N

N

Representing and reasoning about different viewpoints:
an agronomy application

Madalina Croitoru, Rallou Thomopoulos

» To cite this version:

Madalina Croitoru, Rallou Thomopoulos. Representing and reasoning about different viewpoints: an
agronomy application. ICCS: International Conference on Conceptual Structures, Jul 2009, Moscow,
Russia. pp.128-140, 10.1007/978-3-642-03079-6_10 . lirmm-00410637

HAL 1d: lirmm-00410637
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00410637
Submitted on 21 Aug 2009

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://hal-lirmm.ccsd.cnrs.fr/lirmm-00410637
https://hal.archives-ouvertes.fr

Representing and reasoning about different
viewpoints: an agronomy application

Madalina Croitoru! and Rallou Thomopoulos?:!

! LIRMM (CNRS and Univ. Montpellier IT), F-34392 Montpellier cedex 5, France
croitoru@lirmm.fr
2 INRA, UMRI1208, F-34060 Montpellier cedex 1, France

rallou.thomopoulos@supagro.inra.fr

Abstract Real-world applications are often complex systems where sev-
eral ways of analysing a given situation can be expressed, depending on
actors’ viewpoints. This paper proposes a semantically sound syntac-
tic extension to Conceptual Graphs, namely Conceptual Graph Assem-
blies (CGAs), that allows the representation of multiple viewpoints on
the same situation. Several reasoning mechanisms, based on the projec-
tion operation, corresponding to different strength levels and adapted
to multi-viewpoints situations are then demonstrated. Several modelling
scenarios are then proposed and our work is put in the context of real
world examples from the agri-food domain.

1 Introduction

Quality control within agri-food chains relies on numerous criteria: nutritional,
functional, sanitary, environmental, economical, etc. The management of food
quality has to reconcile several facets constituted by these criteria. Moreover, the
objectives of quality are based on several actors: technicians, managers, users,
scientists, professional associations, public communities, etc. The importance
attached to the different quality criteria varies according to the considered actors.
These elements lead to the following open research questions: “how to represent,
within a knowledge representation model, these contradictory viewpoints?”; “how
to take into account, by the reasoning mechanisms, the interests of the different
involved actors?”

The current structure of chains is questioned as for system perenniality, pro-
tection of the environment, public health issues, cost and energy. The actors’
viewpoints are divergent, hence it is necessary to define representational and
reasoning mechanisms able to model and take into account the balance between
viewpoints, and the risks and benefits they imply. Our general objective is the
conception of a decision support tool for the actors of an agri-food chain, in
presence of contradictory viewpoints and priorities.

In this context, as a first step, we built a knowledge-based system able to
represent the different kinds of knowledge needed, initially provided with con-
sistency checking, querying and symbolic simulation mechanisms. Given that
the information sources are both experimental data extracted from the domain



literature and expert statements, the intuitiveness and proximity to natural lan-
guage of the representation language are essential features. Moreover, the experts
should be able to understand the reasoning on their modelling and to validate
it, thus reasoning should be done directly on the knowledge representation and
feedback intuitive. Finally, a logical semantics is desirable as a foundation for
reasoning and the language should be flexible enough to be easily extended to
new features. For these reasons, conceptual graphs were initially chosen as the
knowledge representation and reasoning language for this specific application.

However, conceptual graphs cannot easily represent different, potentially con-
tradictory viewpoints, and moreover, rigorous mechanisms for reasoning about
this type of knowledge have not been put into place. In this paper we present
a formalism that allows the representation of such contradictory, inconsistent
type of knowledge for this application along with sound and complete syntactic
operation for manipulation.

A simple case of this problem has been addressed by Puder [9] who considered
alternative descriptions for one concept. He built a tree with this concept as a
root node, and used this structure for service trading in the AI-Trader project?.
This work is not sufficient in the context of the agronomy domain where whole
sentences could be debated and argued upon. In [10], an approach for viewpoint
representation is proposed in the framework of the conceptual graph model,
however it concerns the expression of facets of concepts in an ontology, i.e. the
terminological part of the model (the support), and does not treat the commen-
sal representation of several viewpoints in the assertional knowledge. Another
approach for representing viewpoints in the conceptual graph model is based
on nested graphs. They have been introduced at a descriptive level by Sowa
[12] as a way of representing contexts by structuring knowledge by levels, and
studied in further works such as [7,8]. Typed nestings were introduced by [2],
which allows to specify the relationship (description, explanation, etc.) between
the surrounding vertex and one of its descriptions and thus to explicitly attach
several descriptions to the same vertex. Each description can then be viewed as a
viewpoint, as proposed in [13] which more specifically focuses on how to associate
specific vocabularies with contexts. A drawback of the nested graph approach
is that it does not allow inter-viewpoint reasoning, such as inter-viewpoint pro-
jection or detection of contradictions between viewpoints. In [5,6] an extension
to Conceptual Graphs was proposed to further address the above mentioned
modelling needs. However, the proposed formalism was lacking in rigorousness
by the fact that the combinatorial structures proposed were not complete with
respect to the proposed semantics [5]. While this problem has been partially
solved in [6] the lack of a concrete practical framework to address the concrete
modelling needs of the agri-domain was still to be addressed.

In this paper we extend this formalism by showing different combinatorial
structures of defining sound and complete viewpoints as well as demonstrating
their applicability for the above mentioned problem in the agronomy domain.
Section 2 presents a motivating example, Section 3 introduces the formalism,
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Section 4 shows how CGAs can be used in conceptual modelling, finally Section 5
concludes with some perspectives.

2 DMotivating example

Conceptual graphs [12,11] (CGs) are a logical, graph-based approach to knowl-
edge representation that introduce a clear distinction between ontological and
asserted knowledge. More specifically, a Conceptual Graph represents knowl-
edge as a support and an associated bipartite graph. The support encodes the
ontological, background information. It consists of a concept and a relation tax-
onomy along with the markers used to denote instances or generic concepts. The
factual information is depicted as a bipartite graph where one partition class,
the concepts, is represented using square nodes, and the other, the relations, is
represented using ovals. An example of a Conceptual Graph is depicted in the
figure below:
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@ Lipoxygenase : *
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Color : yellow

Figure 1. Example of a Conceptual Graph

The conceptual graph in this figure states that the durum wheat product
P1 contains a lipoxygenase and carotenoid which is characterised by the yellow
color.

Reasoning with Conceptual Graphs means translating the Conceptual Graph
into FOL (First Order Logic) formulae and employing FOL deduction. An-
other method looks at finding a homomorphism (projection) between two graphs
defined on the same support. These two methods have been proven equiva-
lent [12,1].

However, Conceptual Graphs can only represent static, “snapshot” facts about
the world. Indeed, the support encodes the hierarchies which classify the enti-
ties and relations we need to describe a certain scene, while the bipartite graph
represents that scene. We do not have a proper built-in mechanism to describe
alternative scenes (e.g. as viewed from different / inconsistent view points). An
example of the expressivity needed for this application is depicted in figure 2.

In this figure two viewpoints are represented about the information given by
a conceptual graph: the scientist viewpoint (denoted “Sc.”) and the marketing
viewpoint (denoted “Mk.”). The scientist view indicates that the durum wheat
product P1 contains carotenoid characterised by the yellow color, lipoxygenase
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Figure 2. Multiple viewpoints in the agri-food application

that deletes carotenoid, and peroxydase that generates a brown color which hides
the yellow one. It also indicates that the HT (High Temperature) drying deletes
lipoxygenase and peroxydase and generates a glutinous texture. The marketing
view indicates that the yellow color is wanted by the consumer and that the
glutinous texture is rejected by the consumer.

In this paper we propose a syntactic, semantically sound mechanism for rep-
resenting the expressivity needs mentioned above. Viewpoints are represented
using different combinatorial grouping in the Conceptual Graphs Assemblies
(CGA). Reasoning about viewpoints is done using an extension of the projec-
tion mechanism that respects the combinatorial structure induced by the CGA.
In the following example the query is searched in all of the viewpoints therefore
denoting a consensus.

For example, consider the following simple query composed of a single concept
vertex:

Property : *

Figure 3. Example of a simple query

The meaning of searching for this query in all of the viewpoints is highlighting
product properties that are of interest for all of them, e.g. in figure 2 for both
scientists and marketing. In the example of figure 2, there are two answers to



this query that appear in all the viewpoints. These answers correspond to the
concept vertices represented in greyed out shade in figure 4.

Figure 4. Answers to the query

3 Formalism

An ordered bipartite graph is a triple which consists of a set of concept nodes,
a set of relation nodes and a set of mappings between the relation nodes and
nonempty finite sequences over concept nodes. An ordered bipartite graph with
just one relation node is called a star graph. We consider a special kind of
subgraphs for our modelling purposes, namely spanned subgraphs. A spanned
subgraph induced by a set of relation nodes consists of the set of relation nodes,
the edges incident with these and the corresponding concept nodes.

Definition 1. (Ordered Bipartite Graph)

A triple G = (Vo, Vg, Ng) is called an ordered bipartite graph if
- Vo and Vi are finite disjoint sets, ( Vg := Vo U Vg is the vertices set of G ),
and
- Ng: Vg — VC+ is @ mapping; VC+ is the set of all finite nonempty sequences
over Vg.
For r € Vg with Ng(r) = ¢1...ck, dg(r) := k is the degree of r in G and
N (r) := ¢; is the i-neighbour of v in G. The set of (distinct) neighbours of r
is denoted Ng(r).



The multiset Eg of edges of G is Eg = ({c, r}lc € Vo,r € Vg and i such that
N&(r) =c).

We further assume that for each ¢ € Vi there is r € Vr and i € N such that
¢ = NK(r) (G has no isolated vertices).

An ordered bipartite graph G = (Vo,Vr,Ng) with |Vg| = 1 is called a star
graph.

If G = (V&, Vg, Ng) is an ordered bipartite graph and A C Vg, the subgraph
spanned by A in G is the graph G[A] := (V2, A, N}), where N} is the restric-
tion of Ng to A and V2 = {c € Vo|3r € A and Ji € N such that c = N}, (r)}.
If A = {r}, then we simply write G[r], which is referred to as the star subgraph
spanned by r in G. Clearly, the graph G can be expressed as the union of its
star subgraphs: G = Upev, G[r].

Ordered bipartite graphs are appropriate tools to represent and visualize
(directed) hypergraphs. Visually, an ordered bipartite graph G = (Vi, Vg, Ng)
can be represented using boxes for vertices in V¢, ovals for vertices in Vi and
integer labelled simple curves (edges) connecting boxes and ovals: if ¢ and r are
such that ¢ = NA(r), then we have an edge with label i connecting the box
labelled ¢ to the oval labelled r (the labels of the vertices are depicted outside
of the corresponding shape, and are used as visual marks only if it is necessary
to make the diagram more clear).

We also need some additional graph theoretical notations. If D = (V, E) is a
DAG (Directed Acyclic Graph), then a source (sink) in D is any node v of D
such that there is no entering (leaving) arc in (from) v.

A hypergraph is a pair H = (V,P(H)), where V is a nonempty finite set (the
vertices set of H), and P(H) is a family of nonempty subsets of V. Each member
P of P(H) is a hyperedge of H.

The next two definitions, following the line of [1], introduce the concepts
of support and Conceptual Graphs. A support is a structure that provides the
background knowledge about the information to be represented in the Concep-
tual Graphs. It consists of a concept type hierarchy, a relation type hierarchy,
a set of individual markers that refer to specific concepts and a generic marker,
denoted by *, which refers to an unspecified concept.

Definition 2. (Support)
A support is a 4-tuple S = (Tc,Tr,Z, *) where:

- Te is a finite partially ordered set (poset), (T, <), of concept types, defin-
ing a type hierarchy (specialization hierarchy: Vx,y € Te x <y means that x is
a subtype of y) and which has a greatest element T ¢, the universal type.

- Tr is a finite set of relation types partitioned into k posets (T, <)i=1, of
relation types of arity i (1 <1 < k), where k is the mazimum arity of a relation
type in Tr. Each (Th,<)i—1x has a greatest element, the universal type TT;;?.

- T is a countable set of individual markers, used to refer specific concepts.

- % is the generic marker used to refer to an unspecified concept (having,
however, a specified type).

- The sets Tc, Tr, T and {x} are mutually disjoint and T U {x} is partially
ordered by <y iff t =y or y = *.



A Conceptual Graph is a structure that depicts factual information about
the background knowledge contained in its support. This information is pre-
sented in a visual manner as an ordered bipartite graph, whose nodes have been
labelled with elements from the support. The label A(v) is inserted in the shape
representing the node v.

Definition 3. (Conceptual graph) A (simple) Conceptual Graph (CG) is a
triple SG =[S, G, A], where:

— S=T¢c,Tr,Z,*) is a support;

— G = (Vo,Vr,Ng) is an ordered bipartite graph;

— X is a labelling of the vertices of G with elements from the support S: Vr €
Vi, A(r) € Ta¢'") Ve € Vo, A(e) € To x (TU {}).

We introduce now the notion of a Conceptual Graph Assembly (CGA) as a
structure which consists of a Conceptual Graph (CG) and a hypergraph on the
CG’s relation nodes. Each hyperedge defines a CG subgraph which is a member
of the CGA.

Definition 4. (Conceptual Graph Assembly)

Let S = (T¢,Tr,Z, %) be a support, SG = [S,G, )\ a Conceptual Graph without
isolated concept vertices, and let H = (Vr,P(H)) be a hypergraph on the set Vi
of all relation vertices of G.

The pair CGA = (SG, H) is called a Conceptual Graph Assembly. The
members of CGA = (SG, H) are the Conceptual Graphs SGp = (S, G[P], Ap),
where P € P(H) is any hyperedge of H, G[P] is the subgraph of G spanned by
the hyperedge P, and \p is the restriction of A on the set of vertices of G[P)].

Note that any simple Conceptual Graph SG (without isolated concept ver-
tices) can be viewed as a Conceptual Graph Assembly with a single member, by
taking H as a hypergraph with a single hyperedge P(H) = (Vr), containing all
relation vertices of G.

Each hyperedge can be considered as a given world; each CG member of a
CGA thus provides information available in this world. The hypergraph H can
be given explicitly or implicitly, by a combinatorial property of its hyperedges.
The latter case will be developed in Section 4.

Explicitly, the hypergraph H can be represented as a bipartite graph with
one node class Vg, and the other (disjoint) class having a node vp for each
hyperedge P € P(H), connected by edges to the relation nodes belonging to P.
In the visual representation of the Conceptual Graph SG, this new set of vertices,
Vp, representing the members of the CGA, can be designated as diamonds. This
was illustrated in the example of figure 2.

From a knowledge representation point of view, this tripartite graph structure
has the property that the information is well organized in order to facilitate
reasoning (inferences) and, at the same time, presents itself as a visual medium
of expression.



CGs are provided with logical semantics; more precisely, an operator 6 is
considered, which assigns to every support S a set of FOL formulas 6(S) and
maps each simple Conceptual Graph G to a conjunctive, existential closed FOL
formula 0(G). 6 can be the well-known Sowa’s operator @, or a variant of it ¥
discussed in [3]. A logical semantics of CGAs can be defined as follows.

Definition 5. (CGA logical semantics)

Let 0 be a logical semantics for CGs, and CGA = (SG, H) a Conceptual Graph
Assembly. Then, 0(CGA) is the disjunction of the formulas assigned by 6 to the
members of CGA, that is,

0(CGA) = \/pE'p(H)Q(SGp).

For example, consider the CGA CGAgrouping described in Figure 5 and § = &.
Then, $(CGAgrouping) = [Color(yellow) AColor(brown)Ahides(brown, yellow)|V
[Color(yellow)AActor(consumer) AT exture(glutinous) Awanted(yellow, consumer) A\
rejected(glutinous, consumer)).

Projection [12] is the fundamental operation on simple Conceptual Graphs since
it can be used to define a preorder on the set of CGs based on the same support.
If SG = (G, \¢) and SF = (F, Ap) are two CG’s defined on the same support
S, then a projection from SG to SF is a mapping II : Vo(G) U Vi(G) —
Vo (F) U Vg(F) such that
- I(Ve (@) C Ve(F) and I(Ve(G)) C Va(F); |
- Ve € Vo(G), Vr € Vr(G) if ¢ = N (r) then II(c) = N (II(r))
-V € Vo (G) U VR(G) Ag(v) > Ap(II(v)).
If there is a projection from SG to SF then SG subsumes SF, which is denoted
SG > SF. This subsumption relation is a preorder on the set of all CG’s defined
on the same support. Subsumption checking is an NP-complete problem [1].
The notion of projection can be extended to CGAs. In the next definition we
consider three forms of projection (weak, mild and strong) under two scenarios:
projecting a CGA to a CG or projecting a CGA to a CGA. Intuitively we need
different projection mechanisms to account for the very nature of Conceptual
Graph Assemblies: commensalism. More precisely when trying to project a Con-
ceptual Graph Assembly in a simple conceptual graph we need to distinguish
from the case when the information encoded in the simple conceptual graph
is contained in at least one world, all of worlds, or the conceptual graph itself
represented by the Conceptual Graph Assembly. Similarly when projecting two
Conceptual Graph Assemblies (which is a generalization of the previous case)
we have to consider the same three possible situations.

Definition 6. (CGA Projection)

I. Let CGA' = (SG', H') be a CGA and SG? a CG. Then

- weak projection : CGA' >,, SG? if there is P' € P(H") such that SGL, >
SG2.

- mild projection : CGA! >, SG? if SG}L, > SG? for each P! € P(H").



- strong projection : CGA' >, SG? if SG' > SG?.

II. Let CGA' = (SG', H') and CGA? = (SG?, H?) be two CGAs . Then

- weak projection : CGA' >, CGA? if there are P' € P(H') and P? €
P(H?)such that SGp, > SG3,.

- mild projection : CGA! >,, CGA? if for each P* € P(H') there is P% €
P(H?) such that SG1, > SG%,.

- strong projection : CGA' >, SG? if there is a projection II from SG' to
SG? such that the restriction of II to the relation vertices of SG' is a homo-
morphism from H' to H?.

Note that in the case when CGA! = (SG', H') is a simple conceptual graph
(i.e. it contains a single member), weak, mild and strong projection are identical.

The following theorem can be easily deduced from the above definitions and
further explains the need for different combinatorial degrees of subsumption.
Note that strong and mild projection can give extra information with regard
to the associated CGA logical semantics. When defined from a CGA to a CG,
weak projection preserves the soundness and completeness of CG projection;
when defined on two CGAs, it only preserves the soundness.

Theorem 1. I. Let CGA' = (SG', H') be a CGA and SG* a SCG. Then the
following implications hold:

CGA' >, SG? = CGA' >,, SG?> = CGA' >, SG*.

Furthermore, if 0 is a logical semantics for CGs such that SG projection is sound
and complete with respect to 0 then

CGA' >, SG? < 6(S),0(5G?) = (CGAY).

II. Let CGA' = (SG',H') and CGA? = (SG?, H?) be two CGAs. Then the
following implications hold:

CGA' >, CGA* = CGA' >, CGA* = CGA' >, CGA>.

If 0 is a logical semantics for CGs such that SG projection is sound and complete
with respect to 0 then
CGA' >, CGA®* &

there is P? € P(H?) s.t. 0(5),0(SG%,) = (CGAY).

Proof:

Part 1. Suppose that CGA' >, SG2. It follows that IIgi_ g2 # (. Let m €
Ilgi_,q» and P! € P(H"Y). 71, the restriction of 7 to the vertices of [P!]g, is
a projection from SGL, to SG?. Therefore SGL, > SG? for each P! € P(H'),
that is CGA' >,, SG?. The implication CGA' >,, SG? = CGA! >, SG? is
obvious by the definition of CGA projection.



Let 6 be a logical semantics for CGs such that SG projection is sound and
complete with respect to 6.
If CGA' >,, SG?, then there is P! € P(H') such that SGL, > SG?. By the
soundness of 6, we have 6(5), 8(SG?) = 6(SGL,). Now, by the definition of CGA
semantics, (SGL,) = (CGA'), and therefore 6(5),0(SG?) = (CGAY).
If 6(S),0(SG?) = O(CGA'), it follows that there is a term in the disjunction
9(CGA'), say 0(SG}. ), where Pt € P(H'), such that 6(S),0(SG?) = 0(SGp. ).
By the completeness of 6, we obtain that SG}, > SG?. We have obtained that
there is P! € P(H"') such that SG}, > SG? and, by the definition of CGA
projection, CGA' >,, SG? holds.

Part II. Suppose that CGA! >, CGA2?. It follows, by the definition of CGA
projection, that there is 7 a projection from SG! to SG? such that P? = n(P!) €
P(H?), for each P! € P(H'). Obviously, SG}, > SG%,. Therefore, for each
P! € P(H") there is P? € P(H?) such that SGL, > SG%,, that is, CGA! >,,
CGA?.

If CGA' >, CGA?, then there is P! € P(H') and P? € P(H?) such that
SGL. > SG%.. By the soundness of 6, we have 6(S5),0(SG?) = 0(SG}. ). Now,
by the definition of CGA logical semantics, 0(SGL,) = §(CGA'), and therefore
0(5),0(5G?) = H(CGAY).

Conversely, if there is P? € P(H?)s.t. §(5),0(5SG%,) = 0(CGA"), then it follows
that there is a term in the disjunction §(CGA'), say 6(SGp.), where P! €
P(H'), such that 6(S),0(SG%.) E 6(SGp.). By the completeness of 6, we
obtain that SG%, > SG%,. Therefore, we have obtained that CGA! >,, CGA?.

4 Conceptual Modelling using CGAs

As mentioned in the previous section, the hypergraph H defined on the Con-
ceptual Graph Assemblies relation nodes can be given explicitly (a list of the
hyperedges of H is provided) or implicitly. This section details the latter tech-
nique and shows how CGAs can be effectively used for knowledge modelling.
H is given by specifying a property of its hyperedges. In this way, it is pos-
sible to represent, in a succinct manner, an exponential number of members in
the CGA. However, if it is necessary, the explicit list of the hyperedges can be
generated. Let us give some interesting ways to specify the above property.

(Di)graphs On the set Vi of all relation vertices of the CG G, a graph (or
digraph) HG is provided. The edges (or directed edges) of the graph HG express
some links between their extremities. P(H) is described as a usual family of
subsets of the vertices set of HG having graph theoretical significance.

For example, if D is an arbitrary DAG on the set Vg of all relation vertices
of G, we can take P(H) as the family of vertices of all paths in D starting from
a source and ending in a sink. The acyclicity condition assures that each path
starting in a source must reach a sink. If it is necessary, a dummy source and
a dummy sink are added in order to increase the visual quality of the digraphs



considered (this fictive nodes are not considered when the hyperedges of H are
constructed).

Another example can be obtained if we consider a graph HG on the set Vg of
all relation vertices of G with the set of edges expressing a compatibility relation.
For example, an edge {v,1,v,2} € E(HG) means that the facts expressed by v,
and v,2 in the CG G can be considered in the same time in order to describe a
complex factual information. Taking P(H) as the family of vertices of all maxi-
mal (w.r.t. set inclusion) cliques in HG, we obtain a CGA with an exponential
number of members, which could be an elegant and efficient representational
mechanism.

Conceptual grouping Let S = (T¢,Tr,Z, %) be a support, SG = [S,G, ] a
Conceptual Graph without isolated concept vertices and CGA! = (SG,H!) a
CGA. Let TH C T¢ be a given set of threshold concept types and let Vg C Vg
the set of all concept vertices v, of the graph G, with the property that if A(v.) =
(typey,, refu,) then 3t € TH such that type,, >t (Vpg contains the vertices of
G designating objects having the type “above” the prescribed threshold T H).

Taking P(H) as the family of all maximal (w.r.t. inclusion) subsets P of the
members P! of CGA! such that Ng(P) C Vrp, we obtain a new CGA whose
members describe only the facts about objects having a type above the threshold
set T'H in the hierarchy given by S.

For example, starting from the CGA of figure 2, with TH = {Food product,
Color, Texture, Person}, we obtain the new CGA shown in figure 5. This CGA
contains two members P, and P». P; indicates that the brown color hides the
yellow one. P; indicates that the yellow color is wanted by the consumer and that
the glutinous texture is rejected by the consumer. The interest of such a trans-
formation can be, for instance, to determine parts of the knowledge base that
can be easily understood by a wide public, due to the non-specific vocabulary
used in the concepts.

Transversal methods Let CGA! = (SG, H') be a CGA. Taking P(H) as
the family of all subsets P of Vr with the property that P N P! # (), for
each P € P(H'), we obtain a new CGA CGA = (SG, H) with interesting
combinatorial connections with the first one. For example, let us suppose that
CGA' = (SG, H') satisfies the property that VP! € P(H') and VP? € P(H!),
if P C P? then P! = P?; if we take in P(H) only minimal transversal (that is
minimal subsets, w.r.t. sets inclusion, of V intersecting all members of H') then
the hypergraph H has the property that its minimal transversals are precisely
the members of the initial hypergraph H'.

Another example in this category comes from the integration framework de-
scribed in [4]. Let SG* = [S%, G, \], i € [0,n], be a set of n + 1 CGs. For each
relation node r§ € V§ = {r{,...,r,}, a set R(r}) of triples is provided. Each
such triple, (i, A,w) € R(r)) specifies a rewriting rule of 7 in SG*: 19 is trans-
lated in the spanning subgraph [A]g:, and the k = deggo(r)) neighbors of 7 in
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Figure 5. The new obtained CGA

GO are represented by the sequence w = w!,..., w* of concept nodes in [A]q::

No(r?) is represented by w', ..., N& (r9) is represented by w*.

Now, for each transversal T of the hypergraph R = (R(7)),...,R(r%)), a
hyperedge is added to the hypergraph 7°¢ by considering the union of the relation
nodes sets of T contained in Vj. In this way, n CGAs, CGA’ = (SG*,T"), are
obtained.

Assisting reasoning Let SG = [S,G, \g] and SQ = [S,Q, Ag] be two CGs
defined on the same support S such that SQ > SG.

If IIg_.¢ = {m|m is a projection from SQ to SG}, then we can consider
Oce(Q,G) = (7T(V§)|’/T € MHg_¢). Taking H = (V§,0cc(Q,G)) we obtain
a CGA CGA = (SG, H) which gives all the occurences of the query SQ in
SG. For some usual query S@Q this CGA can be pre-computed in order to have
fast response time. With the same goal of efficiency, the following CGA can be
considered.

Let SG =[S, G, A] be a Conceptual Graph and M a model for the support
S = (T¢,Tr,Z,x*). Suppose that M [~ SG and let us consider the CGA CGA =
(SG,H), H = (VS,P(H)), where P(H) = (I|I C V§ and M [= [I]g). It is easy



to see that H is an independence system on V,$, that is, if I € P(H) and I; C I,
then I, € P(H)

5 Conclusions

In this paper we proposed a semantically sound syntactic extension to Concep-
tual Graphs: Conceptual Graph Assemblies (CGAs), and defined several rea-
soning mechanisms, based on the projection operation. We showed that CGAs
provide increased representational power. We proposed several modelling scenar-
ios and illustrated through an example in the agri-food domain the applicability
of this extension in practice, in particular for the representation of multiple
viewpoints on the same situation.

Conceptual Graph Assemblies are a flexible, versatile way of representing in-
terrelated facts, concurrent events or possible scenarios. In future work we plan
to explore two directions of modelling with CGAs: modelling temporal infor-
mation, by attaching a temporal value to the relation nodes of the conceptual
graph prior to defining the CGA by the means of this “stamp” value; modelling
multi-viewpoints reasoning such as conflict detection — that can be viewed e.g. as
the projection of a negative constraint in the conceptual graph represented by a
CGA -, and resolution proposals through argumentation and decision methods.
We believe these are promising directions of work which will further demonstrate
CGAs applicability.
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