query weights, and
flexible querying in fuzzy databases (Buell, & Kraft, 1981; Bosc & Prade, 1997; Galindo, 2008). The
relative importance semantics for query term weights in extended Boolean information retrieval is here
revisited for specifying the relative importance of clusters for computing weighted rankings (Bookstein,
1980; Yager, 1987).
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Figure 1. Clusters examples. The first rows report the group s identifiers, the search service name and
the query text that is the group label; the other rows report a cluster identifier within the group, and
the label of the cluster

gl: Google — “Napa Valley” g2: Yahoo! — “Napa Valley” g3: MSN Live Search — “Napa Valley”
cl.1: Wine Wineries cl.1: Wine tasting and Wineries cl.l: Wine Wineries

cl.2: Hotels Amp Spa cl.2: Tours in Napa cl.2: Napa Valley Email

cl.3: Opera House cl.3: Plan Your Travel Vacation cl.3: Napa Valley Clickable Map
cl.4: Travel Guide cl.4: Napa Valley Spas Amp cl.4: Napa Valley Hotel

cl.5: Napa Valley Reservation cl.5: Wine Country cl.5: Beautiful

cl.6: Wine Tasting cl.6: Map cl.6: Napa Valley Regions

cl.7: Country Club cl.7: Recreational Sports in Napa cl.7: Napa Valley Symphony
cl.8: Destinations cl.8: Napa Valley California cl.8: Visitors

cl.9: Napa Valley Redwood Inn cl.9: Bed and Breakfast

cl.10: Napa Valley Marathon cl.10: Wikipedia the Free Encyclopedia

cl.11: Symphony cl.11: Wine Train

PRACTICAL UTILITY OF THE EXPLORATORY
LANGUAGE: A USE CASE EXAMPLE

In order to give a practical idea of the kind of exploratory tasks that can be performed by means of the
proposed language, in this paragraph we introduce a use case.

Let us suppose we want to go on a tour in Napa Valley; to plan the trip, we need to collect information
concerning wineries, sites to visit, close cities to reach, e.g., by car, as well as hotels and restaurants. The
search services provide a large set of documents concerning Napa Valley, so it becomes a hard task to
find, among them, the most relevant ones for our goal. Consequently, it can be convenient to semantically
characterize them, by organizing them in groups of semantically homogeneous documents (clusters), and
then to perform a kind of exploratory task, in which we try to combine the results of queries submitted
to search services, in order to filter out useful documents. This novel practice can be carried out locally,
thus minimizing the need of new remote searches, as it generally happens with current search services.
The results obtained by analyzing and combining previously submitted queries could also inspire new
and more focused queries.

Hereafter, we start a use case example that we will use throughout the chapter to clarify our approach
and to explain the proposed language.

Example 1: To start our search of information to organize the tour to Napa Valley, we submit the
query “Napa Valley” to the search services Google, Yahoo! and MSN Live Search.

To have a rapid glance at the main topics retrieved, the documents returned by each service are clus-
tered. This is done on the basis of the documents’ snippets (brief piece of content) shown in the results
pages. The labels of the obtained clusters are represented in Figure 1.

On the basis of these results, it could be interesting to apply some manipulations on the groups, in
order to filter out in the top positions results that are most relevant to the user’s needs. For example, it
may be interesting to keep, in the groups, only the most relevant clusters concerning some particular
contents (identified through the clusters’ label): this way we reduce the whole set of documents to only
those that are deemed relevant, and that really cover the desired aspects, thus saving time for their inspec-
tion. To this aim one can use the cluster selection operation of the proposed manipulation language,
to select only desired clusters in a group.
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Alternatively, it may be interesting to obtain new groups in which clusters are composed of the most
authoritative and reliable documents concerning a specific desired topics only, such as Hotel or Hotel
and Travel Guide that are deemed relevant by all the search services. In this case we can assume that
documents recommended by all the search services are the most reliable and authoritative ones; thus we
want to obtain highly specific clusters containing documents recommended by all the search services. To
this aim one can use the group intersection operator of the proposed language that allows maintaining
only the documents that are contained within all the groups.

Another possibility could be to have an overview of the main general topics represented by a combina-
tion of the retrieved clusters. To this end one can specify the group union operator to generate a single
group by uniting two groups, and then the group coalescing operator to fuse all the clusters within a
group into a single labeled cluster, expressing by its label the main retrieved contents.

Another case is when we want to generate clusters by the union of clusters that have some correlated
contents. The group join operator can perform this task.

A final example could be to obtain new groups from the results of previous searches, in such a way
specific topics, hidden within the retrieved documents, are identified. This can be performed by filtering
sets of already retrieved documents, based on a more specific request, through the group refinement
operator.

We may also be interested in re-ordering the new clusters in the resulting group, based on some
property of clusters and documents, that may differ from the default one, i.e., the initial ranking provided
by the search service that first retrieved the document.

For example, one could be interested in performing a survey on a topic and be interested in achiev-
ing exhaustive results: in this case, he/she could prefer to rank first the relevant clusters with greatest
cardinality. To this aim one can apply the group union operator with the cardinality rank method.

An alternative could be to perform an exploratory analysis of the main general topics dealt with in
the whole set of retrieved documents: in this case, one could prefer to rank first the clusters with great-
est novelty with respect to the clusters from which they originated. To this aim one can apply the group
join operator with the expansion rank method. Conversely, one could be interested in exploring the
most exhaustive results retrieved by a previous search on specific topics; in this case, one could prefer
to rank first the clusters obtained by joining original clusters with greatest correlation. This is achieved
by applying the group join operator with the correlation rank method.

THE FLEXIBLE EXPLORATORY LANGUAGE

In this paragraph we introduce the ingredients of the proposed language. First we define the data model,
then we introduce the basic operations between clusters derived from fuzzy set operations of union,
intersection and complement; finally we define the main group operators of the language by discussing,
for each of them, an application in the context of the use case. Along with the group operators, we also
define their ranking methods by discussing their semantics.

We recall that the proposed language offers a means that users, performing web searches by pos-
sibly multiple search services, can exploit to filter relevant documents already retrieved, but hidden to
them within the huge amount of retrieved results. The specification of the operators of the language for
manipulating groups of clustered documents can serve to distinct purposes, as it will be discussed along
with the introduction of the operators. It is worth pointing out that the applicability of the operators
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of the language can be far more general than the combination of clustered results obtained by distinct
search services. One could apply the operators also to explore the results retrieved by distinct queries
submitted to the same search engine. In fact it is not necessary that the results are clustered, they can be
organized as the usual ranked list retrieved by search engines, since the operators regard the ranked list
as a group, containing one single cluster labeled by the terms of the query that retrieved the list.

The Data Model

Consider a guery g submitted to a search engine; the query result is a ranked list of documents, that we
call ranked items.

Definition 1: Ranked Item
A ranked item r represents a document retrieved by a web search. It is defined as a tuple:
r:(uri, title, snippet, irank)

where: uri is the Uniform Resource Identifier of the ranked web document; title is the document title
and snippet is an excerpt of the document, made by a set of sentences that may contain the keywords
of the query; irank is a score (in the range [0,1]) that expresses the estimated relevance of the retrieved
document with respect to the query. Distinct items in distinct results lists may represent the same docu-
ment. In facts, we assume that a document is uniquely identified by its uri (Coates et al., 2001) (near
duplicates are not detected), while it may have distinct snippets and irank when retrieved by different
search services. We assume that irank is a function of the position of the item in the query result list.

Definition 2: Cluster
A cluster representative c is a set of ranked items, having itself a rank. It is defined as a tuple:
c:(label, crank, items)

where: label is a set of terms that semantically synthesizes the cluster’s content; crank is a score (in
the range [0,1]) depending on the ranks of the items belonging to the cluster; items is the set of ranked
items constituting the cluster.

With |¢| we denote the cardinality of the cluster representative, that is defined as |c|=|c.items|. A
cluster label c.label is generally automatically generated by a function SynthLabel(c.items). Function
SynthLabel (R) generates a representative label from the set of ranked items R (or ranked clusters C
in the case of a group), by extracting the most meaningful non-stopwords terms from within #it/es and
snippets associated with items in R. The significance of a term is determined based on the occurrences
of the terms. The labeling algorithm is described in subparagraph “Labeling Algorithm™ .

The default value of crank of a cluster is defined as its natural rank (see Definition 7). When a
cluster belongs to a group generated by one operator of the language, its crank can assume a different
semantics corresponding to the ranking method that the operator supports, and that has been applied to
produce the cluster.
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For the sake of simplicity, in the remainder of the chapter, we use the term cluster to intend cluster
representative.

Definition 3: Group

A group g is a not empty and ordered set of clusters. It is the main element of the data model and it is
defined as a pair:

g (L <c;..;c>)

in which / is the label of the group, automatically generated by function SynthLabel, and with <c ; ... ;
c¢,> we denote the list of clusters. A special kind of group is the empty group, that is defined as g:= (;
). This group can be explicitly generated by the user through the function EmptyGroup (see Defini-
tion 26).

A group g can contain a single cluster. Observe that a particular kind of cluster is the one that repre-
sents the ranked list obtained as the result of a query ¢; in this case, c:label= gq.

The procedure that generates a group is initially activated by a search operator, named CQuery, that
allows users to query a search service (e.g., Google, Yahoo!, MSN Search) and to cluster the results. We
assume that a search service retrieves a maximum of N documents: in particular, in the case of Yahoo!
Search API, N is upper limited to 100, while in the case of MSN Live Search API, N is upper limited to
50.

On this basis, for each retrieved document, the operator builds an item 7, whose irank value depends
on the position of the document in the result list: 7.irank=(N—Pos(d)+1)/N, where Pos(d) is the position
of the document in the query result list. In this way, a document in the first positions has a rank r.irank
very close to 1.

The ranked list obtained as a result by the search operator, is then clustered by applying the Lingo
algorithm (Osinsli, 2003). Lingo is used to perform a flat crisp clustering of the query results on the
basis of their snippets and titles. Once clusters are obtained, they are labeled. Finally also the groups
are labeled to synthesize the most central contents retrieved by all their clusters. The labeling algorithm
is hereafter described.

Labeling Algorithm

When a new cluster or a new group is generated, it is fundamental to be able to synthesize its main
contents through a label. To this end, we designed and implemented a labeling algorithm that exploits
the representation of documents in a vector space. The label of both a cluster and a group is built by
function SynthLabel starting from the documents within. This guarantees that the associative property
of the operators of the language generating groups and clusters is satisfied. In particular, the labeling
algorithm performs the following steps.

. Extraction of the M most frequent terms from title and snippet of each document (M is an empiri-
cal value chosen to minimize the selection of terms with a low frequency, e.g., equal to one); filter-
ing of terms that appeared in at least more than one document, and creation of the base of terms.
In particular, title and snippet for documents are tokenized, deprived of stop-words and finally
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stemmed. Then, from the totality of the resulting terms, the first N terms with greatest frequency
are extracted. The set of all extracted terms, excluding duplicates and those appearing in several
documents, originates the complete base of terms where the vectors are represented.

. Definition of the documents vectors with respect to the base of terms. Each vector is defined by n
components, where # is the term space size. The value of each vector component is the number of
occurrences of the corresponding term within the title plus snippet.

. Identification of the centroid vector of the cluster, also called the average vector of the set of docu-
ments. The centroid vector, defined as the average of all the vectors of the documents belonging to
the cluster or group, identifies the typical concepts of the cluster (or group); for this reason, it can
be used as a prototype vector to identify a meaningful label.

. Identification of the vector associated with the document (or a cluster) closest to the centroid vec-
tor, using the cosine similarity measure.

For each document (cluster) vector, the value of cosine similarity with respect to the centroid vector
is evaluated. The vector obtaining the greatest value of similarity will be the candidate for the definition
of the label. In fact, the label is defined as the corresponding document title (resp. cluster label).

Basic Operations
In order to define the operators and the functions that constitute the proposed language, it is necessary
to define some basic operations on sets of ranked items and on cluster labels.

The basic operations that we are going to define work on two input sets of ranked items R, and R,
and generate a new set of ranked items R .
Definition 4: Ranked Intersection
The operation Rintersect, denoted as %, performs the intersection of two sets of ranked items. R’ con-
tains all ranked items 7" such that there are two ranked items 7 € R, and r,e R, which refer to the same
uri. The irank of r’ is defined as the minimum irank value of , and r,.

Formally: ’ € R’, if and only if there exists » € R and r,e€ R, such that:
v uri =r.uri = r,uri then
r’title = Comb(r .title, r.title, r .irank, r,.irank, N%);
r’.snippet = Comb(r,.snippet, r,.snippet, r .irank, r,.irank, "*);
r’.irank = min(r .irank, r,.irank).
r’.irank is the common level of relevance of both the retrieved items in the web searches from which R,
and R, are obtained. This choice is in accordance with the interpretation of the sets of ranked items R,
and R, as fuzzy sets of items, in which the irank of an item is its membership degree. The intersection of

two fuzzy sets generates a fuzzy set in which the membership degree of an item is the minimum of the
original membership degrees r|.irank and r,.irank (Dubois and Prade, 1988). In the case of ™", function
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Comb selects between the two input strings, the one with lowest irank value.
Definition 5: Ranked Union

The operation RUnion, denoted as U, performs the union of two sets of ranked items. R’ contains all
ranked items 7" such that there is a ranked item 7, € R, (resp. 7, € R,) such that 7, (resp. ) refers to the
same uri.

Formally: ’ € R, if and only if one of the two following situations occurs.

1)  Ifthere exists r € R, (respectively exists r,€ R,) with r".uri = r .uri (r .uri = r,.uri), and there not
exists ,€ R, (respectively there not exists 7 € R,) with r".uri = r,.uri (r".uri = r .uri), then r’ = r,
(r’=r, in the dual case).

2) Ifthere exist 7 € R and r,€ R, such that: r".uri = r .uri = r .uri then

r’title = Comb(r .title, v, .title, r .irank, r,.irank, O DR
r’.snippet = Comb(r .snippet, r,.snippet, r .irank, r,.irank, U *);
r’.irank = max(r,.irank, r,.irank).

Differently from the case of N%, the irank of a ranked item 7 in the result of U® is the maximum of
irank values of items r, € R, 1 and r, € R, because it represents the best level of relevance obtained
by the retrieved items in both the web searches. This is also consistent with the definition of union of
fuzzy sets by interpreting the irank as the membership degree (Dubois and Prade, 1988). Consistently
with this fuzzy set interpretation, in this case function Comb selects between the two input strings, the
one with greatest irank value.

Notice that it may occur that several ranked items get the same irank value in the generated cluster.
This is not regarded as a problem since this situation indicates that the corresponding items belong to
the cluster with the same degree.

Properties. The associative, commutative, monotonicity and idempotency properties hold for ranked
intersection and ranked union, since they are the intersection and union operations between fuzzy sets
based on the min and the max.

The cluster label is generated by function SynthLabel(c.items) described above.

Group Operators
In this paragraph, we define the algebra for groups of clusters by defining the group operators.

The first operation that a user may wish to perform is to search information by submitting a query
to one or more search engines. To this end the following operator is provided.

Definition 6: CQuery
The CQuery operator allows to submit a query to a given search service and cluster the results. It is

responsible for the start up of the process supported by the proposed language. It is defined as
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Figure 2. Clusters selection

gl: Google — “Napa Valley” g2: Yahoo! — “Napa Valley” g3: MSN Live Search — “Napa Valley”

cl.1: Wine Wineries cl.1: Wine tasting and Wineries cl.1: Wine Wineries
cl.2: Travel Guide cl.4: Napa Valley Hotel

cl.3: Plan Your Travel Vacation

CQuery: G x § x {0,1}—>G CQuery(g, s, b) —g’

where G is the set of groups, S is the set of names of available services, s is the service that evaluates the
query g=g.l, b is a Boolean value, while g’ is the resulting group of clusters whose label g’./=g./.

When the user wants to submit a query to a service for the first time (when no groups are available),
the input group is an empty group generated by the function EmptyGroup (see paragraph “Functions
on Groups”).

In order to allow the user to submit a query to a search service without clustering the ranked list of
documents, she/he can specify the value b=0 in input. In this case the resulting group g contains one
single cluster, i.e., the trivial cluster that contains an item for each document retrieved by the search
service. When b=1 the results are clustered and labeled by function SynthLabel.

Definition 7: Natural Rank

Each set of items R (and consequently, each cluster ¢) has a Natural Rank (denoted as NRank(R)) that
is the average of ranks of items in the set. Formally

NRank(R) =% _, rirank)/ IR|

If we refer to a cluster ¢, the natural rank of ¢, that we denote simply by NRank(c), is the natural rank
of its items (i.e., NRank(c.items)).

Figure 3. Expanded clusters. Each cluster is expanded with the items in it; for each item, we report its
uri, its rank r and (posQ: n) that is its position in the original ranked list retrieved by the query through
the search service in the corresponding column

gl: Google — “Napa Valley” g2: Yahoo! — “Napa Valley” g3: MSN Live Search — “Napa Valley”
cl.1: Wine Wineries (0.9575) cl.1: Wine tasting and Wineries (0.975) cl.1: Wine Wineries (0.94)

u.l (r: 1 —posQ: 1) 1(r: 1 —p0osO: 1 u.l (r: 0.99 — posQ: 2)

w1 (r: 0.99 - posQ: 2) o Ei o 99p_sQ Q) 2 w1 (1: 0.98 — posQ: 3)

w1 (r: 0.94 — posQ: 7) U (1055 = posie: u.1 (r: 0.94 — posQ: 7)

w1 (1:0.9 — posQ: 11) .10 (r: 0.96 — posQ: 5) w1 (r:0.91 — posQ: 10)
cl.2: Travel Guide (0.945) u.11 (r: 0.95 — posQ: 6) u.l(r: 0.88 — posQ: 13)

u.1 (r: 0.98 — posQ: 3) cl.3: Plan Your Travel Vacation (0.925) cl4: Napa Valley Hotel (0.92)

u.l (r: 0.97 — posQ: 4) w4 (r:0.97 — posQ: 4) u.l (r: 0.97 — posQ: 4)

3} g gzg B pg:gf ?2) w15 (2 0.94 — posQ: 7) u.l (r: 0.93 — posQ: 8)

— w13 (1: 0.91 - posQ: 10) u.1 (r: 0.86 — posQ: 15)

u.14 (r: 0.88 — posQ: 13)
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This ranking method is the default one, that reflects the ordering of the items retrieved by the search
services belonging to the cluster.

Example 2: let us observe the labels of the clusters in Figure 1, and let us assume that we want to plan
a tour. We can easily identify which of them are most closely related to our needs for planning a tour. To
this aim, we may want to select a subset of clusters. Therefore we introduce the following operator.

Definition 8: Cluster Selection

The Cluster Selection operator ¢ allows selecting the clusters in a group.
It is defined as:

o (gP)—g’

where g is the group whose clusters must be selected, and P is a predicate on positions of clusters in the
group, or on cluster labels; the selected clusters maintain the original order.

Returning to Example 2 and assuming that we are planning a wine-tour, the clusters about gastronomy,
wine and touristic topics are the most interesting ones. The reduced set of clusters on which we focus is
depicted in Figure 2. In Figure 3 we show the selected clusters with their contents.

On the other side, one may wish to cancel some retrieved clusters about uninteresting topics. To this
end we introduce the following operator.

Definition 9: Cluster Deletion

The Cluster Deletion operator defined as:
5 (g.P)—g’

deletes clusters in a group g that satisfy predicate P. (thus, g’ contains all clusters in g that do not satisfy
P).

Since a group is an ordered list of clusters, one may desire to see the clusters in it ordered with respect
to their crank, or may desire to change the default ordering by specifying preferences for a different
ranking method. To this aim we provide the following operator.

Definition 10: Group Sorting

Since a group is an ordered list of clusters, group sorting operators must be provided. Shortly, operator
S(g;L) — g’ sorts clusters in g based on the ordered list of positions L; operator S(g) — g sorts clusters
in g with respect to their crank in decreasing order.

The list of simple operators might be longer; however, they are not essential in this chapter, and for
the sake of space we do not further discuss this topic.

Example 3: let us suppose that we want to filter out the most reliable documents within the clusters
in Figure 3, we could identify the common documents retrieved by all the three search engines. To this
aim we introduce the following operator.
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Definition 11: Group Intersection

The first complex operator we introduce is the Group Intersection. Intuitively, it is a quite straightforward
wish of users to intersect clusters in two groups, to find more specific clusters. The assumption is that
the more search services retrieve a document, the more the document content is worth analyzing.

The Group Intersection operator M is defined as:

N:GXGXT —G r\(gl, 2, —g’

where g, and g, are the groups of clusters to intersect, g’ is the resulting group, # is the ranking method
adopted to evaluate the crank of clusters in g’.

teT ={Natural, WNatural, Cardinality,Weighted }.

For each pair of clusters ¢, € g,, ¢, € g,, such that their intersection is not empty (i.e., lc |- itemsF
c,.items)|#0), there is a cluster ¢’eg’. ¢’ is defined as follows:

c’items= cll.itemsm’* c,.items,
c’.label=SynthLabel(c’ .items).

If ¢ is Natural, the crank value is obtained as:
¢’ crank=NRank(c’.items).

If ¢t is WiNatural, the crank value is obtained as:
¢’crank=WNRank(c’.items, ¢ .crank, c,crank, g, g,).

If t is Cardinality, the crank value of each resulting cluster is defined as: ¢’crank=CardRank(c’,g’).
If t is Weighted, the crank value is obtained as:

¢’ .crank=WminRank(c,.items, c,.crank, c,.items, c,crank, c’.items).
g .[=SynthLabel(C) with C the set of ranked clusters in g’.

The operator provides four distinct methods to compute the ranking of resulting clusters, each one
reflecting a distinct semantics.

If ¢ is Natural, the crank value of a cluster is obtained by computing its Natural Rank as defined in
Definition 7. In this way, the relevance of a cluster is defined by the average of the ranks of the items
common to both intersected clusters. Thus, this ranking criterion reflects the relevance judgments of the
search services that first retrieved the items, and is independent of the properties of the original clusters
to which they belong. Instead, if ¢ is WiNatural, the crank value of each resulting cluster is obtained by
means of function WNRank, defined by the following definition.
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Definition 12: Weighted Natural Rank

Eachsetofitems R (and consequently, each cluster ¢) has a Weighted Natural Rank (denoted as WNRank(R,
C, C, g, g,) that is the weighted average of ranks of items in the cluster, with weights C, and C, of
the original clusters. Formally:

WNrank(R, C, C, g, g,) = C,*C, NRank(R)/(MaxRank(g,) * MaxRank(g,))

where function MaxRank is defined as MaxRank(g) = max {c.crank | ceg}

This ranking method reflects the ordering of the items retrieved by the search services belonging to
the cluster by also taking into account the relevance, i.e., quality or reliability, of the cluster determined
by a previous search.

Instead, if ¢ is Cardinality, the crank value of each resulting cluster is obtained by means of function
CardRank, defined by the following definition.

Definition 13: Cardinality Rank

Given the group g’ obtained by intersecting two groups, the Cardinality Rank of each cluster ¢’ is the
ratio between the cardinality of ¢’ and the maximum cardinality of the clusters in g’:

CardRank(c’ ,g’)=|c’.items|/maxceg,|c|.

The cardinality rank determines the relevance of clusters, locally within the group: the largest clus-
ter has crank equals to 1, while the others have a smaller value: it determines the rank of the cluster in
the group based on its cardinality, i.e., the number of items it contains. This can be useful when one is
interested in analyzing first big sets of documents about a relevant topic, giving higher importance to
clusters that are larger than the others in the same group. The semantics of this ranking criterion is to
favor, in the first positions of the generated group, the most exhaustive clusters, i.e., the most populous
ones, which are likely to bear much information. This ranking can be useful in the case of a surveyor,
who wants to retrieve as much as possible information on the interesting contents, and that is, at the
same time, recommended by all the search services, i.e., anything that is worth analyzing. The focus of
the use of the group intersection operator with the cardinality rank option is to perform a quality survey
on a topic.

Finally, if ¢ is Weighted, the crank value is obtained by means of function WMinRank, defined in the
following definition.

Definition 14: Weighted Minimum Rank
Given a set of items R’, obtained combining sets R, and R, of ranked items belonging to clusters with

crank C, and C, respectively, its Weighted Minimum Rank (denoted as WMinRank) is the average of the
iranks of items in R’, weighted with respect to the crank of C| and C,. Formally:
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ZTGR, min(max((1 —C)),n.irank), max((1 - C,),r,.irank))
7]

WMinRank(R ,C ,R,,C,, R*)=

Where 7, €R, and r, €R, are the original items describing the same document represented by > with
> uri= r uri=r,.uri). We assume r.rank=0 (r,.rank=0) if there is not an item r €R, (r,eR)) with r’.uri
= r.uri (r.uri= r,.uri).

By choosing this ranking method, one is willing to apply a weighted ranking method that reflects a
twofold criteria: it determines the rank not only based on the natural ranks of items, but also on the basis
of the cranks C| and C, of the incoming clusters. This way, one wants to take into account the search
engines votes of the items, and at the same time wants to weight these contributions with respect to the
relevance of the original clusters to which they belong. This means that one is willing to consider, as
indications of relevance of the cluster contents (that can be interpreted as either reliability or quality),
the ranking C, and C, determined by the application of the combination operations that produced the
clusters ¢, and c,. The final rank reflects the semantics of the intersection between fuzzy sets of items »
with membership degrees r.irank having distinct priorities (C, and C)) (Yager, 1987)

In fact, the reader can notice that the irank value of the two input items is weighted with the one
complement of the crank value of the cluster. Consequently, the irank of items in the cluster with great-
est priority, i.e., with greatest ranked cluster (cluster in the top position of the group) are more likely
to contribute to the weighted rank of the intersection. This definition is in accordance with the goal of
being cautious in determining the rank of an item common to the original clusters since we favor the
minimum irank of the most relevant, i.e., reliable or authoritative, cluster.

Properties. The associative property holds for the Group Intersection Operator, provided that the
same ranking method is chosen for all the occurrences of the group intersection operator in the expres-
sion. The commutative property holds as well, since, it holds for ranked intersection.

Returning to the example 3, in order to filter out the most reliable documents by all the three search
engines in Figure 3 we apply the operators reported in the headings of groups depicted in Figure 4. Con-
sider groups g, and g.: first of all, we intersect g, and g,, obtaining group g,; then, we further intersect
g, with g,, obtaining group g.. The obtained clusters in g, are the intersection of ¢ =Wine Wineries and
¢, =Travel Guide from g , of ¢, =Wine Tasting and Wineries and c,=Plan your Travel Vacation from g,
of ¢, =Wine Wineries and ¢, =Napa Valley Hotel from g,. Since the intersection is an associative opera-
tion, we can write the expression to obtain g, in a different way. This is done to obtain groups g, and
g, depicted in Figure 4. Looking at groups g, and g, the reader can see that they are identical, apart
for the expressions that generated them. For this reason, cluster cl.1 in g; and cluster cl.1 in g have the
same label label, .

After having generated several groups of results, one may desire to explore their implicit correla-
tions, and unify those clusters that share some common documents in order to reduce the redundancy
of having the same documents in distinct clusters, and at the same time to eliminate the clusters that
do not share anything with other clusters, i.e., that are uncorrelated. To this aim the following operator
can be applied.

Definition 15: Group Join

The second complex operator we introduce is the Group Join operator.
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Figure 4. Group Intersection. In the expressions, t denotes a generic ranking method

2 Ng, &, g5: Ngs, &, )= (N (N(21, &, 1), &, 1)

cl.1: label 4, cl.1: label s

(NRank= 0.995; WMinRank = 0.977; CardRank=1) (NRank= 0.985; WMinRank = 0.930; CardRank=1)
u.l (r:1); u3 (1:0.99) u.1 (1:0.98); u3 (1:0.99)

cl.2: label 4,

(NRank= 0.9; WMinRank = 0.872; CardRank=0.5)
u.4 (r:0.9)

g: N2, &, 1 g7: N(21, g6 V= N(21,N (g2, 5, 1), 1)

cl.1: label 4 cl.1: label s

(NRank= 0.985; WMinRank = 0.950; CardRank=1) (NRank= 0.985; WMinRank = 0.930; CardRank=1)
u.1 (r:0.98); u3 (r:0.99) u.1 (r:0.98); u3 (r:0.99)

cl.2: label 6,

(NRank= 0.86; WMinRank = 0.811; CardRank=0.5)
u.10 (1:0.86)

The Group Join operator ><1 is defined as:

><: Gx Gx T —G ><(g,,9,,t) = g'

where g and g, are the groups of clusters to join, g’ is the resulting group. # is the ranking method adopted
to evaluate the crank of clusters in g’.

te T>< = {Natural, WNatural, Cardinality, Weighted, Correlation, Expansion, Weighted-Correla-
tion, Weighted-Expansion}.

For each pair of clusters ¢, €g,, ¢, €g,, such that their intersection is not empty (i.e., lc,.items N*
c,.items)|#0), there is a cluster ¢’ g’ defined as follows:

c‘.items = c,.items R c,.items,
c’.label=SynthLabel(c’ .items).

If ¢ is Natural, WNatural or Weighted, or Correlation, or Expansion, or Weighted-Correlation, or
Weighted-Expansion, ¢’ .crank is respectively obtained as:

¢’.crank=NRank(c’ .items),

¢’ .crank=WNRank(c’ .itemsm c .crank c,.crank, g, g,),

¢’ .crank= WMaxRank(c,.items, c,.crank, c,.items, c,.crank, c’.items)
¢’.crank = CRank(c,.items, c,.items)

c’.crank = ERank(c .items, c,.items)
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¢’ .crank = WCRank(c .items, ¢ .crank, c,.items, c,.crank)
¢’ .crank = WERank(c,.items, c,.crank, c,.items, c,.crank)

Finally, g’./ = SynthLabel(C) with C set of ranked clusters in g’.

The Group Join operator can be used to explicit indirect correlations between the topics represented
by the clusters in the two groups. The basic idea underlying its definition is that if two clusters overlap,
i.e., have some common items, it means that the contents of these items are related with both topics rep-
resented by the clusters. This may hint the existence of an implicit relationship between the two topics.
By assuming that topics can be organized into a hierarchy, by grouping the two overlapping clusters into
a single one, we may reveal the more general topic representing the whole content of the new cluster,
which subsumes, as most specific topics, those of the original clusters.

As for group intersection, the natural rank is the basic rank value of a cluster. An alternative is to
compute the rank in a weighted way; in this case we define the WmaxRank criterion, since we want to
give more chance in determining the final rank to the items belonging to the highest weighted cluster.

Definition 16: Weighted Maximum Rank

Given a cluster ¢’, obtained by combining clusters ¢, and c,, its Weighted Maximum Rank is defined
as

Z max(C, * r.irank,C, * r,.irank)
rek! max(C,,C,)
2]

WMaxRank(R ,C ,R,,C,, R*)=

where 7 € R, and r,€ R, are ranked items of clusters ¢ .and c,, respectively.

By choosing this ranking method one is willing to apply a weighted ranking method that reflects a
twofold criteria: it determines the rank not only based on the natural ranks of items, but also on the basis
of the ranks C| and C, of the incoming clusters, i.e, their assumed reliability or quality. This way, one
wants to take into account the search engines votes of the items, and at the same time wants to weight
these contributions with respect to the relevance C, and C,, of the original clusters to which they belong.
The final rank reflects the semantics of the union of fuzzy sets of items » with membership degrees
r.irank, having distinct priorities (C, and C,) (Bookstein, 1980). In fact, the reader can notice that the
irank value of the two input items is weighted with the crank value of the cluster. Consequently, the
irank of items in the cluster with greatest priority, i.e., with greatest ranked cluster (cluster in the top
position of the group) are more likely to contribute to the weighted rank of the union. This definition
is in accordance with the goal of being optimistic in determining the rank of an item belonging at least
to one of the original clusters, since we favor the maximum irank of the most relevant (i.e., reliable or
authoritative) cluster.

A third alternative to compute the ranking of clusters after a join is the Correlation Rank, that esti-
mates the degree of correlation of the two incoming clusters.
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Definition 17: Correlation Rank

Given two sets of ranked items R and R, of clusters ¢, and c,, their Correlation Rank (shortly, CRank)
is the overlapping value between R, and R,. Formally, we define the CRank as the fuzzy Jaccard coef-
ficient (Dubois & Prade, 1982) between two clusters ¢, and c,, regarded as fuzzy sets of items, with
irank their membership values:

min(r .irank, r, irank
‘Rl ﬂR R2 7, el sz:r uri ( ! T )
CRank(R , R))= - =10 _ ‘
‘Rl U RQ‘ ZU max(r,.irank,r,.irank)
151 €

where /= R "R and U= R\ U*R , r € R and r,e R ; the items r € R, and r,€ R, belonging to / with
r,.uri=r,uri describe the same document; we assume r|.irank =0 (r,.irank = 0) if there is not an item
r,€ R, (r,€ R,). Note that the membership degree, i.e., irank, of an item r belonging to the intersection
R MR, is computed as the minimum between the irank values of the document and the two clusters of
belonging, respectively, while that of the union R R, is the maximum.

This ranking method computes a degree of overlapping of the clusters ¢, and ¢, that is interpreted as
a correlation measure of the contents of the two clusters. The properties of this measure allow deriving
some interesting properties of the relationships between the two clusters and the generated cluster:

. the greater is the membership value irank of an item to a cluster, the more is the contribution of
the item to determine the degree of overlapping.

. since the overlapping measure is symmetric, it establishes a bi-directional relationships between
the topics of the clusters;

. CRank assumes the maximum value of one only when R, and R, contain exactly the same items,
with the same irank values; this allows to state than when CRank(R ,R))=1 the two clusters ¢, and
¢, deal with the same topic;

. CRank assumes the minimum value of zero only when R, and R, do not share any items; in this
case when CRank(R ,R,)=0 the two clusters ¢, and ¢, deal with distinct topics;

. finally, the more the clusters are overlapped, the more they share some contents, i.e., the more re-
lated they are. If CRank(R ,R,)>0.5 it means that they share more with respect to what they do not
share, and vice versa. We can assume that the topics of the two clusters ¢, and ¢, are strictly related
if their CRank(R ,R)) > 0.5, while they are weakly related when 0<CRank(R,R,)<0.5. In the case
in which CRank(R ,R,)>0.5, by joining the two clusters ¢, and c, to generate a cluster ¢’ we can
guess that two specific and related topics are subsumed into a more general topic, that is still spe-
cific. In particular, the degree of specificity of the topic of ¢’ is likely to increase with the increase
of CRank(R ,R,) to one. In this case, we can expect that the shared items of ¢, and ¢, will preva-
lently determine the label of the generated cluster ¢’. Thus the generated label should not convey
much novelty with respect to the labels of ¢, and c,. On the other side, when 0<CRank(R ,R,)<0.5,
by joining the two clusters ¢, and ¢, we generate a cluster ¢’ representing a very broad topic, since
in this case the not shared items prevail over the shared ones. In this case, we can expect that the
label of ¢’ is more heavily determined by the non-common items; consequently, the new label
should convey much novelty with respect to the original labels of ¢, and c,.
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A fourth alternative to compute the ranking of a cluster after a join, is the Expansion Rank.
Definition 18: Expansion Rank

Given two sets of ranked items R, and R, their Expansion Rank (shortly, ERank) is the complementary
value of their CRank. Formally:

R A" R, L ;ﬁr - min(r,.irank,r,.irank)
ERank(R, R)=1~— =1l .
ank(R,, Ry) ‘Rl U RQ‘ Z max(r,.irank, r,irank)

1., €U

By specifying this ranking option, one wants to favor, in the top positions, the generated clusters ¢’
that convey much novelty with respect to the original weakly related clusters ¢, and c,. The lesser the
two topics (represented by the original clusters) are related, the greater the novelty of joined cluster. This
hints to the fact that the cluster with high novelty rank can represent a very general topic.

Another alternative to compute the ranking of clusters after a join is to weight the correlation rank.

Definition 19: Weighted Correlation Rank

Given two sets of ranked items R, and R, their Weighted-Correlation Rank (shortly, WCRank) is defined
as the weighted CRank of the two fuzzy sets R, and R,.
Formally:

Z min(C| * r.irank,C, * r, irank)

WCRank R 70 7R )C = 7‘1~7W'7:=‘7'2/LL7‘7;,7‘1,‘7'2€[ =
( 110 2) Z max(cl * q.irank, 02 * Q-irank)

€U

where =R, "* R, and U= R, U* R, r,eR ,r,eR, and C, and C, are the crank of the clusters ¢ and c,,
respectively; the items 7 €R, and ,€R, belonging to [ with r .uri= r,.uri describe the same document;
we assume 7,.irank =0 (r,.irank = 0) if there is not an item 7, €R, (r,€R,).

With this ranking criterion, we want to penalize more heavily the contributions of the items belonging
to the least relevant clusters. The idea is that the relevance of clusters, intended as either reliability or
quality, is propagated to their items when computing their overlapping degree. The crank of the clus-
ters are used to decrease the membership degrees of the items so that the lower the crank the greater
the reduction that is applied to the membership value of the item. This way, the overlapping degree is
more heavily determined by the items belonging to the most relevant clusters. By applying this ranking
method, one expects to rank, in top positions, clusters ¢’ derived by the joining of relevant and highly
correlated original clusters ¢ and c,.

Finally, it is possible to choose the Weighted Expansion Rank.
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Definition 20: Weighted Expansion Rank

Given two sets of ranked items R, and R,, their Weighted Expansion Rank (shortly WERank) is the
complement of the weighted correlation rank.

Z min((1 —C)) * r.irank, (1 — C,) * r,.irank)

WERank(RI’CI’R27OZ) _ 1 B 7UrE=Ty ur,n n €1 : :
Z max((1—C,|)* r,.irank,(1 - C,) * r,irank)

7, €U

Its semantics is that of the expansion rank in which we take into account that the contributions of the
items (i.e., their ranking values) to the overlapping degree is modified by the relevance of the cluster they
come from. By applying this ranking method, one expects to rank, in top positions, clusters ¢’ obtained
by joining relevant and weakly correlated clusters ¢ and c,. In this case, the contributions of the items to
the overlapping degree are more penalized if they belong to the most relevant clusters. Thus, the most
relevant clusters contribute more heavily to determine the novelty WErank of the generated cluster.

Properties. The associative property holds for the Group Join Operator, provided that the same
ranking method is chosen for all the occurrences of the group join operator in the expression. The com-
mutative property holds as well, since, it holds for ranked union.

Example 4: The application of the group join operator to our running example is shown in Figure 5.
The unified clusters that group documents common to the original clusters are about both topics (such
as Wine Wineries and Wine Tasting and Wineries), and at the same time, include also not common docu-
ments, which are apparently unrelated. This is the case of clusters Plan your Travel vacation and Wine
Wineries which both contain some documents, such as Featured Wineries in Napa Valley - Plan your
Wine Tasting Room Tour. By joining these two clusters together, we generate a more populous cluster in
which information about wineries and travel vacations are included. At this point, we could also sort the
resulting clusters with respect to the degree of correlation (i.e., overlapping) between the two original
clusters, to identify the most correlated topics. In this example, in the same result cluster there are docu-

Figure 5. Group Join. In the expressions, t denotes a generic ranking method

gs: (21, &2, 1)

cl.1: label g ;
(NRank= 0.968; WMaxRank = 0.965; Crank= 0.333;
ERank= 0.667; WCRank=0.112; WERank=0.887;
CardRank=0.857)
u.l (r: 1); u2 (r: 0.94); u3 (r: 0.99); u4 (r: 0.97) ;
ul0 (r: 0.96); ull (r: 0.95)

go: (gs, &3, 1)

cl.1: label g,
(NRank= 0.947; WMaxRank = 0.951; Crank= 0.143;
ERank= 0.857; WCRank=0.019; WERank=0.981;
CardRank=1)
u.l (r: 1); u2 (r: 0.94); u3 (r: 0.99); u4 (r: 0.97) ;
ul3 (r:0.91); ul4 (r: 0.88); ul5(r: 0.94)

cl.1: label o ;
(NRank= 0.96; WMaxRank = 0.941; Crank= 0.37;
ERank= 0.62; WCRank=0.141; WERank=0.859;
CardRank=1)

u.l (r: 1); u2 (r: 0.94); u3 (r: 0.99); u4 (r: 0.97) ;

u6 (r: 0.97); u7 (r: 0.94); ul0 (r: 0.96); ull (r: 0.95)

cl.1: label ¢,
(NRank= 0.947; WMaxRank = 0.951; Crank= 0.143;
ERank= 0.857; WCRank=0.019; WERank=0.981;
CardRank=1)

u.l (r: 1); u2 (r: 0.94); u3 (r: 0.99); u4 (r: 0.97) ;

u5 (r: 0.98); u8 (r: 0.93); ul0 (r: 0.96); ull (r: 0.95)
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ments both concerning only Wineries or only Travel Vacation, and containing both. We can so expand
the intersection between the two original clusters with documents correlated with them.

Observing the various ranks reported in Figure 5 for clusters, it is possible to see that different rank-
ing methods give a different relevance to clusters.

For example, in group g, the weighted rank is similar for both the clusters, but the correlation rank
is quite different: in fact, cluster cl.1 has CRank=0.333, while cluster cl.2 has CRank=0.143; this means
that clusters joined together to obtain cl.2 were less correlated than the ones joined to form cl.1. This
result is coherent with the expansion rank: ERank=0.857 for cluster cl.2, that is much higher than the
expansion rank for cluster cl.1.

If we observe the basic weighted rank (WMaxRank), it is evident that its values are coherent with
respect to the correlation rank; however, the distance between the two values is much smaller than the
distance between the values of the correlation rank; this is due to the fact that the crank values of original
clusters influence the final rank.

Finally, we can notice that sorting clusters in g, based on cardinality ranking and (weighted) expan-
sion ranking, results in clusters sorted in a different order than the one depicted in the figure.

Now, let us consider the need to refine the clusters in a group on the basis of the clusters belonging
to another reference group. This my be useful in the case in which one has retrieved information about
a topic and wants to refine this, on the basis of the results retrieved with respect to another topic. For
example, one has retrieved the keynote comments on Napa Valley Wineries and wants to refine the results
of Napa Valley Restaurants. To this aim one can use the following operator.

Definition 21: Group Refinement

The Group Refinement operator B> is defined as:

>GXGXT — G > (9,,9,t) = g'

where g, is the group to refine on the basis of g,, g’ is the resulting group. ¢ is the ranking method adopted
to evaluate the crank of clusters in g’.

t € T. = { Natural, WNatural, Cardinality, Refinement}

The use of this operator is to refine the clusters in a group, based on clusters in another group.

For each cluster ¢, €g,, for each cluster c.eg,, I. = c, .items N" ci.items .
If at least one I, #J, there is a cluster ¢’ g’ defined as follows:

c'.items = UR I
1=1,G

c’.label=SynthLabel(c’.items), where G = |g,|.
While the group join operator generates a cluster representing a more general topic than the topics

in both the original clusters, the refinement operator can be regarded as generating clusters specializing
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the topics of the clusters in the first group on the basis of the topics of any cluster in the second group.
The idea underlying this operator is that we want to collect, in a unique cluster, the items that belong to
both a cluster ¢, €g, and any of the clusters in the second group g,. This way, by eliminating some items
from ¢,_we generate a cluster representing a more specific topic with respect to ¢,, but not necessarily
more specific with respect to the clusters of the second group. The clusters of the second group act then
as a filter on the contents of each cluster in the first group.

If t is Natural or WNatural the crank value is obtained by applying Definitions 7 and 8:

If t is Cardinality, the crank value of each resulting cluster (called Cardinality Rank). is defined as
in Definition 13.

Definition 22: Refinement Rank

If # is Refinement, the crank value of a cluster ¢’, generated from a cluster ¢, € g, (called (Refinement
Ranking) and the clusters in the second group g, is obtained as:

‘c ! .items‘
c'.crank = ——
‘ck.ztems‘

This is indeed an inclusion degree of the cluster ¢, in the resulting cluster ¢, i.e., in any of the clusters
of g,. and it expresses how much original contents of ¢, is kept in the refinement based on g,.

When using this ranking method, one is willing to favor, in top positions, the clusters ¢’ generated by
a cluster ¢, of g, that has maintained in ¢’ as much as possible all its original items. This ranking method
satisfies some interesting properties:

When c¢’.crank=1 it means that the whole content of ¢, is kept in the resulting cluster ¢’.

When c¢’.crank=0 it means that the result is empty, then no item of ¢, is contained in any cluster of
g, - Intermediate values of c¢’.crank mean that only some items of ¢,_are present in ¢’. Notice that the
contrary is not generally true since this measure is not symmetric.

Example 5: Suppose that, by analyzing the results in Figure 5, we discover that no cluster has been
retrieved concerning restaurants (i.e., with the word Restaurant in the label). We could take a remedy by
submitting the new query “Napa Valley Restaurants” to Yahoo!; the resulting clusters shown in Figure 6
(strongly focused on restaurants) are used to filter out sub-clusters of documents concerning restaurants
from within clusters in the previous lists (we refine clusters in the first list).

During a search session in which the user has submitted several queries to the search services and has
applied several operators to manipulate the retrieved results, one may have generated too many groups
and too many clusters, and may wish to reduce their number. To this aim the following two operators
can be applied.

Definition 23: Group Union
The group union operator ¢, U ¢, = ¢’ generates ¢’ in such a way it contains all clusters in ¢, and all
clusters in c,. This operator can be useful during long interactive search and processing sessions, when

too many groups have been generated. It makes it possible to collect together two or more groups in a
single group.
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Figure 6. Group Refinement. In the expression labeling the group on the right, t denotes a generic rank-
ing method

gi9: Yahoo! — “Napa Valley Restaurants” B8 i
— cl.1: label 11,
cl.1: Restaurants Visitors Info (0.955) (NRank= 0.97; RefRank = 0.375; CardRank=1)
u.16 (r: 1 — posQ: 1) wl (r: 1); ud (r:0.97) ; u7 (r: 0.94)
u.17 (r: 0.97 — posQ: 4) cl.3: label |,
u.18 (r: 0.95 — posQ: 6) (NRank= 0.985; RefRank = 0.25; CardRank=0.667)
u.4 (r: 0.9 — posQ: 11) w.l (r: 1); u4 (r:0.97)

cl.2: Travel Guide (0.95)
u.19 (r: 0.98 — posQ: 3)
u.1 (r: 0.96 — posQ: 5)
u.7 (r: 0.91 — posQ: 10)
cl.3: Seafood Resaurants in Napa Valley (0.913)
u.21 (r: 0.99 — posQ: 2)
u.22 (r: 0.93 — posQ: 8)
u.23 (r: 0.89 — posQ: 12)
u.24 (r: 0.84 — posQ: 17)

Definition 24: Group Coalescing.

The group coalescing operator @(c)=c’ generates ¢’ in such a way that ¢’ contains only one cluster,
obtained by applying the ranked union operation to all clusters in c.
This operator may be necessary in long interactive processing sessions, when too many clusters have
been generated in a group. It makes it possible to fuse all clusters in a group into one global cluster.
After complex transformations, it might be necessary to reapply the clustering method to a group. In
fact, re-clustering documents in a group may let new and unexpected semantic information emerge.

Definition 25: Reclustering

The Reclustering Operator Cluster(c)=c’ performs the ranked union of all clusters in ¢, and generates ¢’
in such a way that it contains all the clusters obtained by clustering all ranked documents.

Closure Property of Group Operators: The data model and the group operators were designed in such
a way the Closure Property holds: operators are defined on groups and generate groups.

Functions on Groups

The group operators so far described allows to conduct a powerful exploratory activity: by combining
groups, the user can discover useful information and may be inspired for new searches; the results of
these new searches might be combined with previously computed groups, and so on. The distinct rank-
ing methods let users re-arrange the contents of the groups so as to make more evident some properties
of the clusters that can be of interest for a search.

However, being an exploratory activity, it might be useful to evaluate the results of group operations
without actually building and storing a new group. If the user were provided with functions that returns
a quantitative summary of what would be obtained by applying an operator on already computed groups,
the user could decide whether to actually apply a group operator to obtain a new group.

For this reason, the proposed language provides some useful evaluation functions that we introduce
in this sub-paragraph.
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Definition 26: EmptyGroup Function

The first function that we need to define is the EmptyGroup function, that makes it possible to generate
an empty group with a desired label /. It is defined as:

EmptyGroup(l)—g, where g =(1,9)
This function is necessary to generate the input group for the CQuery operator when the user wants

to submit a query for the first time. This allows to archive the closure of the whole set of group opera-
tors.

Definition 27: Selection Function
Selection function, o_, evaluates the effect of a cluster selection. It is defined as:

0. (g, P)—(nc,mincard,maxcard, mincrank,maxcrank)

where g is the group to which to apply the selection, and P is the selection predicate. The function pro-
duces a 5-tuple with the following fields: nc is the number of clusters that would be selected, mincard
and maxcard are, respectively, the minimum and maximum cardinality of clusters that would be selected,
while mincrank and maxcrank are, respectively, their minimum and maximum crank values.

Definition 28: Intersection, Join and Refinement functions

Three functions are defined, corresponding to the main group operators: M_evaluates intersection, ><1_
evaluates join, >_ evaluates refinement.

N, (g,» &y 1) — (nc,mincard,maxcard, mincrank,maxcrank)
><_(g,, g, t) = (nc,mincard,maxcard, mincrank,maxcrank)

>_(g,, &, t) = (nc,mincard,maxcard, mincrank,maxcrank)

where g and g, are the groups of clusters to intersect (resp. join or refine). 7 is the ranking method adopted
to evaluate the crank of clusters that would be produced: for N, it is chosen among the methods Natural,
WNatural, Weighted and Cardinality; for ><_, it is chosen among the methods Natural, WNatural,
Weighted, Correlation, Expansion, Weighted-Correlation, Weighted-Expansion and Cardinality; for > _,
it is chosen among the methods Natural, WNatural, Refinement and Cardinality.

As for selection evaluation, the functions produces a 5-tuple with the previously defined fields.

Example 6: An example of application of these functions could be proposed on each of the operators
previously described. For the group intersection, for example, whose results are represented in Figure
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4, we may want to know if it is convenient (in terms of obtained results) to execute the operation g,:
g,Mg,- To this aim, we can compute M (g, g,.) that will return, as a result,

(nc=2, mincard=1, maxcard=2, mincrank=0.8723, maxcrank=0.9771)=(2,1,2,0.8723,0.9771)

On the basis of this information, the user can see that only two clusters are retrieved containing a total
of three documents with high minimum and maximum rank (in the range [0,1]). Thus it can be worth
executing the intersection operator.

SCALABILITY ISSUES

In this paragraph we analyze the complexity of the operators of the proposed language and run some
experiments in which we apply the operators to combine groups containing increasing number of clusters
so as to evaluate the efficiency of the approach.

Computational Complexity

The operators previously defined are applied to pairs of groups and are executed in several subsequent
steps. Thus, in order to study the computational complexity of the operators, it is necessary to study the
computational complexity of the basic steps.

First of all, let us consider the ranked intersection and ranked union of two clusters ¢, and c,. These
operations can be implemented in a very efficient way. In fact, if we maintain the list of documents in a
cluster ordered by document uri, ranked intersection and ranked union can be implemented on the basis
of a merge operation, whose complexity is O(|c, |+]c, ).

Let us consider now operators such as group intersections, group join and group refinement. These
are binary operators that explore combinations of each cluster in the first operand with each cluster in
the second operand. Thus, if with N, and N, we denote the number of clusters in the first and second
group operand, respectively, the complexity of such operators is O(N, - N,).

Consequently, if we denote with ¢ the maximum cardinality of clusters and with N=max(N,, N,) the
maximum number of clusters in the input groups, the final complexity of the main algorithm (intersec-
tion, join, refinement) is O(c - N?).

Another step is the labeling algorithm applied to generate the clusters’ and the groups’ labels. We
recall that the cluster labels are generated based on the snippets and the titles of their ranked items, i.e.,
short pieces of text, while the labels of the groups are generated from the analysis of the cluster labels.
If we indicate by ¢ the number of the items (i.e, either the number of ranked items in a cluster, or the
number of clusters in a group), and with & the maximum number of the single terms either within the
snippets plus titles, or within the cluster labels, the complexity of this labeling algorithm is determined
by the following steps.

First we need to rank, in decreasing frequency, the c-k terms to select the m most frequent ones. This
is performed in O(c- k log (c- k)). Then, the vector base of the m dimensional space is built in which the
ranked items (clusters) vectors are mapped: this has a complexity O(c-m log (c-m)). Finally, the centroid
vector is computed in O(c-m), and the title (or label) of closest element is chosen with a complexity
O(c).
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The reader can assume that the labeling task is computationally expensive. Nevertheless this phase is
not critical, as each element contains a limited number of words, since we consider titles and snippets,
not the entire documents. Further the labeling is performed only for the generated clusters that do not
grow quadratically. Consequently, as the reader can see in the experiments reported hereafter, the critical
phase is the execution of the main algorithm (intersection, join).

Experiments

In order to evaluate the scalability of our proposal, we conducted a set of experiments. The experiments
were performed on a PC powered by an Intel Pentium 4 641 3.2 GHZ processor, equipped with 1 GByte
RAM (of type DDR2 PC2-4200 SYNCH DRAM NON-ECC), a 256 GByte Hard Disk (Serial ATA II).
The installed operating system is Linux Fedora 6 Core Distribution (kernel version 2.6.20-1.2952.fc6).
Java classes were compiled with JDK version 1.6.0 03. Classes were executed using the Java Runtime
Environment JRE1.6.0 03.

We ran separately experiments on the intersection and join operators. We considered two sets of
source groups, reported in Figure 7 and Figure 10. The first set is obtained by performing the following
queries: “London” to Google, “London” to Yahoo, “New York” to Goggle, “New York” to Yahoo, “Los
Angeles” to Yahoo. For each query, the first 100 ranked items are considered, and the clustering algorithm
is applied. Finally, five groups are obtained: group g, contains clusters resulting from the first query;
group g, unites clusters obtained by the first and the second query; group g; unites clusters obtained by
the first, the second and the third query; group g, unites clusters obtained by all queries except the last
one; group g, unites all clusters obtained by all the queries.

The groups reported in Figure 10 are obtained in the same way: groups g,, g, g, & and g, unites the
clusters obtained by queries “London Hotels” to Google, “London Hotels” to Yahoo, “New York Hotels”
to Google, “New York Hotels” to Yahoo and “Los Angeles Hotels” to Yahoo.

Figure 8 reports the results of the first set of experiments. Each group reported in Figure 7 was in-
tersected with itself. This way, it is possible to obtain a large number of clusters in the resulting groups.
The table reports the execution times for the five experiments. In particular, we separately consider the
Data Loading time, the time needed by the main algorithm (in this case, the intersection algorithm), the
time needed for labelling the group (that analyzes all documents in the resulting clusters), the time for
sorting the group and finally the time needed to write the resulting XML document that describes the

Figure 7. First set of input groups for operators. With (query, engine) we denote that the specified query
is submitted to the specified engine, taking the first 100 documents. Groups from g3 to g9 are obtained
by uniting the clusters obtained for each single query

Group Query # Documents # Clusters

g1 London (Google) 100 23

2 (London, Google) + (London, Yahho) 200 44

gs (London, Google) + (London, Yahho) + 300 67
(New York, Google)

g7 (London, Google) + (London, Yahho) + 400 89
(New York, Google) + (New York, Yahho)

2o (London, Google) + (London, Yahho) + 500 112
(New York, Google) + (New York, Yahho) +
(Los Angeles, Yahoo)
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Figure 8. First experiments of application of the group intersection operator. Execution times are in
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milliseconds

g1 g & MNEs &5 M&s &1 g 89 M &9
Input Documents 100x 00 200x200 300x300 400x400 500x500
Input Clusters 23x23 44x44 67x67 89x89 112x112
Output Clusters 98 210 329 485 580
Data Loading 214 463 765 1131 1325
Main Algorithm 2093 7421 14455 28814 38527
Group Labeling 961 4313 13754 29424 43797
Group Sorting 326 732 1339 2324 2964
Writing XML File 146 349 543 1020 1100
Overall Process 3740 13278 30856 62713 87713

Figure 9. Chart of the experiments reported in Figure 8 of application of the group intersection. Execu-
tion times are in milliseconds

100000

80000 )
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resulting group. Figure 9 shows a chart with the overall execution time, the Data Loading time, the Main
Algorithm time and the Group Labelling time (the other items are negligible, in comparison).

Notice that, while the data loading time grows linearly, the other components of the implementation
behaves in a quadratic way, thus meeting the considerations about complexity previously reported.

The reader can also observe that the overall execution time in the last case is still limited to one
minute and a half, even though the large number of resulting clusters.

In the second sets of experiments performed on the intersection operator, groups g, were intersected
with group g,, group g, with group g,, group g, with group g,, group g, with group g, and group g, with
group g, . For each pair, groups are rather heterogeneous, so that the number of intersecting clusters
is small, as the reader can see in Figure 10. Similarly to the previous experiment, Figure 12 shows the
chart of the execution times reported in Figure 11.

The reader can see the behavior of the algorithm is still quadratic.

However, we must point out that the number of clusters actually intersecting, and thus generating
a new cluster, are far less than the potential number indicated on the x-axis: in the case indicated by
500x500 documents on the x-axis which are grouped in 112 x 98 clusters, only 101 clusters are generated,
and in the case of 400x400 documents partitioned into 89 x 76 clusters only 95 clusters are generated
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Figure 10. Second set of input groups. With the pair (query, engine) we denote that the specified query is
submitted to the specified engine, taking the first 100 documents. Groups from g43 to gl10 are obtained
by uniting the clusters obtained for each single query

Group Query # Documents # Clusters
o (London Hotels,Google) 100 17
& (London Hotels, Google) + 200 34
(London Hotels, Yahho)
2 (London Hotels, Google) + 300 55

(London Hotels, Yahho) +
(New York Hotels, Google)
28 (London Hotels, Google) + 400 76
(London Hotels, Yahho) +
(New York Hotels, Google) +
(New York Hotels, Yahho)
g0 (London Hotels, Google) + 500 98
(London Hotels, Yahho) +
(New York Hotels, Google) +
(New York Hotels, Yahho) +
(Los Angeles Hotels, Yahoo)

Figure 11. Second experiments on application of the group intersection operator. Execution times are
in milliseconds

g&1Ng g MN&s g5 M &6 g1 M &8 &9 M &1o
Input Documents 100x 00 200x200 300x300 400x400 500x500
Input Clusters 23x17 44x34 67x55 89x76 112x98
Output Clusters 1 17 54 95 101
Data Loading 315 612 901 1259 1484
Main Algorithm 1029 4051 8530 16407 21181
Group Labeling 5 111 158 400 451
Group Sorting 12 732 117 217 216
Writing XML File 6 349 68 118 119
Overall Process 1367 5855 9774 18401 23451

Figure 12. Chart of the experiments of application of the group intersection operator reported in Figure
11. Execution times are in milliseconds
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containing only a subset of the items in the original clusters. So, we can observe that the efforts needed
to manage the generated clusters is not very significant, since the steps Group Labeling, Group Sorting
and Writing XML File are applied only to the actual generated clusters containing few ranked items. To
conclude, most of the effort of the algorithm implementing the group intersection operator is due to the
need of checking each cluster in the first operand with each cluster in the second, to determine if they
intersect, and this heavily affects the execution times.

We repeated the same experiments by applying the join operator to the same sets of source groups.
Recall from the definition of the operators that the group join operator produces the same number of
clusters than the group intersection; however, the resulting clusters are larger, since they contain all the
documents in both the intersecting source clusters. Consequently, this set of experiments is useful to
understand the impact of data structures necessary to manage the resulting clusters before writing the
final XML document to disk.

The reader can easily see from Figure 13, Figure 14, Figure 15, Figure 16 that the behavior of the
operator is still quadratic. However, the time needed to manage the data structure is significant: in the
case denoted 500x500, the join algorithm needed 192167msec, while the intersection algorithm needed
38527msec; the consequence is that the main algorithm dominates the execution times, and in charts

Figure 13. First experiments of application of the join operator. Execution times are in milliseconds

81 >pa 81 & >4 83 &5 >4 8s 871 >4 87 89 >< &9
Input Documents | 100x 00 200x200 300x300 400x400 500x500
Input Clusters 23x23 44x44 67x67 89x89 112x112
Output Clusters 98 210 329 485 580
Data Loading 214 460 751 1135 1268
Main Algorithm 14564 53067 91258 170809 192177
Group Labeling 566 2426 7405 15628 24137
Group Sorting 855 2280 3902 6884 8129
Writing XML File 521 1390 2300 3967 4519
Overall Process 16720 59623 105616 198423 230230

Figure 14. Chart of the experiments of application of the join operator reported in Figure 13. Execution
times are in milliseconds

250000 .
e
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150000
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e Algorithm
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reported in Figure 14 and Figure 16 the dashed line corresponding to the main algorithm is substantially
overlapped with the thick line corresponding to the overall process.

CONCLUSION

In this chapter, we addressed the problem of defining a language for manipulating huge amounts of re-
sults provided by search services over the Internet. The work is motivated by the need to better exploit,
in an integrated way, the results obtained by different search services like, e.g., web search engines, that
generally produced long ranked lists. The large number of documents retrieved by such services con-
stitute a serious obstacle for users, that are not able to extract a semantic summarization of the results.
The language can be useful also to explore the results obtained by submitting distinct queries to the
same search service, to filter out redundant documents, to reveal implicit correlations, and to overview
the main retrieved contents.

The proposed language provides operators to manipulate, in a complex and controlled way, groups
of ranked clusters of retrieved documents.

Further, each operator can be specified with distinct ranking methods to favor, in top positions,
clusters having distinct properties. The richness of the proposed language allows users to integrate the

Figure 15.Second experiments of application of the join operator. Execution times are in milliseconds

81N & 83 M 84 85 M 86 81M 88 89 M &1o
Input Documents 100x 00 200x200 300x300 400x400 500x500
Input Clusters 23x17 44x34 67x55 89x76 112x98
Output Clusters 1 17 54 95 101
Data Loading 313 645 869 1327 1558
Main Algorithm 3295 29305 37734 73371 816121
Group Labeling 6 144 252 532 652
Group Sorting 87 759 1030 1927 1940
Writing XML File 55 540 650 1236 1241
Overall Process 3756 31393 40535 78393 821512

Figure 16. Chart of the experiments of application of the join operator reported in Figure 15. Execution
times are in milliseconds

1000000 —*Data
o
400000 /7 " Main
200000 Algorithm

0 e Group
S & & P .» Labelin
SEFSS :
LR Process

209



A Flexible Language for Exploring Clustered Search Results

results of different search services in several ways, then revealing more general or more specific topics
than those carried by the single documents.

We have developed a software prototype, named Matrioshka, that supports the proposed language.
Based on a Service Oriented Architecture, it provides a web service interface, that can be exploited to
develop multi-channel applications (http://matrioshka.unibg.it) (Bordogna, Campi, Psaila, & Ronchi,
2008b)

The Matrioshka system is based on a client-server architecture. It is constituted by three main parts:
the Client Side Components handle the user interaction; the Server Side Component interfaces the
search engines and executes the clustering operations; finally, the Communication Layer dispatches the
messages between client and server.

Along with the core capabilities of Matrioshka, we have also developed a comprehensive infrastruc-
ture with the twofold purpose of supporting the user in editing queries, executing them and analyzing
the results, so that the process can be fully tracked.

Consequently, Matrioshka is an interaction framework, in which the client provides a query editor
for the user, the server either executes the queries and builds the groups containing clusters, or executes
the operations on previously generated groups.
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Linguistic Data Summarization:
A High Scalability through the
Use of Natural Language?
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ABSTRACT

The authors discuss aspects related to the scalability of data mining tools meant in a different way
than whether a data mining tool retains its intended functionality as the problem size increases. They
introduce a new concept of a cognitive (perceptual) scalability meant as whether as the problem size
increases the method remains fully functional in the sense of being able to provide intuitively appealing
and comprehensible results to the human user. The authors argue that the use of natural language in the
linguistic data summaries provides a high cognitive (perceptional) scalability because natural language
is the only fully natural means of human communication and provides a common language for individu-
als and groups of different backgrounds, skills, knowledge. They show that the use of Zadeh's protoform
as general representations of linguistic data summaries, proposed by Kacprzyk and Zadrozny (2002,
2005a; 2005b), amplify this advantage leading to an ultimate cognitive (perceptual) scalability.

INTRODUCTION

The purpose of this paper is to present a novel, different argument for the usefulness and power of lin-
guistic data(base) summarization the essence of which was proposed by Yager (1982), and an extended,
implementable version was shown by Kacprzyk & Yager (2001) and Kacprzyk, Yager & Zadrozny
(2000).

We consider our further developments of the basic solutions presented in those papers which are
relevant for our discussion, notably:
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. a close relation between the linguistic data summarization and fuzzy database querying, to be more
specific using fuzzy queries with linguistic quantifiers proposed by us (Kacprzyk & Ziodtkowski,
1986) and in a much more extended form in (Kacprzyk, Zadrozny & Zidtkowski, 1989), and even
more so in FQUERY for Access (Kacprzyk & Zadrozny, 2001b),

. our general approach to linguistic data summarization viewed as an interactive process in which
fuzzy querying makes possible the articulation of the user’s intentions, interests and information
needs proposed by Kacprzyk & Zadrozny (1998; 2001a), and

. our formulation of linguistic data summarization in terms not only of the calculus of linguisti-
cally quantified proposition but in terms of Zadeh’s protoforms (cf. (Kacprzyk & Zadrozny, 2002;
2005a; 2005b)) which can provide an extraordinary transparency, versatility and generality.

Our purpose in this paper will not be, however, a traditional exposition of the essence of those ideas
which have been presented in our papers as referred to above, and which have proved to be very effec-
tive and efficient. We will discuss these tools and techniques from the perspective of this volume, that
is, from the perspective of scalability of data mining (knowledge discovery) tools and techniques. In
the case of linguistic data(base) summarization this will have a couple of aspects exemplified by both
more technical computation time and memory related aspects of the scalability of databases and que-
rying, and more conceptual aspects of what might be called a cognitive or perceptional scalability of
tools from the point of view of human facilities and capabilities. Ultimately, we will argue that linguistic
data summarization may be viewed from some points of view, notably with respect to the cognitive
and perceptual scalability, as an ultimately scalable (in the cognitive or perceptual sense) tool for data
mining and knowledge discovery.

BACKGROUND

The first question we should ask is: What is actually meant by scalability, in particular in the context
of broadly perceived information technology? Usually, scalability is meant in two basic ways. First, it
is understood as the ability of a computer application or system (i.e. hardware and/or software) to con-
tinue to function when the size of the problem in question (e.g. the size of a computer network, number
of clients, size of data sets, etc.) changes, usually grows up. In our context of a broadly perceived data
analysis, in this paper the scalability will be meant in the upward sense. Second, in a modern view,
scalability is meant as the ability of a computer application and/or system not only to function as the
size of the problem and/or context increases (or decreases but this case will not be considered) but to
even take advantage of that increase in size and volume, for instance to provide more adequate results
because of a larger basic data set, or an ability to more adequately grasp the very essence of a larger data
set. Needless to say that scalability is a desirable property of any application or system, and virtually all
nontrivial applications and systems are designed and implemented with scalability in mind.

As one can expect, though scalability is easily intuitively comprehensible, it is difficult to define,
and may mean different things to different people, in particular when they come from different areas.
What is relevant to us, a scalable online transaction processing system or database management system
is the one that can be upgraded to process more transactions by adding new processors, devices and
storage, and which can be upgraded easily and transparently. This is one of the reasons that we concern
the scalability in the sense of what happens when the size and volume of data increase.

215



Linguistic Data Summarization

Scalability is a multidimensional concept. For instance, people often confuse performance and scal-
ability. As pointed out by Haines (2006): “The terms “performance” and “scalability” are commonly
used interchangeably but the two are distinct: performance measures the speed with which a single
request can be executed, while scalability measures the ability of a request to maintain its performance
under increasing size and volume. For example, the performance of a request may be said to generate
a valid response within three seconds, but the scalability of the request concerns the ability to maintain
that three-second response time as the user load increases” (p. 224). This distinction has a great impact
for our discussion, and will be dealt with later.

Viewed simplistically, scalability is about “doing more of something” like responding to more user
requests, executing more work or handling more data. Traditionally, this is done by either increasing
the sheer computing power and/or data handling power exemplified by using parallel computation, grid
computing, etc.

In this context a popular belief is that databases do not scale up well, i.e. that it is difficult to keep
growing the size of a database, or too hard to handle the load of an increasing number of concurrent users.
In other words, it is often believed that systems that are database centric are fundamentally incapable of
efficiently coping with the (growing) demands of high performance distributed computing. This may be
true to some extent even in view of a growing storage capacity at a diminishing cost, parallelization of
processing, new software developments, etc. One can easily reach limits of the same inherent nature as
those characteristic for even the best, most advances and densely packed traditional silicon integrated
circuits: sooner or later, a new type of processors (biological?) will be needed.

This example of an unavoidable necessity of a technological change in processors can be rephrased
in the context of the scaling up of database centric systems and applications which is what our work is
concerned with.

Now, let us present the basic context we will be operating in, and issues related to scalability. We
are concerned with data summarization which is one of basic capabilities of any “intelligent” system,
and since for the human being the only fully natural means of communication is natural language, a
linguistic summarization would be very desirable, exemplified by, for a data set on employees, a state-
ment (linguistic summary) “almost all young and well qualified employees are well paid”.

Unfortunately, data summarization is still in general unsolved a problem. Very many techniques are
available but they are not “intelligent enough”, and not human-consistent, partly due to a limited use of
natural language (cf. Lesh & Mitzenmacher, 2004).

We deal with a conceptually simple approach to the linguistic database summaries introduced by Yager
(1982; 1991; 1996), and then considerably advanced by Kacprzyk (2000), Kacprzyk & Yager (2001),
and Kacprzyk, Yager & Zadrozny (2000; 2001), Zadrozny and Kacprzyk (1999), and implemented in
Kacprzyk and Zadrozny (2000a-d; 2001a-e; 2002; 2003; 2005b). In this approach linguistic data sum-
maries are derived as linguistically quantified propositions as, e.g., “most of the employees are young
and well paid”, with a degree of truth (validity), possibly extended with other measures.

Foran effective and efficient derivation of linguistic summaries, we employ Kacprzyk and Zadrozny’s
(1998; 2000a-d; 2001a) interactive approach to linguistic summaries in which the determination of a
class of summaries of interest is done via Kacprzyk and Zadrozny’s (1994; 1995a-b; 2001b) FQUERY
for Access, a fuzzy querying add-in to Microsoft Access, extended to the querying over the Internet in
Kacprzyk and Zadrozny (2000b). Since a fully automatic generation of linguistic summaries is not feasible
at present, mainly because it is difficult if not impossible at all to automatically reveal the user’s real
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intentions, interests and information needs, an interaction with the user is assumed for the determination
of a class of summaries of interest, and this is done via the above fuzzy querying add-in.

Extending Kacprzyk & Zadrozny (2002; 2005a; 2005b), we show that by relating various types
of linguistic summaries to fuzzy queries, with various known and sought elements, we can arrive at a
hierarchy of prototypical forms, or — in Zadeh’s (2002) terminology — protoforms, of linguistic data
summaries. This seems to be a very powerful conceptual idea because it provides a simple structural
expression, with a comprehensible semantics, of even the most complicated linguistic summaries.

Notice that, first, through the use of natural language to present (verbalize) the very essence and
contents of data with respect to an aspect in question we certainly attain a high, maybe even the best
scalability. First, natural language can express that information in a fully comprehensible way no mat-
ter how large the data set is. Second, such simple linguistically quantified propositions with which
data summaries are equated may semantically be adequate as representations of data sets of any size as
they represent some highly abstracted linguistic statements, of a simple syntax and of what might be
described as a “commonsense based” semantics. Third, protoforms of linguistic summaries provide a
uniform, easily comprehensible form of linguistic summaries for any size of data sets, and virtually all
intentions and information needs of the user. Finally, natural language summaries are comprehensible
to individuals, small and larger groups, people from different backgrounds, people coming from various
geographic locations, sexes, age groups, etc. Clearly, an obvious condition of an agreed upon semantics
of language used should be assumed but this is a prerequisite of any human communication, and any
implementation of a computer system to be employed by various human users.

A natural question is: what is the relation of the approach and view presented in this paper to the
problem of natural language generation (NLG), and in particular to the scalability of natural language
generation. We will not deal in more detail with these important issues. For an analysis of relations
between the linguistic data summaries used in this paper, and in all our previous works, and some ex-
tension of the template based approach to natural language generation we refer the reader to Kacprzyk
& Zadrozny (2009). Moreover, for very interesting remarks and their justification that natural language
generation itself can be viewed as a very effective and efficient, yet conceptually simple and natural,
and extremely human consistent way to improve the scalability of a dialog system, we refer the reader
to Reiter (1995).

For more detail on the issue of scalable natural language generation we refer the reader to, for in-
stance, Klarner (2004). Basically, in those works scalability of the natural language generation is also
considered in the context of dialog systems, i.e. slightly more general than in our context of just the
linguistic summarization of numerical sets of data, but concerns many aspects that are relevant for us
too. Basically, scalability for (spoken) dialog systems is meant as the ability to:

. enlarge the domain content by modifying and extending its thematic orientation,

. refine the domain language to extend the linguistic coverage and expressibility of the domain,

. change the application domain which usually concerns the two above ones and can lead to com-
pletely new requirements for a dialog system and its parts,

e change the discourse domain which may alter the discourse type within the same domain.

As it can clearly be seen there are strong, intrinsic relations between our concept of a linguistic data
summary, and its protoform based representation, and various concepts of scalability both in a general
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context of systems and applications in information technology, database related technology, and — finally
—natural language generation (NLG).

It should be noted that our approach to scalability is different than that of most researchers who prac-
tically equate the property of scalability with whether, and how well, a given approach, tool, technique,
... can retain its functionality, effectiveness and efficiency when the size of the problem is growing,
i.e. in our case the size of a data set is growing. This is upward scalability. Sometimes very relevant is
downward scalability when the size of the problem is diminishing. A trivial example is that (many if not
all) statistical methods are not downward scalable in this sense because they do not work properly for
small problems (samples). The downward scalability is in general difficult to deal with.

Most works on the (upward) scalability concern the efficiency of search for a solution, here for a best
linguistic summary, which may be called a technical scalability. In this work we are basically concerned
with a much more general and foundational type of scalability, which might be called a conceptual or
perceptional scalability which has to do with a fundamental question: will our tools remain conceptually
or perceptually appropriate (human consistent) when our problem will greatly increase? We will advo-
cate that due to the use of natural language we obtain an ultimate conceptual or perceptional scalability
because a natural language statement will always be comprehensible to the human being(s) no matter
what size of the data set it is meant to represent. We will also give some remarks on technical scalability
by, first, reviewing some approaches that make possible the generation of linguistic summaries for large
data sets. We will not, however, mention our approach based on a relation between the generation of
linguistic data summaries and association rules which was originally proposed by Kacprzyk & Zadrozny
(2001d; 2003). This approach shows a different perspective and its role in the context of scalability, both
technical and cognitive (perceptual), of linguistic data summaries needs a different exposition which
will be presented in a next paper.

We will present now in more detail an implementation of our interactive approach to the derivation
of linguistic summaries, and while discussing particular elements we will indicate relations to those
scalability issues and aspects mentioned above. We hope that this will provide another justification to
the power of both linguistic data summaries in the simple sense assumed here, and the power of Zadeh’s
protoforms, and maybe even — more generally — the power of Zadeh’s computing with words and per-
ceptions paradigm (cf. Zadeh & Kacprzyk, 1999). All this will be presented in a novel, not yet explored
perspective of a conceptual (perceptional) scalability.

LINGUISTIC DATA(BASE) SUMMARIES

Data summarization is one of basic capabilities now needed by any “intelligent” system that is meant to
operate in real life situations. Basically, due to the availability of relatively cheap and efficient hardware
and software tools, we usually face an abundance of data that is beyond human cognitive, perceptional
and comprehension skills.

Since for the human being the only fully natural means of communication is natural language, a
linguistic (say, by a sentence or a small number of sentences in a natural language) summarization of a
set of data would be very desirable and human consistent. For instance, having a data set on employees,
a statement (linguistic summary) like “almost all younger and well qualified employees are well paid”
would be useful and human consistent in many cases.
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Unfortunately, data summarization is still in general unsolved a problem in spite of vast research ef-
forts. Very many techniques are available but they are not “intelligent enough”, and not human consistent,
partly due to a little use of natural language. This concerns, e.g., summarizing statistics, exemplified by
the average, median, minimum, maximum, a-percentile, etc. which — in spite of recent efforts to soften
them — are still far from being able to reflect a real human perception of their essence.

Linguistic Data Summarization: The Basic Case

In this paper we will use a simple yet effective and efficient approach to the linguistic summarization of
data sets (databases) proposed by Yager (1982), and then presented in a more advanced, and implement-
able form by Kacprzyk & Yager (2001), and Kacprzyk, Yager & Zadrozny (2000). This will provide a
point of departure for our further analysis of more complicated and realistic summaries.

In Yager’s (1982) approach, we have (we use here the author’s terminology):

. V'is a quality (attribute) of interest, e.g. salary in a database of workers,

. Y = {yl, ey yn} is a set of objects (records) that manifest quality V, e.g. the set of workers; hence
V(v are values of quality V' for object y, € Y;

. D= {Vy,),....,/(y)} is a set of data (the “database” on question)

A linguisticsummary of a data set consists of:

. a summarizer S (e.g. young),
. a quantity in agreement Q (e.g. most),
. truth 7-e.g. 0.7,

as, e.g., “T(most of employees are young)=0.7". The truth 7' may be meant in a more general sense, e.g.
as validity or, even more generally, as some quality or goodness of a linguistic summary.

Basically, given a set of data D, we can hypothetize any appropriate summarizer S and any quantity
in agreement Q, and the assumed measure of truth will indicate the truth of the statement that Q data
items satisfy the statement (summarizer) S.

Notice that we consider here some specific, basic form of a linguistic summary. We do not consider
other forms of summaries exemplified by “over 70% of employees are under 35 years of age” that may
be viewed to provide similar information as “most of employees are young” because the latter are clearly
outside of the class of linguistic summaries considered. Notice also that we discuss here the linguistic
summarization of sets of numeric values only. One can clearly imagine the linguistic summarization of
symbolic attributes but this relevant problem is outside of the scope of this paper. We do not consider
here the linguistic summarization of textual information.

We should also note that we do not consider in this paper some other approaches to the linguistic
summarization of databases (data sets) that are based on a different philosophy, exemplified by works by
Bosc et al. (2002), Dubois & Prade (1992), Raschia & Mouaddib (2002) or Rasmussen & Yager (1996;
1997a; 1997b; 1999). Basically, one can very briefly summarize the approaches employed as follows.
First, Bosc et al. (1992) use a gradual rule view of linguistic summaries, which has been proposed by
Dubois & Prade (1992) and use linguistic quantifiers as tools for the aggregation. Rasmussen & Yager
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(1999) consider both the traditional Yager summaries and a type of Dubois & Prade’s gradual rules
showing that they can be obtained (or, more precisely, verified) via some extension of SQL. Raschia
& Mouaddib (2002) propose, and develop in a series of papers, a different approach based on hierar-
chical summaries, their tree representations, and relations to OLAP based techniques. Summaries are
here meant as aggregated (“generalized”) tuples which cover parts of the database at different levels of
abstraction.

We will not consider some other related techniques exemplified by the mining of fuzzy association
rules (cf. (Chen, Liu & Li, 2001; Chen & Wei, 2002; Chen, Wei & Kerre; 2000; Hu, Chen & Tzeng, 2002;
Lee & Lee-Kwang, 1997)), even in the context of linguistic summaries (cf. (Kacprzyk and Zadrozny,
2001d; 2003)). These approaches reflect a different perspective and, as already mentioned, will be a
subject of a next paper which will consider scalability of linguistic data summaries in a comprehensive
way, as a confluence of the technical and conceptual (perceptional) scalability.

First, we should consider the forms of the particular elements of a linguistic summary in our sense.
Since we use natural language throughout our analysis, as it is the only fully natural and human consis-
tent means of communication for the humans, we assume the summarizer S to be a linguistic expression
semantically represented by a fuzzy set like, for instance “young” would be represented as a fuzzy set
in the universe of discourse as, e.g., {1, 2, ..., 90}, i.e. containing possible values of the human age, and
“young” could be given as, e.g., a fuzzy set with a non-increasing membership function in that universe
such that, in a simple case of a piecewise linear membership function, the age up to 35 years is for sure
“young”, i.e. the grade of membership is equal to 1, the age over 50 years is for sure “not young”, i.e.
the grade of membership is equal to 0, and for the ages between 35 and 50 years the grades of member-
ship are between 1 and 0, the higher the age the lower its corresponding grade of membership. A simple
one-attribute-related summarizer exemplified by “young” can clearly be extended to some confluence
of attribute values as, e.g., “young and well paid”.

Clearly, in the context of linguistic summarization of data, the most interesting are more sophisticated,
human-consistent summarizers (concepts) as, €.g.:

e productive workers,
. stimulating work environment,
. difficult orders, etc.

whose definition involves complicated combinations of attributes, e.g.: a hierarchy (not all attributes
are of the same importance), the attribute values are ANDed and/or ORed, & out of n, most, etc. of them
should be accounted for, etc. The definition, processing and generation of such non-trivial summarizers
needs some specific tools and techniques to be discussed later.

The quantity in agreement, O, is an indication of the extent to which the data satisfy the summary.
Once again, a precise indication is not human consistent, and a linguistic term represented by a fuzzy
set is employed. Basically, two types of such a linguistic quantity in agreement can be used:

. absolute as, e.g., “about 57, “more or less 1007, “several”, and

99 ¢

. relative as, e.g., “a few”, “more or less a half”, “most”, almost all”’etc.

Notice that the above linguistic expressions are the so-called fuzzy linguistic quantifiers (cf. Zadeh,
1983) that can be handled by fuzzy logic.
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Similarly as for the fuzzy summarizer, the form (basically, the definition of a fuzzy linguistic quanti-
fier) of a fuzzy quantity in agreement is also subjective, and can be either predefined or elicited from
the user.

The calculation of the truth (or, more generally, validity) of the linguistic summary considered above
is equivalent to the calculation of the truth value (from the unit interval) of a linguistically quantified
statement (e.g., “most of the employees are young”). This can be calculated by using two most relevant
techniques: Zadeh’s (1983) calculus of linguistically quantified statements (cf. (Zadeh & Kacprzyk,
1999) or Yager’s (1988) OWA operators (cf. (Yager & Kacprzyk, 1997)). Since these calculi are well
known and are widely used in many works involving linguistic quantifier based aggregation of partial
scores, we will discuss them only briefly in what follows and will refer the reader to, for instance, Za-
deh’s (1983; 1985) or Yager’s (1988) source papers for more details.

A linguistically quantified proposition, exemplified by “most experts are convinced”, is written as
"Qy's are F'" where Qs a linguistic quantifier (e.g., most), ¥ = {y} is a set of objects (e.g., experts),
and F'is a property (e.g., convinced). Importance B may be added yielding "QBy's are F'", e.g., “most
(Q) of the important (B) experts (y’s) are convinced (F)”. The problem is to find truth(Qy's are F') or
truth(@QBy's are F) respectively, knowing truth(y is F'),Vy € Y which is done here using Zadeh’s
(1983; 1985) fuzzy logic based calculus of linguistically quantified propositions.

Property F' and importance B are fuzzy sets in Y, and a (proportional, nondecreasing) linguistic
quantifier Q is assumed to be a fuzzy set in [0,1] as, e.g.

1 for z > 0.8
fo(z) =12z — 0.6 for 0.3 <z <0.8
0 for  <0.3 0
Then, due to Zadeh (1983)
truth(Qy's are F) = pu,[2> " 1, (y,)] 2
truth(QBy's are F) = p1,[> " (1, () A o)) /D 1y (,)] 3)

These formulas are clearly based on the non-fuzzy cardinalities of the respective fuzzy sets, the so-
called Z-Counts (cf. Zadeh, 1983).

AnOWA operator (Yager, 1988; Yager & Kacprzyk, 1997) of dimensionpisamapping F : [0,1]" — [0,1]
if associated with F is a weighting vector W = [wl,...,wp]T . w, €[0,1],w, +-+w, =1, and

F(x .,mp) =wb +--wb = w'B 4)

RER

where b, is the i-th largest element among z,...,z , B = [bl,...,bp] .

The OWA weights may be found from the membership function of O due to (cf. Yager, 1988):
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fo(i) — py(i—1) fori=1...,p

11,(0) fori=0 )

The OWA operators can model a wide array of aggregation operators (including linguistic quantifiers),
from w, =...= w, =0 and w =1 which corresponds to “all”, to w, =1 and w, = ... = w, =0
which corresponds to ” at least one”, through all intermediate situations, and that is why they are widely
employed.

An important case is when with the OWA operator importance qualification of the particular pieces of
data is associated. Suppose that with the data A = [a,..., ap] , avector of importances V = [v,,..., vp] ,
such that v, € [0,1] is the importance of a,i=1,...,p, v, + v, = 1, is associated. Then, for an
ordered weighted averaging operator with importance qualification based on a linguistic quantifier O,
denoted OWA,,, Yager (1988) proposed that, first, some redefinition of the OWA’s weights w, 's into
w,'s is performed, and (4) becomes

F(z,...,z)=wb +wb =W'B

I P pp (6)

where

J Jj—1

P >,
— k=1 . k=1
wi - 'UQ p 'uQ p

P >,

k=1

)
where v, is the importance of b,, i.e. the k-largest element of 4.
Some Other Validity Measures of Linguistic Summaries

The basic validity criterion, i.e. the truth of a linguistically quantified statement given by (2) and (3),
is certainly the most natural and important but it does not grasp all aspects of a linguistic summary. We
will present here some other quality (validity) criteria, notably those proposed by Kacprzyk & Yager
(2001), and Kacprzyk, Yager & Zadrozny (2000).

First, Yager (1982) proposed a measure of informativeness whose essence is: suppose that we have
a data set, whose elements are from a space X. One can view the data set itself as its own most informa-
tive description, and any other summary implies a loss of information, and therefore informativeness
comes into play

The degree of truth is unfortunately not a good measure of informativeness (cf. Yager, 1982; 1991).
Let the summary be characterized by the triple (S, O, T), and let a related summary be characterized by
the triple (8, O¢, T) such that §° is the negation of S, i.e. p(.) = I - py(.), and similarly uQC(.) =1-p,0).
Then, Yager (1982; 1991) proposed the following measure of informativeness of a summary
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1=[T-5P(Q)-SP(S)]V[(1-T)- Sp(Q")Sp(S")] ®
where SP(Q) is the specificity of O given as

1 1

SPQ) = o card @ 4.

)

where Q is the a-cut of Q and card(.) is the “cardinality” (in fact, the area) of the respective set; and
similarly for Q¢, S, §¢. Notice that in (8) we also have the specificity of S/S¢, SP(S/S°), which is meant
similarly.

The rationale behind this measure of informativeness differs from that of, e.g., Chen, Liu & Li (2001).
Unfortunately, this measure of informativeness is by no means a definite solution. First, let us briefly
mention George and Srikanth’s (1996a; 1996b) proposal. Suppose that a linguistic summary of interest

involves more than 1 attribute (e.g., “age”, “salary” and “seniority” in the case of employees). Basically,
for the same set of data, two summaries are generated:

. a constraint descriptor which is the most specific description (summary) that fits the largest num-
ber of tuples in the relation (database) involving the attributes in question,

. a constituent descriptor which is the description (summary) that fits the largest subset of tuples with
the condition that each tuple attribute value takes on at least a threshold value of membership.

George and Srikanth (1996a; 1996b) use these two summaries to derive a fitness function (goodness of
asummary) thatis later used for deriving a solution (a best summary) via a genetic algorithm they employ.
This fitness function represents a compromise between the most specific summary (corresponding to the
constraint descriptor) and the most general summary (corresponding to the constituent descriptor).

Then, some additional measures have been developed by Kacprzyk & Yager (2001) and Kacprzyk,
Yager & Zadrozny (2000). Let us briefly repeat some basic notation. We have a data set (database) D
that concerns some objects (e.g. employees) ¥ = {y,, ..., y, } described by some attribute V' (e.g. age)
taking on values in a set X' = {x, x,, ...} exemplified by {20, 21, ..., 100} or even {very young, young,
..., old, very old} though this case will not be considered here. Let d=V(y,) denote the value of attribute
V for object y.. Therefore, the data set to be summarized is given as a table

D=[d,..d=[Vy), V), ... V()] (10)

In a more realistic case the data set is described by more than one attribute. Let J'={ VsV, Vm} be
a set of such attributes taking values in X, i =1, ..., m; Vi) denotes the value of attribute V. for object
;> and attribute ¥, takes on its values from a set X.

The data set to be summarized is therefore:

D=V, VY )oees VDL IV,0))s Vo3))sees V)]s s IV, 00, V0, )5 V, 0 )1 (11)

In case of multiple (m) attributes the description (summarizer) S is assumed as a family of fuzzy sets
§={S, S,,,... S, } where S, € S'is a fuzzy setin X, i=1,...,m. Then, p(y), i = 1,2,..., n, may be defined
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as:
1) = minje{l,z,..,,m}[ Hg (V](V,))] (12)
and
Z s (y,)
r = i=1
n (13)
and T =,uQ(r).

So, having S, we can calculate the truth value 7" of a summary for any quantity in agreement. To find
a best (optimal) summary, we should calculate 7 for each possible summarizer, and for each record in
the database in question which may be computationally prohibitive for virtually all non-trivial databases
and number of attributes. Therefore, from the point of view of scalability, this suggests that the process
of finding an optimal linguistic summary is not technically scalable.

A natural line of reasoning would be to either limit the number of attributes of interest or to limit
the class of possible summaries by setting a more specific description (e.g. very young, young and well
paid, etc. employees). This will limit the search space, and may help attain an acceptable technical scal-
ability.

We will deal now with the second option. The user can limit the scope of a linguistic summary to, for
instance, those for which the “age” takes on the value “young” only, i.e. to fix the summarizer related to
that attribute. This would correspond to the searching of the database using the query w, equated with the
fuzzy set in X, corresponding to “young” related to attribute v, (i.e. age), i.e. characterized by 1, (.).
In such a case, u(y,) given by (12) becomes

) =ming Ly V0D A, (V0L 1L (14)

where “/A” is the minimum (or, more generally, a 7-norm), and then

Zn:us(yi)

n

r =

, V,(3,)
= (15)

and 7T=u o This is clearly related to how Zadeh’s calculus of linguistically quantified propositions
works.

Now, we will briefly mention the 5 quality measures of linguistic database summaries, in particular four
additional ones as introduced in Kacprzyk & Yager (2001), and Kacprzyk, Yager & Zadrozny (2000):

. a truth value [which basically corresponds to the degree of truth of a linguistically quantified
proposition representing the summary given by, say, (2) or (3)],
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. a degree of imprecision,

. a degree of covering,

. a degree of appropriateness,
. a length of a summary.

For notational simplicity later on, let us rewrite (12) and (1) as:

ufd)=min_, [, (V@) i=1, on (16)

and

= (17)

where, clearly, (16) and (17) are equivalent to (12) and (15) though rewritten in the form more suitable
for our present discussion.

The degree of truth, 7', is the basic validity criterion introduced in the source Yager’s (1982) work
and commonly employed. It is clearly equal to

T, = u(r) (18)

which results directly from Zadeh’s (1983; 1985) calculus of linguistically quantified propositions.
The degree of imprecision is an obvious and important validity criterion. Basically, a very imprecise
linguistic summary (e.g. on almost all winter days the temperature is rather cold) has a very high degree
of truth yet it is not useful.
Suppose that description (summarizer) S is given as a family of fuzzy sets $={S,, S,, ... § }. For a
fuzzy set Sj,j=1, ..., m, we can define its degree of fuzziness as, e.g.:

card {z € Xj:%gj(x)>0 }
card X,

in(S)= (19)

where card denotes the cardinality of the corresponding (nonfuzzy) set and the domains X, are all as-
sumed to be finite (what is reasonable from the practical point of view). That is, the “flatter” the fuzzy
set Sj the higher the value of in(Sj).

The degree of imprecision, 7, of the summary — or, in fact, of S — is then defined as:

(20)
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Notice that the degree of imprecision 7, depends on the form of the summary only and not on the
database, that is its calculation does not require the searching of the database (all its records) which is
very important.

The degree of covering, T, is defined as

ti

= 1)
h,

where

9

1 if pg(y,)>0 and g, (V (y,))>0
0 otherwise

i

|1 it ()0
0 otherwise

and the denominator of (21) is assumed to be different from 0 - otherwise 7, is defined to be equal 0.

The degree of covering says how many objects in the data set corresponding to the query w, are
“covered” by the particular summary. Its interpretation is simple as, e.g., if it is equal to 0.15, then this
means that 15% of the objects are consistent with the summary in question. The value of this degree
depends clearly on the contents of the database.

The degree of appropriateness is probably the most relevant measure. Suppose that the summary
containing the description (fuzzy sets) S = (S,,S,...., S, ) is partitioned into m partial summaries each of
which encompasses the particular attributes V',V ,..., V, , such that each partial summary corresponds to
one fuzzy set only, then if we denote:

S )=ty (V) (23)
then

n

2N,
i=1

= J=1,..,n
n

1 if S.(y,)>0

where, h, = .
: 0 otherwise

, and the degree of appropriateness, T, is defined as:

T=abs( [[ r—-T,) (24)

j=l,....,m
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The degree of appropriateness means that, for a database concerning the employees, if — for instance
—50% of them are less than 25 years old and 50% are highly qualified, then we may expect that 25% of
the employees would be less than 25 years old and highly qualified; this would correspond to a typical,
fully expected situation. However, if the degree of appropriateness is, e.g., 0.39 (i.e. 39% are less than
25 years old and highly qualified), then the summary found reflects an interesting, not fully expected
relation in our data. This degree describes therefore how characteristic for the particular database the
summary found is. 7, is very important because a trivial summary like, for instance, “100% of employees
is of some age” has truth equal 1 but its degree of appropriateness is clearly equal 0.

The length of a summary is relevant because a long summary is not easily comprehensible by the
human user. This length, T}, may be defined in various ways, and the below form has proven to be use-
ful:

T.=2 (0.5%%) (25)

Now, the (total) degree of validity, 7, of a particular linguistic summary is defined as the weighted
average of the above 5 degrees of validity, i.e.:

T=T(T,T,T,T,T;w,w,w,w, w,) =Zi:l,2w wT (26)

LS

and the problem is to find an optimal summary, $* € {S}, such that

S*=argmax, 2., wT (27)
where: w,...,w, are weights assigned to the particular degrees of validity, with values from the unit
interval, the higher, the more important such that 2., .w =1.

The definition of weights, w,,...,w,, is a problem in itself, and will not be dealt with in more detail.
The weights can be predefined or elicited from the user.

As we have already mentioned, the linguistic summarization meant in terms of (27) is clearly not
technically scalable, even if some more sophisticated search techniques are used which limit the size of
the problem as exemplified by George & Srikanth’s (1996a; 1996b) use of a genetic algorithm. How-
ever, let us notice that the situation is completely different when cognitive (perceptional) scalability is
accounted for. It is clear that the very concept of linguistic data summary as presented above is what
might be said totally cognitively (perceptionally) scalable because it is comprehensible to a human be-
ing, either an individual or a group of individuals, no matter what size of the data set is, and also to a
large extent independently of the background, sex, age, etc. of the individuals. This is a direct result of,
on the one hand, the use of natural language, which is the only fully natural means of articulation and
communication of a human being, and — on the other hand — of a simple and intuitively appealing form
of a linguistic summary which basically says what most of the data exhibit, i.e. what usually happens
(holds). This is in fact what is looked for and found by all data analysis tools and techniques.

PRACTICAL DETERMINATION OF LINGUISTIC DATA SUMMARIES

One can clearly notice that a fully automatic determination of a best linguistic summary, i.e. the solu-
tion of (26) may be infeasible in practice due to a high number of possible summaries. In (Kacprzyk &
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Zadrozny, 1998; 2001a) an interactive approach was proposed with a user assistance in the definition of
summarizers, by the indication of attributes and their combinations of interest. This proceeds via a user
interface of a fuzzy querying add-on. Basically, the queries (referring to summarizers) allowed are:

. simple as, e.g., “salary is high”

. compound as, e.g., “salary is low AND age is old”

. compound (with quantifier), as, e.g., “most of {salary is high, age is young, ..., training is well
above average}.

We will also use “natural” linguistic terms, i.e. (7+2!) exemplified by: very low, low, medium, high,
very high, and also “comprehensible” fuzzy linguistic quantifiers as: most, almost all, ..., etc.

In (Kacprzyk &Zadrozny, 1994; 1995a; 1995b; 2001b), a conventional DBMS is used, and a fuzzy
querying tool is developed to allow for queries with fuzzy (linguistic) elements of the “simple”, “com-
pound” and “compound with quantifier” types. This fuzzy querying system (add in) has been developed
for Microsoft Access® but its concept is clearly applicable to any DBMS. The main problems to 