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Representing and reasoning about di�erentviewpoints: an agronomy appliationMadalina Croitoru1 and Rallou Thomopoulos2,1

1 LIRMM (CNRS and Univ. Montpellier II), F�34392 Montpellier edex 5, Franeroitoru�lirmm.fr
2 INRA, UMR1208, F�34060 Montpellier edex 1, Franerallou.thomopoulos�supagro.inra.frAbstrat Real-world appliations are often omplex systems where sev-eral ways of analysing a given situation an be expressed, depending onators' viewpoints. This paper proposes a semantially sound synta-ti extension to Coneptual Graphs, namely Coneptual Graph Assem-blies (CGAs), that allows the representation of multiple viewpoints onthe same situation. Several reasoning mehanisms, based on the proje-tion operation, orresponding to di�erent strength levels and adaptedto multi-viewpoints situations are then demonstrated. Several modellingsenarios are then proposed and our work is put in the ontext of realworld examples from the agri-food domain.1 IntrodutionQuality ontrol within agri-food hains relies on numerous riteria: nutritional,funtional, sanitary, environmental, eonomial, et. The management of foodquality has to reonile several faets onstituted by these riteria. Moreover, theobjetives of quality are based on several ators: tehniians, managers, users,sientists, professional assoiations, publi ommunities, et. The importaneattahed to the di�erent quality riteria varies aording to the onsidered ators.These elements lead to the following open researh questions: �how to represent,within a knowledge representation model, these ontraditory viewpoints?�; �howto take into aount, by the reasoning mehanisms, the interests of the di�erentinvolved ators?�The urrent struture of hains is questioned as for system perenniality, pro-tetion of the environment, publi health issues, ost and energy. The ators'viewpoints are divergent, hene it is neessary to de�ne representational andreasoning mehanisms able to model and take into aount the balane betweenviewpoints, and the risks and bene�ts they imply. Our general objetive is theoneption of a deision support tool for the ators of an agri-food hain, inpresene of ontraditory viewpoints and priorities.In this ontext, as a �rst step, we built a knowledge-based system able torepresent the di�erent kinds of knowledge needed, initially provided with on-sisteny heking, querying and symboli simulation mehanisms. Given thatthe information soures are both experimental data extrated from the domain



literature and expert statements, the intuitiveness and proximity to natural lan-guage of the representation language are essential features. Moreover, the expertsshould be able to understand the reasoning on their modelling and to validateit, thus reasoning should be done diretly on the knowledge representation andfeedbak intuitive. Finally, a logial semantis is desirable as a foundation forreasoning and the language should be �exible enough to be easily extended tonew features. For these reasons, oneptual graphs were initially hosen as theknowledge representation and reasoning language for this spei� appliation.However, oneptual graphs annot easily represent di�erent, potentially on-traditory viewpoints, and moreover, rigorous mehanisms for reasoning aboutthis type of knowledge have not been put into plae. In this paper we presenta formalism that allows the representation of suh ontraditory, inonsistenttype of knowledge for this appliation along with sound and omplete syntatioperation for manipulation.A simple ase of this problem has been addressed by Puder [9℄ who onsideredalternative desriptions for one onept. He built a tree with this onept as aroot node, and used this struture for servie trading in the AI-Trader projet3.This work is not su�ient in the ontext of the agronomy domain where wholesentenes ould be debated and argued upon. In [10℄, an approah for viewpointrepresentation is proposed in the framework of the oneptual graph model,however it onerns the expression of faets of onepts in an ontology, i.e. theterminologial part of the model (the support), and does not treat the ommen-sal representation of several viewpoints in the assertional knowledge. Anotherapproah for representing viewpoints in the oneptual graph model is basedon nested graphs. They have been introdued at a desriptive level by Sowa[12℄ as a way of representing ontexts by struturing knowledge by levels, andstudied in further works suh as [7,8℄. Typed nestings were introdued by [2℄,whih allows to speify the relationship (desription, explanation, et.) betweenthe surrounding vertex and one of its desriptions and thus to expliitly attahseveral desriptions to the same vertex. Eah desription an then be viewed as aviewpoint, as proposed in [13℄ whih more spei�ally fouses on how to assoiatespei� voabularies with ontexts. A drawbak of the nested graph approahis that it does not allow inter-viewpoint reasoning, suh as inter-viewpoint pro-jetion or detetion of ontraditions between viewpoints. In [5,6℄ an extensionto Coneptual Graphs was proposed to further address the above mentionedmodelling needs. However, the proposed formalism was laking in rigorousnessby the fat that the ombinatorial strutures proposed were not omplete withrespet to the proposed semantis [5℄. While this problem has been partiallysolved in [6℄ the lak of a onrete pratial framework to address the onretemodelling needs of the agri-domain was still to be addressed.In this paper we extend this formalism by showing di�erent ombinatorialstrutures of de�ning sound and omplete viewpoints as well as demonstratingtheir appliability for the above mentioned problem in the agronomy domain.Setion 2 presents a motivating example, Setion 3 introdues the formalism,3 http://www.puder.org/aitrader/



Setion 4 shows how CGAs an be used in oneptual modelling, �nally Setion 5onludes with some perspetives.2 Motivating exampleConeptual graphs [12,11℄ (CGs) are a logial, graph-based approah to knowl-edge representation that introdue a lear distintion between ontologial andasserted knowledge. More spei�ally, a Coneptual Graph represents knowl-edge as a support and an assoiated bipartite graph. The support enodes theontologial, bakground information. It onsists of a onept and a relation tax-onomy along with the markers used to denote instanes or generi onepts. Thefatual information is depited as a bipartite graph where one partition lass,the onepts, is represented using square nodes, and the other, the relations, isrepresented using ovals. An example of a Coneptual Graph is depited in the�gure below:
Figure 1. Example of a Coneptual GraphThe oneptual graph in this �gure states that the durum wheat produtP1 ontains a lipoxygenase and arotenoid whih is haraterised by the yellowolor.Reasoning with Coneptual Graphs means translating the Coneptual Graphinto FOL (First Order Logi) formulae and employing FOL dedution. An-other method looks at �nding a homomorphism (projetion) between two graphsde�ned on the same support. These two methods have been proven equiva-lent [12,1℄.However, Coneptual Graphs an only represent stati, �snapshot� fats aboutthe world. Indeed, the support enodes the hierarhies whih lassify the enti-ties and relations we need to desribe a ertain sene, while the bipartite graphrepresents that sene. We do not have a proper built-in mehanism to desribealternative senes (e.g. as viewed from di�erent / inonsistent view points). Anexample of the expressivity needed for this appliation is depited in �gure 2.In this �gure two viewpoints are represented about the information given bya oneptual graph: the sientist viewpoint (denoted �S.�) and the marketingviewpoint (denoted �Mk.�). The sientist view indiates that the durum wheatprodut P1 ontains arotenoid haraterised by the yellow olor, lipoxygenase



Figure 2. Multiple viewpoints in the agri-food appliationthat deletes arotenoid, and peroxydase that generates a brown olor whih hidesthe yellow one. It also indiates that the HT (High Temperature) drying deleteslipoxygenase and peroxydase and generates a glutinous texture. The marketingview indiates that the yellow olor is wanted by the onsumer and that theglutinous texture is rejeted by the onsumer.In this paper we propose a syntati, semantially sound mehanism for rep-resenting the expressivity needs mentioned above. Viewpoints are representedusing di�erent ombinatorial grouping in the Coneptual Graphs Assemblies(CGA). Reasoning about viewpoints is done using an extension of the proje-tion mehanism that respets the ombinatorial struture indued by the CGA.In the following example the query is searhed in all of the viewpoints thereforedenoting a onsensus.For example, onsider the following simple query omposed of a single oneptvertex:
Figure 3. Example of a simple queryThe meaning of searhing for this query in all of the viewpoints is highlightingprodut properties that are of interest for all of them, e.g. in �gure 2 for bothsientists and marketing. In the example of �gure 2, there are two answers to



this query that appear in all the viewpoints. These answers orrespond to theonept verties represented in greyed out shade in �gure 4.

Figure 4. Answers to the query3 FormalismAn ordered bipartite graph is a triple whih onsists of a set of onept nodes,a set of relation nodes and a set of mappings between the relation nodes andnonempty �nite sequenes over onept nodes. An ordered bipartite graph withjust one relation node is alled a star graph. We onsider a speial kind ofsubgraphs for our modelling purposes, namely spanned subgraphs. A spannedsubgraph indued by a set of relation nodes onsists of the set of relation nodes,the edges inident with these and the orresponding onept nodes.De�nition 1. (Ordered Bipartite Graph)A triple G = (VC , VR, NG) is alled an ordered bipartite graph if- VC and VR are �nite disjoint sets, ( VG := VC ∪ VR is the verties set of G ),and- NG : VR → V +
C is a mapping; V +

C is the set of all �nite nonempty sequenesover VC .For r ∈ VR with NG(r) = c1 . . . ck, dG(r) := k is the degree of r in G and
N i

G(r) := ci is the i-neighbour of r in G. The set of (distint) neighbours of ris denoted NG(r).



The multiset EG of edges of G is EG =
(

{c, r}|c ∈ VC , r ∈ VR and ∃i suh that
N i

G(r) = c
).We further assume that for eah c ∈ VC there is r ∈ VR and i ∈ N suh that

c = N i
G(r) (G has no isolated verties).An ordered bipartite graph G = (VC , VR, NG) with |VR| = 1 is alled a stargraph.If G = (VC , VR, NG) is an ordered bipartite graph and A ⊆ VR, the subgraphspanned by A in G is the graph G[A] := (V 1

C , A, N1
G), where N1

G is the restri-tion of NG to A and V 1
C = {c ∈ VC |∃r ∈ A and ∃i ∈ N suh that c = N i

G(r)}.If A = {r}, then we simply write G[r], whih is referred to as the star subgraphspanned by r in G. Clearly, the graph G an be expressed as the union of itsstar subgraphs: G = ∪r∈VR
G[r].Ordered bipartite graphs are appropriate tools to represent and visualize(direted) hypergraphs. Visually, an ordered bipartite graph G = (VC , VR, NG)an be represented using boxes for verties in VC , ovals for verties in VR andinteger labelled simple urves (edges) onneting boxes and ovals: if c and r aresuh that c = N i

G(r), then we have an edge with label i onneting the boxlabelled c to the oval labelled r (the labels of the verties are depited outsideof the orresponding shape, and are used as visual marks only if it is neessaryto make the diagram more lear).We also need some additional graph theoretial notations. If D = (V, E) is aDAG (Direted Ayli Graph), then a soure (sink) in D is any node v of Dsuh that there is no entering (leaving) ar in (from) v.A hypergraph is a pair H = (V,P(H)), where V is a nonempty �nite set (theverties set of H), and P(H) is a family of nonempty subsets of V . Eah member
P of P(H) is a hyperedge of H .The next two de�nitions, following the line of [1℄, introdue the oneptsof support and Coneptual Graphs. A support is a struture that provides thebakground knowledge about the information to be represented in the Conep-tual Graphs. It onsists of a onept type hierarhy, a relation type hierarhy,a set of individual markers that refer to spei� onepts and a generi marker,denoted by *, whih refers to an unspei�ed onept.De�nition 2. (Support)A support is a 4-tuple S = (TC , TR, I, ∗) where:- TC is a �nite partially ordered set (poset), (TC ,≤), of onept types, de�n-ing a type hierarhy (speialization hierarhy: ∀x, y ∈ TC x ≤ y means that x isa subtype of y) and whih has a greatest element ⊤C, the universal type.- TR is a �nite set of relation types partitioned into k posets (T i

R,≤)i=1,k ofrelation types of arity i (1 ≤ i ≤ k), where k is the maximum arity of a relationtype in TR. Eah (T i
R,≤)i=1,k has a greatest element, the universal type ⊤T i

R

.- I is a ountable set of individual markers, used to refer spei� onepts.- ∗ is the generi marker used to refer to an unspei�ed onept (having,however, a spei�ed type).- The sets TC, TR, I and {∗} are mutually disjoint and I ∪ {∗} is partiallyordered by x ≤ y i� x = y or y = ∗.



A Coneptual Graph is a struture that depits fatual information aboutthe bakground knowledge ontained in its support. This information is pre-sented in a visual manner as an ordered bipartite graph, whose nodes have beenlabelled with elements from the support. The label λ(v) is inserted in the shaperepresenting the node v.De�nition 3. (Coneptual graph) A (simple) Coneptual Graph (CG) is atriple SG = [S, G, λ], where:� S = (TC , TR, I, ∗) is a support;� G = (VC , VR, NG) is an ordered bipartite graph;� λ is a labelling of the verties of G with elements from the support S: ∀r ∈

VR, λ(r) ∈ T
dG(r)
R ; ∀c ∈ VC , λ(c) ∈ TC ×

(

I ∪ {∗}
).We introdue now the notion of a Coneptual Graph Assembly (CGA) as astruture whih onsists of a Coneptual Graph (CG) and a hypergraph on theCG's relation nodes. Eah hyperedge de�nes a CG subgraph whih is a memberof the CGA.De�nition 4. (Coneptual Graph Assembly)Let S = (TC , TR, I, ∗) be a support, SG = [S, G, λ] a Coneptual Graph withoutisolated onept verties, and let H = (VR,P(H)) be a hypergraph on the set VRof all relation verties of G.The pair CGA = (SG, H) is alled a Coneptual Graph Assembly. Themembers of CGA = (SG, H) are the Coneptual Graphs SGP = (S, G[P ], λP ),where P ∈ P(H) is any hyperedge of H, G[P ] is the subgraph of G spanned bythe hyperedge P , and λP is the restrition of λ on the set of verties of G[P ].Note that any simple Coneptual Graph SG (without isolated onept ver-ties) an be viewed as a Coneptual Graph Assembly with a single member, bytaking H as a hypergraph with a single hyperedge P(H) = (VR), ontaining allrelation verties of G.Eah hyperedge an be onsidered as a given world; eah CG member of aCGA thus provides information available in this world. The hypergraph H anbe given expliitly or impliitly, by a ombinatorial property of its hyperedges.The latter ase will be developed in Setion 4.Expliitly, the hypergraph H an be represented as a bipartite graph withone node lass VR, and the other (disjoint) lass having a node vP for eahhyperedge P ∈ P(H), onneted by edges to the relation nodes belonging to P .In the visual representation of the Coneptual Graph SG, this new set of verties,

VP , representing the members of the CGA, an be designated as diamonds. Thiswas illustrated in the example of �gure 2.From a knowledge representation point of view, this tripartite graph struturehas the property that the information is well organized in order to failitatereasoning (inferenes) and, at the same time, presents itself as a visual mediumof expression.



CGs are provided with logial semantis; more preisely, an operator θ isonsidered, whih assigns to every support S a set of FOL formulas θ(S) andmaps eah simple Coneptual Graph G to a onjuntive, existential losed FOLformula θ(G). θ an be the well-known Sowa's operator Φ, or a variant of it Ψdisussed in [3℄. A logial semantis of CGAs an be de�ned as follows.De�nition 5. (CGA logial semantis)Let θ be a logial semantis for CGs, and CGA = (SG, H) a Coneptual GraphAssembly. Then, θ(CGA) is the disjuntion of the formulas assigned by θ to themembers of CGA, that is,
θ(CGA) = ∨P∈P(H)θ(SGP ).For example, onsider the CGA CGAgrouping desribed in Figure 5 and θ = Φ.Then, Φ(CGAgrouping) = [Color(yellow)∧Color(brown)∧hides(brown, yellow)]∨

[Color(yellow)∧Actor(consumer)∧Texture(glutinous)∧wanted(yellow, consumer)∧
rejected(glutinous, consumer)].Projetion [12℄ is the fundamental operation on simple Coneptual Graphs sineit an be used to de�ne a preorder on the set of CGs based on the same support.If SG = (G, λG) and SF = (F, λF ) are two CG's de�ned on the same support
S, then a projetion from SG to SF is a mapping Π : VC(G) ∪ VR(G) →
VC(F ) ∪ VR(F ) suh that- Π(VC(G)) ⊆ VC(F ) and Π(VR(G)) ⊆ VR(F );- ∀c ∈ VC(G), ∀r ∈ VR(G) if c = N i

G(r) then Π(c) = N i
F (Π(r))- ∀v ∈ VC(G) ∪ VR(G) λG(v) ≥ λF (Π(v)).If there is a projetion from SG to SF then SG subsumes SF , whih is denoted

SG ≥ SF . This subsumption relation is a preorder on the set of all CG's de�nedon the same support. Subsumption heking is an NP-omplete problem [1℄.The notion of projetion an be extended to CGAs. In the next de�nition weonsider three forms of projetion (weak, mild and strong) under two senarios:projeting a CGA to a CG or projeting a CGA to a CGA. Intuitively we needdi�erent projetion mehanisms to aount for the very nature of ConeptualGraph Assemblies: ommensalism. More preisely when trying to projet a Con-eptual Graph Assembly in a simple oneptual graph we need to distinguishfrom the ase when the information enoded in the simple oneptual graphis ontained in at least one world, all of worlds, or the oneptual graph itselfrepresented by the Coneptual Graph Assembly. Similarly when projeting twoConeptual Graph Assemblies (whih is a generalization of the previous ase)we have to onsider the same three possible situations.De�nition 6. (CGA Projetion)I. Let CGA1 = (SG1, H1) be a CGA and SG2 a CG. Then- weak projetion : CGA1 ≥w SG2 if there is P 1 ∈ P(H1) suh that SG1
P 1 ≥

SG2.- mild projetion : CGA1 ≥m SG2 if SG1
P 1 ≥ SG2 for eah P 1 ∈ P(H1).



- strong projetion : CGA1 ≥s SG2 if SG1 ≥ SG2.II. Let CGA1 = (SG1, H1) and CGA2 = (SG2, H2) be two CGAs . Then- weak projetion : CGA1 ≥w CGA2 if there are P 1 ∈ P(H1) and P 2 ∈
P(H2)suh that SG1

P 1 ≥ SG2
P 2 .- mild projetion : CGA1 ≥m CGA2 if for eah P 1 ∈ P(H1) there is P 2 ∈

P(H2) suh that SG1
P 1 ≥ SG2

P 2 .- strong projetion : CGA1 ≥s SG2 if there is a projetion Π from SG1 to
SG2 suh that the restrition of Π to the relation verties of SG1 is a homo-morphism from H1 to H2.Note that in the ase when CGA1 = (SG1, H1) is a simple oneptual graph(i.e. it ontains a single member), weak, mild and strong projetion are idential.The following theorem an be easily dedued from the above de�nitions andfurther explains the need for di�erent ombinatorial degrees of subsumption.Note that strong and mild projetion an give extra information with regardto the assoiated CGA logial semantis. When de�ned from a CGA to a CG,weak projetion preserves the soundness and ompleteness of CG projetion;when de�ned on two CGAs, it only preserves the soundness.Theorem 1. I. Let CGA1 = (SG1, H1) be a CGA and SG2 a SCG. Then thefollowing impliations hold:

CGA1 ≥s SG2 ⇒ CGA1 ≥m SG2 ⇒ CGA1 ≥w SG2.Furthermore, if θ is a logial semantis for CGs suh that SG projetion is soundand omplete with respet to θ then
CGA1 ≥w SG2 ⇔ θ(S), θ(SG2) |= θ(CGA1).II. Let CGA1 = (SG1, H1) and CGA2 = (SG2, H2) be two CGAs. Then thefollowing impliations hold:

CGA
1
≥s CGA

2
⇒ CGA

1
≥m CGA

2
⇒ CGA

1
≥w CGA

2
.If θ is a logial semantis for CGs suh that SG projetion is sound and ompletewith respet to θ then

CGA1 ≥w CGA2 ⇔there is P 2 ∈ P(H2) s.t. θ(S), θ(SG2
P 2) |= θ(CGA1).Proof:Part I. Suppose that CGA1 ≥s SG2. It follows that ΠG1→G2 6= ∅. Let π ∈

ΠG1→G2 and P 1 ∈ P(H1). π1, the restrition of π to the verties of [P 1]G1 , isa projetion from SG1
P 1 to SG2. Therefore SG1

P 1 ≥ SG2 for eah P 1 ∈ P(H1),that is CGA1 ≥m SG2. The impliation CGA1 ≥m SG2 ⇒ CGA1 ≥w SG2 isobvious by the de�nition of CGA projetion.



Let θ be a logial semantis for CGs suh that SG projetion is sound andomplete with respet to θ.If CGA1 ≥w SG2, then there is P 1 ∈ P(H1) suh that SG1
P 1 ≥ SG2. By thesoundness of θ, we have θ(S), θ(SG2) |= θ(SG1

P 1). Now, by the de�nition of CGAsemantis, θ(SG1
P 1) |= θ(CGA1), and therefore θ(S), θ(SG2) |= θ(CGA1).If θ(S), θ(SG2) |= θ(CGA1), it follows that there is a term in the disjuntion

θ(CGA1), say θ(SG1
P 1), where P 1 ∈ P(H1), suh that θ(S), θ(SG2) |= θ(SG1

P 1 ).By the ompleteness of θ, we obtain that SG1
P 1 ≥ SG2. We have obtained thatthere is P 1 ∈ P(H1) suh that SG1

P 1 ≥ SG2 and, by the de�nition of CGAprojetion, CGA1 ≥w SG2 holds.Part II. Suppose that CGA1 ≥s CGA2. It follows, by the de�nition of CGAprojetion, that there is π a projetion from SG1 to SG2 suh that P 2 = π(P 1) ∈
P(H2), for eah P 1 ∈ P(H1). Obviously, SG1

P 1 ≥ SG2
P 2 . Therefore, for eah

P 1 ∈ P(H1) there is P 2 ∈ P(H2) suh that SG1
P 1 ≥ SG2

P 2 , that is, CGA1 ≥m

CGA2.If CGA1 ≥w CGA2, then there is P 1 ∈ P(H1) and P 2 ∈ P(H2) suh that
SG1

P 1 ≥ SG2
P 2 . By the soundness of θ, we have θ(S), θ(SG2) |= θ(SG1

P 1). Now,by the de�nition of CGA logial semantis, θ(SG1
P 1) |= θ(CGA1), and therefore

θ(S), θ(SG2) |= θ(CGA1).Conversely, if there is P 2 ∈ P(H2) s.t. θ(S), θ(SG2
P 2) |= θ(CGA1), then it followsthat there is a term in the disjuntion θ(CGA1), say θ(SG1

P 1 ), where P 1 ∈
P(H1), suh that θ(S), θ(SG2

P 2 ) |= θ(SG1
P 1 ). By the ompleteness of θ, weobtain that SG1

P 1 ≥ SG2
P 2 . Therefore, we have obtained that CGA1 ≥w CGA2.4 Coneptual Modelling using CGAsAs mentioned in the previous setion, the hypergraph H de�ned on the Con-eptual Graph Assemblies relation nodes an be given expliitly (a list of thehyperedges of H is provided) or impliitly. This setion details the latter teh-nique and shows how CGAs an be e�etively used for knowledge modelling.

H is given by speifying a property of its hyperedges. In this way, it is pos-sible to represent, in a suint manner, an exponential number of members inthe CGA. However, if it is neessary, the expliit list of the hyperedges an begenerated. Let us give some interesting ways to speify the above property.(Di)graphs On the set VR of all relation verties of the CG G, a graph (ordigraph) HG is provided. The edges (or direted edges) of the graph HG expresssome links between their extremities. P(H) is desribed as a usual family ofsubsets of the verties set of HG having graph theoretial signi�ane.For example, if D is an arbitrary DAG on the set VR of all relation vertiesof G, we an take P(H) as the family of verties of all paths in D starting froma soure and ending in a sink. The ayliity ondition assures that eah pathstarting in a soure must reah a sink. If it is neessary, a dummy soure anda dummy sink are added in order to inrease the visual quality of the digraphs



onsidered (this �tive nodes are not onsidered when the hyperedges of H areonstruted).Another example an be obtained if we onsider a graph HG on the set VR ofall relation verties of G with the set of edges expressing a ompatibility relation.For example, an edge {vr1 , vr2} ∈ E(HG) means that the fats expressed by vr1and vr2 in the CG G an be onsidered in the same time in order to desribe aomplex fatual information. Taking P(H) as the family of verties of all maxi-mal (w.r.t. set inlusion) liques in HG, we obtain a CGA with an exponentialnumber of members, whih ould be an elegant and e�ient representationalmehanism.Coneptual grouping Let S = (TC , TR, I, ∗) be a support, SG = [S, G, λ] aConeptual Graph without isolated onept verties and CGA1 = (SG, H1) aCGA. Let TH ⊆ TC be a given set of threshold onept types and let VTH ⊆ VCthe set of all onept verties vc of the graph G, with the property that if λ(vc) =
(typevc

, refvc
) then ∃t ∈ TH suh that typevc

≥ t (VTH ontains the verties of
G designating objets having the type �above� the presribed threshold TH).Taking P(H) as the family of all maximal (w.r.t. inlusion) subsets P of themembers P 1 of CGA1 suh that NG(P ) ⊆ VTH , we obtain a new CGA whosemembers desribe only the fats about objets having a type above the thresholdset TH in the hierarhy given by S.For example, starting from the CGA of �gure 2, with TH = {Food produt,Color, Texture, Person}, we obtain the new CGA shown in �gure 5. This CGAontains two members P1 and P2. P1 indiates that the brown olor hides theyellow one. P2 indiates that the yellow olor is wanted by the onsumer and thatthe glutinous texture is rejeted by the onsumer. The interest of suh a trans-formation an be, for instane, to determine parts of the knowledge base thatan be easily understood by a wide publi, due to the non-spei� voabularyused in the onepts.Transversal methods Let CGA1 = (SG, H1) be a CGA. Taking P(H) asthe family of all subsets P of VR with the property that P ∩ P 1 6= ∅, foreah P 1 ∈ P(H1), we obtain a new CGA CGA = (SG, H) with interestingombinatorial onnetions with the �rst one. For example, let us suppose that
CGA1 = (SG, H1) satis�es the property that ∀P 1 ∈ P(H1) and ∀P 2 ∈ P(H1),if P 1 ⊆ P 2 then P 1 = P 2; if we take in P(H) only minimal transversal (that isminimal subsets, w.r.t. sets inlusion, of VR interseting all members of H1) thenthe hypergraph H has the property that its minimal transversals are preiselythe members of the initial hypergraph H1.Another example in this ategory omes from the integration framework de-sribed in [4℄. Let SGi = [Si, Gi, λi], i ∈ [0, n], be a set of n + 1 CGs. For eahrelation node r0

j ∈ V 0
R = {r0

1 , . . . , r
0
m}, a set R(r0

j ) of triples is provided. Eahsuh triple, (i, A, w) ∈ R(r0
j ) spei�es a rewriting rule of r0

j in SGi: r0
j is trans-lated in the spanning subgraph [A]Gi , and the k = degG0(r0

j ) neighbors of r0
j in



Figure 5. The new obtained CGA
G0 are represented by the sequene w = w1, . . . , wk of onept nodes in [A]Gi :
N1

G0(r0
j ) is represented by w1, ..., Nk

G0(r0
j ) is represented by wk.Now, for eah transversal T of the hypergraph R = (R(r0

1), . . . , R(r0
m)), ahyperedge is added to the hypergraph T i by onsidering the union of the relationnodes sets of T ontained in V i

R. In this way, n CGAs, CGAi = (SGi, T i), areobtained.Assisting reasoning Let SG = [S, G, λG] and SQ = [S, Q, λQ] be two CGsde�ned on the same support S suh that SQ ≥ SG.If ΠQ→G = {π|π is a projection from SQ to SG}, then we an onsider
Occ(Q, G) = (π(V Q

R )|π ∈ ΠQ→G). Taking H = (V G
R , Occ(Q, G)) we obtaina CGA CGA = (SG, H) whih gives all the ourenes of the query SQ in

SG. For some usual query SQ this CGA an be pre-omputed in order to havefast response time. With the same goal of e�ieny, the following CGA an beonsidered.Let SG = [S, G, λ] be a Coneptual Graph and M a model for the support
S = (TC , TR, I, ∗). Suppose that M 6|= SG and let us onsider the CGA CGA =
(SG, H), H = (V G

R ,P(H)), where P(H) = (I|I ⊂ V G
R and M |= [I]G). It is easy



to see that H is an independene system on V G
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