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Abstract
A lexical network is a very useful resource for natu-

ral language processing systems. However, building high
quality lexical networks is a complex task. “Jeux de mots”
is a web game which aims at building a lexical network
for the French language. At the time of this paper’s writ-
ing, “jeux de mots” contains 164 480 lexical terms and
397 362 associations. Both lexical terms and associations
are weighted with a metric that determines the importance
of a given term or association. Associations between lexi-
cal terms are typed. The network grows as new games are
played. The analysis of such a lexical network is challeng-
ing.

The aim of our work is to propose a multi-scale inter-
active visualization of the network to facilitate its analy-
sis. Our work builds on previous work in multi-scale vi-
sualization of graphs. Our main contribution in this do-
main includes (1) the automatic computation of compound
graphs, (2) the proximity measure used to compute com-
pound nodes, and (3) the computation of the containment
relation used to exhibit the dense relation between one im-
portant node and a set of related nodes.

Keywords—Multiscale, Hierarchical Graph, Visualization,
Hierarchical Clustering

1 Introduction
Many natural language processing tasks like informa-

tion retrieval or anaphora resolution require lexical infor-
mation usually found in resources such as thesauri, ontolo-
gies, or lexical networks. Creating such resources can be
done either manually in the case of Wordnet [10] for exam-
ple or automatically from text corpora as in [21]. In both
cases, the generation of accurate and comprehensive data
over time is a complex task.

“Jeux de Mots” [17, 16] is a game where players con-
tribute to the creation of a complex lexical network by
playing. The game is a two player blind game based on
agreement: at the beginning of a game session player A

is given an instruction related to a target term. For exam-
ple: give any term that is related to “cat”. User A has a
limited amount of time to propose as many terms as possi-
ble. At the end of the session, player A’s proposed terms
are compared to those of a previous player say player B.
Points are earned on the basis of agreement, e.g. the in-
tersection of the two sets of terms proposed by A and B.
The lexical network of “Jeux de Mots” is built by adding
the terms in the agreement. A relation to the target term is
also added. The relation between the target term and the
terms agreed depends on the initial instruction. In the pre-
vious example the relation is a relation of type association.
There are 35 other types of relations in “Jeux de mots” in-
cluding synonymy, antonymy, hyperonymy, etc. Weights
are further computed for terms and for relations between
terms in order to reflect their importance in the network
[15]. At the time of this paper’s writing, “jeux de mots”
contains 164 480 lexical terms and 397 362 associations.
Therefore, the visualization of the network is challenging.
JeuxDeMots lexical network can be considered as a large
graph with terms as nodes and semantic relations between
terms as edges.

Multiscale interactive visualization of graphs is an in-
teresting solution to the visual analysis of large graphs.
Hierarchical graphs, introduced in [9] for the first time,
have largely influenced the literature in this domain. Ap-
proaches vary at different levels. Our approach is based on
compound graph construction and full zoom exploration.
The construction of the compound graph is further based
on a proximity measure used to compute compound nodes
and the computation of the containment relation used to
exhibit dense relation between one important node and a
set of related nodes.

This paper is organized as follows: we start by a review
of related work, we further present the data and a careful
analysis of some properties that matter for visualization.
We further present our main contributions e.g. compound
graph construction (section 4) and full-zoom exploration
of JeuxDeMots lexical network (section 5).



2 Related Work
Our approach to the visual analysis of JeuxDeMots lex-

ical network is based on previous work and mainly related
to multilevel graph exploration.

Multilevel graphs are largely used in graph visualiza-
tion. Indeed multilevel graph drawing methods have been
studied in order to accelerate run time and also to improve
the visual quality of graph drawing algorithms. In [24],
Chris Walshaw presents a multilevel optimization of the
Fruchterman’s and Reingold’s spring embedder algorithm.
The GRIP algorithm [11] coarsens a graph by applying a
filtration to the nodes. This filtration is based on shortest
path distance. Fast Multipole Multilevel Method (FM3)
[13] is also a force-directed layout algorithm.FM3 is
proved subquadratic (more precisely inO(NlogN +E)) in
time, contrary to previous algorithms. Work in [3] is based
on the detection of topological structures in graphs. This
algorithm encodes each topological structure by a metan-
ode to construct a hierarchical graph.

Graph hierarchies are also used in Focus-based multi-
level clustering. In [6, 7, 8] several hierarchical clustering
techniques are proposed, to visualize large graphs. These
contributions are mainly concerned with accounting for a
user focus in the construction of a multi-level structure.
Sometimes this results in new multi-level structures such
as for example MuSi-Tree (Multilevel Silhouette Tree) in
[8]. Other approaches are based on zooming strategies that
include level-of-details dependant of one or more foci [12].

Multilevel graph exploration is challenging. Multilevel
graph exploration systems can be divided into two cate-
gories : systems needing precomputation to create a hierar-
chical structure and systems which create hierarchy during
the exploration. Our approach fall into the first category.

Approaches that fall in the first category take more time
during the construction step but they facilitate multi-level
exploration. In [9] the authors propose an algorithm for
creating a graph hierarchy in three dimensions, each level
is drawn on a plane. In [20] authors propose a comparison
between two methods of multi-level exploration:“Fisheyes
View” and “Full-zoom” methods. Work in [12] is based on
a zooming technique associated with a precomputed hier-
archical graph. The level of detail is computed on-the-fly
and depends on the distance to one or more foci. Abello
et al. [1] define a compound fisheye view based on a hier-
archy graph. In addition the authors link a treemap with a
graph hierarchy. In [23], the authors create a force directed
layout, and use it on graphs in order to highlight clusters.
This technique is similar to the approaches that merge clus-
ters in small world vizualization. In [5] the contribution is
to propose the visualisation of complex software in 3D or
in 2D. Edge bundles are created in order to simplify edges.
This method uses visual simplification of graphs using a

level-of-detail approach.

Approaches that fall into the second category compute a
hierarchical graph during the exploration step. The layout
of the graph is computed on the fly. The authors of [22]
present a tool, ASK-GraphView, based on clustering and
interactive navigation. Hierarchical clustering is obtained
by detecting biconnex components, and by a recursive call
to a clustering algorithm on biconnex components. In [4]
the authors propose Grouse. Grouse is based on previous
work [3] and decomposes the graph based on topological
features. Grouse further uses adapted layout algorithms to
layout subgraphs.

3 Data

In the rest of this paper we focus on a subgraph of
JeuxDeMots. The subgraph is obtained by studying only
the edges that correspond to the relation of type “Associ-
ated Idea”. Furthermore, we filtered nodes that were not
connected to the biggest connected component. The re-
sulting subgraph is composed of 20 238 words and 64 564
edges.
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Figure 1: Degree repartition, for ingoing degree.

3.1 Data analysis

The aim of this section is to better characterise the type
of graph we are working on. A study of degree repartitions
(distribution of ingoing edges Fig. 1 and distribution of
outgoing edges Fig. 2) is useful to show that our degree
distributions have power-law tails.γin = −1.85 the inde-
gree exponent andγout = −2.27 the outdegree exponent,
are high determination coefficients [2].
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Figure 2: Degree repartition, for outgoing degree.
The graph studied is clearly a scale-free graph [2]. A

second study can be made to compute the clustering coef-
ficient [2]. The average of our graphC = 0.2617, and the
degree average isD = 6.3805. Moreover the clustering
coefficient of a random graph of the same size and average
degree isCrand = 0, 00032. Our graph has an average
clustering coefficient order of magnitude higher than the
coefficient of clustering of a random graph with the same
size and the same average degree. Furthermore, the diam-
eter of our graph is 12. For all these reasons, our graph can
be considered as a small world network.

4 Compound graph construction
In order to provide full-zoom exploration of the lexical

network it is necessary to automatically compute a hier-
archical graph that is coherent for an end-user of lexical
networks like, for example, a searcher in natural language
engineering or a lexicographer.

The originality of our approach is (1) that it is based
on metrics derived from natural language engineering met-
rics that compute at low cost, and (2) we create a com-
pound graph instead of a clustered graph. It is important
to stress that the clustered graph approach is the most fre-
quent one found in the litterature and that it constitutes a
serious drawback when it comes to lexical network explo-
ration as will be discussed in the section 4.2.

In order to create a compound graph, we first adapted
one proximity measure used in information retrieval and
natural language processing tools and we further extend it
to provide a multilevel proximity measure used in the con-
struction of the compound graph.
4.1 Proximity Measure

The “Direct Proximity Measure” is computed for an
edge in a graph. This measure is useful in computing
another measure the “Hierarchical Proximity Measure”
which will be described in the next section. The hierarchi-
cal measure applies to two nodesn andm of a hierarchy,

and accounts for the direct proximity measure of the edges
linking n to m.

4.1.1 Direct Proximity Measure

The proximity measure is adapted from the measure of tf-
idf (term frequency - inverse document frequency) [19]. It
is computed on each edge and accounts for the weight of
the edge. The weight of each edge represents a degree of
confidence. This measure is defined as follows:

Let G be a graph such thatG = (V, E), we take an edge
e ∈ E and a noden ∈ N and we define :

• source(e) the node source of edgee, andtarget(e)
the node target of edgee.

• ω(e) the weight of edgee.

• δ+(n) is the weighted outgoing degree ofn, and
δ−(n) is the weighted ingoing degree ofn.

The proximity value [18] is computed using the follow-
ing formula :

prox(e) =
ω(e)

δ−(target(e))
×

ω(e)

δ+(source(e))

The first (resp. second) factor of our formula corre-
sponds to the proportion of the weight ofe in ingoing
edges (resp. outgoing edges) ofe. The proximity mea-
sure, can be computed for a weighted graph, oriented or
not. It reflects the importance ofe for its extremities. In
the example Fig. 3 the importance ofe is weak in com-
parison to the total weight of all incident edges. Conse-
quently, the two nodes have a weak proximity as shown
hereprox(e) = 10

460
× 10

285
= 0, 00072

100

15

45

300
200

50

15

20

(e)ω =10

Figure 3: A sample for the proximity metric

4.1.2 Hierarchical Proximity Measure

A hierarchical proximity measurement is computed be-
tween two nodesx andy on a hierarchy ofl levels with
l >= 0 (see figure 5). This measure accounts for the edges
ei betweenx and nodes that are in the shortest path be-
tweenx andy.
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Figure 4: Hierarchical proximity measure

The measureproxρ(x) is computed with the following
formula :

proxρ(x, y) =
l∑

i=1

prox(ei) ∗ (l + 1− i)

When an edge doesn’t exist we will consider its weight to
be equal to zero. The hierarchical measure takes parents in
the multilevel graph into account and favours close parents
over more distant parents.

The Fig. 5 gives an example of the computation of the
hierarchical proximity measure. In this example, the com-
putation of the hierarchical proximity measure is the fol-
lowing:

proxρ(x, y) =
prox(e1) ∗ 4 + prox(e2) ∗ 3 + prox(e3) ∗ 2 + prox(e4)

4.2 Compound graph versus clustered graph
As mentionned previously, we chose to construct a com-

pound graph instead of a clustered graph. The main dif-
ference between compound graphs and clustered graphs is
that in the latter case meta-nodes that represent clusters are
created [14]. A difficulty is then to find labels to attach to
the meta-nodes created. By building a compound graph we
avoid this problem since no new node has to be created.
The final structure contains only the nodes of the origi-
nal graph. Important nodes are used as clusters or com-
pound nodes and the containment hierarchy can be used
to express important relations between compound nodes
and related nodes. This strategy offers several advantages.
Firstly it underlines important nodes. Secondly, it encodes
edges with high proximity measure by the containment re-
lation of our compound graph. This graphical coding is not
only stronger than simple links, it also simplifies the graph-
ical representation by eliminating a lot of links. Thirdly,as
mentionned above, there is no additionnal work to find rep-
resentatives for meta-nodes, since meta-nodes are nodes,
their name is directly found and meaningful.

4.3 Algorithm

In this section we present and explain our algorithm.
Our algorithm Alg. 1 can be decomposed into three parts :
(1) The initialisation, from line 1 to line 3, (2) the grouping
of neighbours, from line 5 to line 10, and (3) the reassigne-
ment of neighbours, from line 11 to line 20.

Algorithm: Graph2GraphHierarchy(GraphG;X,Y,Z
integers)

1 max← getMaxDegreeNode(G,X);
2 color all nodes in maxin BLACK;
3 leaves← max;
4 while leaves6= ∅ do
5 leaves2← get the neighbours not BLACK of

leaves;
6 for each node n∈ leaves2do
7 near← neighbours of nin leaves;
8 p← give a node n’in nearmaximizing

proxρ(n,root(n’));
9 child(p)← child(p) ∪ node;

10 color nodein BLACK ;

11 for each leaf∈ leavesdo
12 children← Child(leaf);
13 selected←

MaxProx&DegNode(Y,Z,children);
14 for each n∈ children\ selecteddo
15 near← neighbours of nin selected;
16 node← give a node n’in near

maximizingproxρ(n,root(n’));
17 if node6= parent(n) then
18 remove nfrom child(parent(n));
19 child(node)← child(node) ∪ n;

20 leave3← leave3∪ child(leaf);
21 leave← leave3;

The initialisation consists in choosing X vertices with a
maximum weighted degree (line 1). These vertices consti-
tute seeds for our sub-hierarchies at the level 1. The Fig.
5 (A) describes this initialisation, here we take the nodes
{a, b, c}.

The parts 2 and 3 are enclosed in a Breadth-First search
algorithm. The nodes are colored in black in order to know
which nodes have already been processed.

The second part of our algorithm consists in taking the
neighbourhood of our seeds (line 5). Each seed will be the
compound nodes of all nodes in the neighbourhood. Each
seed has a different neighbourhood, nevertheless a node
can be in several different neighbourhoods, see (B) in Fig.
5, the noded can be affected in two different groups.
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max={a,b,c}
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lines = 5

leaves = {f,e,d,l,j,h}
leaves2 = {n,o,p,m}
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Hierarchy ViewGraph View

Figure 5: Execution of Graph2GraphHierarchy Algorithm
The third part of our algorithm is the reassignment.

Each seed now has a list of child nodes notedchildren.
We select the Y nodes inchildren which have the highest
weighted degree, and on these nodes we select the Z nodes
which maximize the proximity with their parents. We ob-
tain a list ofselected nodes considered as important (line
13) in the algorithm. We must further reassign all previ-
ously added nodes, to nodes in theselected set of nodes if
they maximize the proximity value. For example, see the
Fig. 5, line (C), nodei, g, k are reassigned to new parent
nodes inselected.

We iterate with nodes contained in the next level of our
hierarchy see Fig. 5 areas (D) and (E). The algorithm stops
when all nodes are colored black.

The algorithm is particulary adaptable to scale-free
graphs. In particular, it is possible to adapt parameter
Y (number of nodes of maximal degree) and Z (number
of nodes of maximal proximity) in order to favour either
closer or higher degree nodes in the selected set of nodes.
If the value of parameter Y is chosen in order to favour
the nodes with higher degree it helps to reduce the number
of links displayed (replaced by the containment relation)
which in turn makes the diagram clearer.

5 Full-zoom exploration
Zoom is used to support multi-level exploration of the

lexical network. It is based on the compound graph gener-
ated according to the procedure described in the previous
section. Figure 6: Full-zoom exploration



In the graphical representation, (see figure 5) nodes are
represented by circles. The compound graph structure im-
poses that a node can contain a graph which can be empty
or contains other nodes.

At each zoom level, the computation of the surface of a
node is defined by :

surface(x) =

8

<

:

4 ∗ π2 if child(x) = ∅

φ ×
X

c∈child(x)

surface(c) otherwise

whereφ is a percentage of freedom. For instance if
φ = 120%, 20% of the total surface of children is left
empty for the legibility of the diagram.

Furthermore, a node is expanded if its surface is higher
than a percentageζ. For instance, ifζ = 25% the node will
be expanded when its surface takes more than25% of the
screen surface. This choice allows us to adapt to various
screen resolutions.

6 Conclusion and perspective
In this paper we have proposed an original method for

the multi-level exploration of a lexical network. The graph
underlying the lexical network has scale free and small-
world properties. Even though we applied our approach
to a given lexical network, we believe that our approach
is general enough to apply to other networks with similar
scale-free and small-world properties. For example, an in-
teresting application would be the multiscale visualization
of tags in social bookmarking systems.

In future work, we plan to extend our multi-level ex-
ploration tool with editing capacities so that it is possible
for a user to modify the generated compound graph when
necessary. We also want to integrate a search tool so that
it is possible to automatically animate the graph toward a
specific term. Finally, we plan to conduct controlled exper-
iments to validate the approach on various datasets.
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