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Abstract

In this paper we address the problem of (1) repre-
senting bids for combinatorial auctions and (2) em-
ploying those structures for “reasoning”. We pro-
pose a graph-based language who’s novelty lies (1)
in the use of generalized network flows to repre-
sent the bids and (2) in the interpretation of winner
determination as an adequate aggregation of indi-
vidual preferences. We motivate the language both
from representational and reasoning points of view
and show how our language represents the same
class of expressivity of bids more concisely com-
pared to existing work.

1 Introduction
In every Artificial Intelligence system addressing a given
problem there is a need to (1) represent the state of the world
and (2) reason about possible ways to solve the problem. In
this paper we address the problem of (1) representing bids for
combinatorial auctions and (2) employing those structures for
“reasoning” (winner determination). The proposed language
we detail is a visual, graph-based language based on network
flow modelling techniques that demonstrate better concise-
ness within the same expressivity classes.

Combinatorial auctions (CAs) can be looked at as a way
of approaching allocation problems involving multiple het-
erogeneous goods. Bidding is the problem of representing
one’s valuation function over the set of goods on offer. It
plays a key role in both central aspects of the allocation prob-
lem: preference elicitation and winner-determination (WD).
As a consequence bidding languages have not only to address
representational issues but also to provide subsequent manip-
ulation techniques for reasoning aspects. Our motivation for
introducing a new language is based on the fact that existing
languages cannot concisely represent some structured valua-
tions that might occur in practical scenarios. Moreover, these
languages were not designed with partial value revelation in
mind; this is especially important in domains where the valu-
ation problem is hard. Following from above mentioned rep-
resentational choices the algorithms for winner determination
cannot fully take advantage of the structural optimisation po-
tential of the problem at hand.

This paper proposes a visual language for combinatorial

auctions based on generalised flow networks. The nodes of
the network will represent either (1) resources, (2) bundles
of resources or (3) composite nodes used for calculation of
certain partial valuations. The flow defined on the edges will
allow concise description of an exponential number of bids.
The same structure will be used for the auctioneer to unify all
bidders’ valuations. The winner determination problem will
then be translated into a special MAX FLOW problem on the
proposed network structure.

The paper is structured as follows. In section 2 we motivate
our language from a representational viewpoint and demon-
strate its conciseness. The formal, rigorous semantics of the
language are introduced in section 3. Based on the constructs
from section 3 we guarantee the soundness of the syntax fur-
ther introduced in section 4. Section 5 concludes the paper.

2 Motivation
A hypergraph (or a bundle system) is a pair H = (R,B)
where R is a finite set (the resources set, the set of goods)
called the vertex set of H and B is a family of subsets of
R. The members of B are called hyperedges and they are
subsets of resources, or bundles. A hypergraph H can be
explicitly represented in visual manner by a bipartite graph
B(H) having one vertex class corresponding to the resources
set R and the other class corresponding to the H’s bundles,
and connecting by an edge a bundle vertex to its correspond-
ing (members) resource vertices. This is shown in Figure 1.
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Figure 1: Bipartite graph representation of a bundle system

The bipartite graph has |R| + |B| vertices and
∑

B∈B |B|
edges. If H is given explicitly, this is a concise and intu-
itive representation for a bundle system. The (directed) edges



of this bipartite graph suggest the containment relation of re-
sources to bundles. However, if H is given by using some
constructive (or implicitly) rules, the bipartite representation
must be extended in order to be an effective representational
tool. For example, if B is the family of all bundles having
d |R|2 e resources, then the corresponding bipartite graph has an
exponential number of bundle vertices and edges. We will ex-
tend the above containment relation (of resources to bundles)
by using paths (a resource belongs to a bundle if and only if
there is a certain path from the resource vertex to the bun-
dle vertex) and a mechanism to express which path must be
considered in order to instantiate a given bundle. This mech-
anism is based on a simple extension of network flows, which
is described bellow.

In our representational networks we will use the following
graphical primitives depicted in Figure 2:
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Figure 2: Elements of a bidflow network

The node (a) is the start node of the network (sometimes the
label start is used instead of s). From this node the flow is
pushed (on the arcs leaving it) in the network. The flow on
each arc is a nonnegative integer value. If the flow fij on an
the arc ij is positive it must satisfy the restriction lbij ≤ fij ≤
ubij , where the lower bound lb (sometimes denoted by l), and
the upper bound ub (sometimes called capacity and denoted
by c) are indicated as labels on the arc, as in construction
(e) in Figure 2. The arcs without bound constraints (having
lb = 0 and ub = ∞) are not labelled.

The nodes of type (b) are transit nodes, that is nodes which
automatically distribute the total incoming flow (the sum of
the flows on all arcs entering such a node) on the arcs leav-
ing it. In other words, in these nodes the flow conservation
law holds. They can have name-labels inside of the oval, for
modelling or referring necessities.

The start node is connected by an arc labelled 0, 1 to a node
of type (b) labelled r, for each resource r ∈ R. From the flow
conservation law (which holds in the transit node labelled r)
and by the integrality of flows, either the flow on the arc sr
is 1, and there is exactly one arc with flow value 1 leaving
the node r, or the flow on the arc sr is 0, meaning that the
resource r will belong to no bundle. In the former case, a
path with positive flows on its arcs will be constructed, which
eventually will reach a type (c) node.

The nodes of type (c) are bundle nodes, which pass-on the
incoming flow exactly on one arc leaving them. The flow
on this arc is set to 1. Furthermore, a bundle node b is “on”
only if all the flows on the arcs entering it are positive. The
intuition is that such a node collects all the resources r ∈
R which belongs to a path starting from s, having positive
flows on its arcs and ending in b. If the bundle represented
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Figure 3: An exponential sized bundle system

by the node b is a not a member of B (the bundle system to
be represented by the network) then the arcs leaving b are
used to simulate (disjoint) unions in order to construct such
a member via paths with positive arc flows. Of course, the
structure of the network will prevent the existence of cycles.
If the bundle represented by the node b is a member of B, then
there is an arc bt, leaving b and entering the terminus node of
the network (type (d) in Figure 2, labelled end).

Let us consider again the bundle system H = (R,B),
where B is the family of all bundles having dn

2 e resources
(n = |R|). The network representing H using the above prin-
ciples is given in Figure 3. If the ub and lb values on the arc
cb are set to dn

2 e, then for each dn
2 e-subset S of R we can

consider the flow fS by putting: fS
sr = 1, fS

rc = 1 ∀s ∈ S;
fS

sr = 0, fS
rc = 0 ∀r ∈ R − S; fS

cb = dn
2 e; and fS

bt = 1.
Clearly, the bundle represented by the node b is S. Con-
versely, it is not difficult to see that each non null flow f in
this network generates a dn

2 e-bundle Bf of R, by consider-
ing Bf = {r ∈ R|f(sr) = 1}. Note that the network has
only 2|R|+ 4 nodes and 2|R|+ 2 arcs. It follows that the in-
ternal data structures have total polynomial size and also the
number of variables (arc flows values) used is small.

A nice property of this type of representation is that if we
are interested in an induced subhypergraph, that is to consider
the members of B contained in some subset S ⊆ R, then it
suffices to block the flow on the arcs sr for r ∈ R − S, by
considering ubsr = 0. This is clearly important for the use of
v-basis as described in section 3. The restriction given by the
Corollary in that section, could also be avoided in a succinct
way (equivalently, considering Nisan’s OR* language [8]) by
adding a transit node, a new bundle node and an arc with ub
set to 1 as described in Figure 4.
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Figure 4: Implementing OR* trick.

In order to represent valuation functions using bids (i.e.v-
basis) it is necessary to describe a mechanism to specify the
the bid value of a bundle. This is obtained by associating val-



ues to the flows via special labels of network nodes. These
labels indicate simple local functions which must be incre-
mentally applied to values of the tail nodes from which the
flow enter in the current node. The resulting network is called
NETBID and is formally described in the section 4.

3 Semantics
This section presents that rationale that led to the contribu-
tion of the paper. The results obtained in this section build
upon [4] and will lay the foundations for the semantics of
the language in a rigorous, complete manner. A Combina-
torial Auction (CA) can be interpreted as an abstraction of
a marked-based centralized distributed system for the deter-
mination of adequate allocations of heterogenous indivisible
resources. In such an Adequate Resource Allocation (ARA)
system, there is central node a, the auctioneer, and a set of n
nodes, I = {1, . . . , n}, the bidders, which concurrently de-
mand bundles of resources from a common set of available
resources, R = {r1, . . . , rm}, held by the auctioneer.

The auctioneer broadcasts R to all n bidders, asking them
to submit in a specified common language, the bidding lan-
guage, their R-valuations over bundles of resources. Bidder’s
i R-valuation, vi, is a non-negative real function on P(R),
expressing for each bundle S ⊆ R the individual interest
(value), vi(S), of bidder i in obtaining S. Naturally, it is as-
sumed that vi(∅) = 0, and vi(S) ≤ vi(T ) whenever S ⊆ T .
No bidder i knows the valuation of any other n − 1 bidders,
but all the participants in the system agreed on an adequate
outcome: (1) Based on bidders’ R-valuations, the auctioneer
will determine a resources allocation O = (O1, . . . , On),
specifying for each bidder i her obtained bundle Oi. O is a
(weak) n-partition of R, that is Oi∩Oj = ∅, for any different
bidders i and j, and ∪i=1,nOi = R. The global (social) value
of the outcome is va(O) =

∑
j=1,n vj(Oj); (2) O is an ad-

equate allocation: if some bidder i does not receive its most
wanted bundle (there is S ⊆ R such that vi(S) > vi(Oi))
this is explained by the fact that the social (global) value of
the outcome va(O), would not increase if she will receive S:
va(O) =

∑
j=1,n vj(Oj) ≤

∑
j=1,n vj(O′j) = va(O′), for

any allocation O′ = (O′1, . . . , O
′
n) having O′i = S.

It is not difficult to see that there exists always such ad-
equate allocation: let O∗ = (O∗1 , . . . , O∗

n) be such that
va(O∗) = max{va(O)|O is a n-partition of R}; if there is
i and S such that vi(S) > vi(O∗), then, by the choice of
O∗, va(O∗) ≥ va(O′) for every n-partition O′ with O′i = S.
Conversely, if O is an adequate allocation and O∗ is a max-
imum value allocation such that va(O∗) > va(O), then (by
the non-negativity property of the valuations) there is a bid-
der i such that vi(Oi) < vi(O∗i ). Since O is adequate, taking
S = O∗i , it follows that va(O) ≥ va(O∗), (since O∗ is a
n-partition of R with O∗

i = S), a contradiction. We have
obtained that an allocation is adequate if and only if it is a
maximum value allocation.

The task of the auctioneer finding a maximum value alloca-
tion for a given set of bidder valuations {v1, . . . , vn}, is called
in the CA’s field the Winner Determination Problem (WDP).
This is a NP-hard problem, being equivalent to weighted set-
packing. It tends to be solvable in many practical cases, but
care is often required in formulating the problem to capture

structure that is present in the domain ([9]).
WDP can be parameterized by the set R of resources, con-

sidering a fixed set I of bidders and bidders’ R-valuations
{vi|i ∈ I}. Therefore we can write WDP (R) and its cor-
responding maximum value va(R). With these notations,
WDP (S) and va(S) are well defined for each subset S ⊆ R
(by considering the restriction of vi to P(S)).

In this way, we have obtained a global R-valuation va as-
signing to each bundle S ⊆ R the maximum value of an S-
allocation to the bidders from I . By the above observation,
this maximum value is the value of an adequate S-allocation.
Therefore WDP can be interpreted as the problem of con-
structing a social aggregation of the R-valuations of the bid-
ders.

If we denote by V(R) the set of all R-valuations, it is
natural to consider in our ARA system the set of super-
additive R-valuations due to the synergies among the re-
sources: SV(R) = {v ∈ V(R)| v(B1 ∪ B2) ≥ v(B1) +
v(B2) for all B1, B2 ⊆ R, B1 ∩B2 = ∅}.

It is not difficult to see that if all vi ∈ I are superadditive
then va is superadditive. Indeed, if B1, B2 ⊆ R,B1∩B2 = ∅,
then va(B1)+va(B2) =

∑
i∈I vi(O1

i )+
∑

i∈I vi(O2
i ), where

O1 is a maximum B1-allocation and O2 is a maximum B2-
allocation; since O with Oi = O1

i ∪O2
i (i ∈ I) is a B1 ∪B2-

allocation and vi(O1
i ) + vi(O2

i ) ≤ vi(O1
i ∪ O2

i ), it follows
that va(B1) + va(B2) ≤ va(B1 ∪B2).

The following lemma gives an interesting characterization
of superadditive bidding.

Let us denote V OR(R) = {v ∈ V(R)| v(B) =
maxA⊆B [v(A) + v(B −A)] for all B ⊆ R}. Then,

Lemma 1 SV(R) = V OR(R).
Proof. If v ∈ SV(R) then for each B ⊆ R and A ⊆ B we have

v(B) ≥ v(A ∪ (B − A)) ≥ v(A) + v(B − A), therefore v(B) ≥
maxA⊆B [v(A) + v(B − A)]. Since, for A = ∅, we have v(B) =
v(∅) + v(B), it follows that v(B) = maxA⊆B [v(A) + v(B −A)],
that is v ∈ V OR(R). Conversely, let v ∈ V OR(R). If B1, B2 ⊆
R, B1∩B2 = ∅, then v(B1∪B2) = maxA⊆B1∪B2 [v(A)+v(B1∪
B2 −A)] ≥ v(B1) + v(B1 ∪B2 −B1) = v(B1) + v(B2), that is
v ∈ SV(R).2

Combining this remark on the superadditivity of va and
Lemma 1 we obtain:

Theorem 1 If in an ARA system all bidders’ R-valuations
are superadditive, then the aggregate R-valuation va satisfies
va(A) = maxB⊆A[va(B) + va(A−B)] for all A ⊆ R.

Let v ∈ V(R). A v-basis is any B ⊆ P(R) such that for
each A ⊆ R we have v(A) = maxB∈B,B⊆A[v(B) + v(A −
B)]. In other words, if B is a v-basis, then the value of v(A) is
uniquely determined by the values of v on the elements of the
basis contained in A, for each A ⊆ R. The elements of a v-
basis, B ∈ B, are called bundles and the pairs (B, v(B))B∈B
are called bids.

Clearly, v ∈ V OR(R) if and only if P(R) is a v-basis. On
the other hand, if B ⊆ P(R) is a v-basis and B ⊆ R, then
B ∪ {B} is a v-basis too. Therefore, v ∈ V(R) has a v-basis
iff P(R) is a v-basis. Using Lemma 1, we obtain the well
known result (Nisan, [8]):

Corollary A R-valuation v ∈ V(R) has a v-basis iff v ∈
SV(R).



Let now consider an ARA system in which all bidders’
R-valuations are superadditive. Each bidder i ∈ I sends
to the auctioneer its vi-basis Bi. The aggregate R-valuation
va can be represented by a va-basis Ba, which is obtained
by merging the individual basis Bi in a very simply way:
Ba = ∪i∈IBi and if B ∈ Ba then va(B) = max{vi(B)|i ∈
I and B ∈ Bi}.

Indeed, by theorem 1, we have va(A) =
maxB⊆A[va(B) + va(A − B)], for all A ⊆ R. If
O = (O1, . . . , On) is a maximum A-allocation, then
va(A) =

∑
i∈I vi(Oi). If vi(Oi) > 0, then it is not difficult

to see that vi(Oi) = va(Oi) ≥ vj(Oi) for all j ∈ I and
va(A) = va(Oi)+

∑
j∈I−{i} vj(Oj) = va(Oi)+va(A−Oi).

Furthermore, since Bi is a vi-basis there is Bi ∈ Bi such
that vi(Oi) = vi(Bi) + vi(Oi − Bi), vi(Oi) = va(Bi) and,
moreover, va(A) = va(Bi) + va(A−Bi).

We obtained the following interesting representational the-
orem:

Theorem 2 If in an ARA system the bidder superadditive R-
valuations vi are represented using vi-basisBi for each i ∈ I ,
then the aggregate R-valuation va is represented by the va-
basis Ba = ∪i∈IBi, by taking va(B) = max{vi(B)|i ∈
I and B ∈ Bi}, for all B ∈ Ba.

We note here that Lemma 1 can be extended to ob-
tain a similar characterization of a subclass of additive R-
valuations.

Let us consider SUPV(R), the set of all supermodular R-
valuations, that is SUPV(R) = {v ∈ V(R)| v(B1 ∪ B2) ≥
v(B1) + v(B2)− v(B1 ∩B2) for all B1, B2 ⊆ R}.

Clearly, SUPV(R) ⊂ SV(R).
Also, we restrict the set of OR-valuations, by consider-

ing strongly OR-valuations (sOR-valuations): V sOR(R) =
{v ∈ V(r)| v(B) = maxA1,A2⊆B [v(A1) + v(A2) − v(A1 ∩
A2)] for all B ⊆ R}.

Lemma 2 SUPV(R) = V sOR(R).
Proof. If v ∈ SUPV(R), then for each B ⊆ R and A1, A2 ⊆ B

we have v(B) ≥ v(A1 ∪ A2) ≥ v(A1) + v(A2) − v(A1 ∩ A2),
therefore v(B) ≥ maxA1,A2⊆B [v(A1) + v(A2) − v(A1 ∩ A2].
Since, for A1 = B and A2 = ∅, we have v(B) = v(B) + v(∅) −
v(B ∩ ∅), it follows that v(B) = maxA1,A2⊆B [v(A1) + v(A2)−
v(A1 ∩ A2], that is v ∈ V sOR(R). Conversely, let v ∈ V sOR(R).
If B1, B2 ⊆ R, then v(B1 ∪ B2) = maxA1,A2⊆B1∪B2 [v(A1) +
v(A2) − v(A1 ∩ A2)] ≥ v(B1) + v(B2) − v(B1 ∩ B2), that is,
v ∈ SUPV(R).2

As above, we have

Theorem 3 If in an ARA system all bidders’ R-valuations
are supermodular, then the aggregate R-valuation va satisfies
va(B) = maxA1,A2⊆B [v(A1) + v(A2)− v(A1 ∩A2)]
for all B ⊆ R.

4 Syntax
The proposed language is based on the following two novel
ideas: (1) The use of generalized network flows to represent
the bids; and (2) The interpretation of the WD as an adequate
aggregation of individual preferences.

In the new language, each bidder submits to the arbitra-
tor a generalized flow network representing its bids. We call

such a network flow NETBID and it will represent the val-
uation of the bidder. More precisely, if the set of resources
is R = {r1, r2, . . . , rm}, then in the NETBID of each agent
there is a special node START connected to m nodes rj by
directed edges having capacity 1. An integer flow in NET-
BID will represent an assignment of resources to the agent by
considering the set of resources rj with flow value 1 on the
directed edge (START, rj). The node rj is an usual node,
that is, it satisfies the conservation law: the total (sum) of in-
coming flows equals the total flow of outcoming flows. In the
network there are also bundle nodes which do not satisfy the
conservation law, which are used to combine (via their inputs
flows) different goods in subset of goods. The combination is
conducted by the (integer) directed edges flows together with
appropriate lower and capacity bounds. For example, the ad-
ditive valuation, v(S) = |S| for each subset S of R can be
represented by the NETBID in Figure 5.
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Figure 5: Additive valuation network

There is an important improvement over other existing
graph-oriented bidding languages namely the possibility that
a bundle node to represent an entire hypergraph having as
vertices the resource set R. Furthermore, the nodes values
are given by using labels on bundles nodes, which are posi-
tive real numbers or even procedural functions having as ar-
guments the values of the incoming flows. This has as conse-
quence a higher expressiveness of the bidding language.

Once the NETBID has been constructed, any maximum
value flow (in the sense described above) will represent the
valuation function of the agent. In particular cases it is not
difficult for a rational bidder to construct a NETBID repre-
senting his preferences. For example, the NETBID in Fig-
ure 6 expresses that the bidder is interested in a bundle con-
sisting in two or three resources of type E , together with the
resource M which adds 10 to the values sum of the particular
resources of type E:
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Figure 6: Tbbl valuation network



An important extension of our flows is that if the flow is
null on some particular arc then it is not necessary that the
lower bounds and capacity constraint to be verified.

Formally a NETBID can be defined as follows.

Definition 1 A R-NETBID is a tuple
N = (D,START, END, c, l, λ):

1. D = (V, E) is an acyclic digraph with two distin-
guished nodes START, END ∈ V ; the other nodes, V −
{START, END}, are partitioned R ∪ B ∪ I: R is the set
of resources nodes, B is the set of bundles nodes and
I is the set of interior nodes. There is a directed edge
(START , r) ∈ E for each r ∈ R, and at least a directed
edge (b, v) ∈ E for each b ∈ B. There are no other di-
rected edges entering in a resource node. The remaining
directed edges connect resources nodes to bundle or in-
terior nodes, interior nodes to bundle or interior nodes,
bundle nodes to interior nodes or END node.

2. c, l are nonnegative integer partial functions defined on
the set of directed edges of D; if (i, j) ∈ E and c is de-
fined on (i, j) then c((i, j)) ∈ Z+, denoted cij , is the ca-
pacity of directed edge (i, j); l((i, j)) ∈ Z+, if defined,
is the lower bound on the directed edge (i, j) and is de-
noted lij; if (i, j) has assigned a capacity and a lower
bound then lij ≤ cij . All directed edges (START , r) have
capacity 1 and the lower bound 0. No directed edge
(b,END) has capacity and lower bound.

3. λ is a labelling function on V − {START, END} which
assign to a vertex v a pair of rules (λ1(v), λ2(v)) (which
will be described in the next definitions).

Definition 2 LetN = (D,START, END, c, l, λ) be a R-NETBID. A
bidflow inN is a function f : E(D) → Z+ satisfying the following
properties (fij denotes f((i, j))):

1. For each directed edge (i, j) ∈ E: if fij > 0 and cij is
defined, then fij ≤ cij; if fij > 0 and lij is defined, then
fij ≥ lij .

2. If v ∈ V − {START, END} has λ1(v) = conservation then∑
(i,v)∈E(D) fiv =

∑
(v,i)∈E(D) fvi.

3. For each v ∈ B, fvu ∈ {0, 1}; there is exactly one vertex
u such that fvu = 1 and this happens if and only if for each
w ∈ R ∪ I , such that (w, v) ∈ E(D), we have fwv > 0.

The set of all bidflows in N is denoted by FN .
In order to simplify our presentation we have considered

here that for each v ∈ V − {START, END}, λ1(v) ∈
{conservation, bundle} giving rise to the flow rules de-
scribed above. In all the figures considered here, the function
λ1(v) is illustrated by the color of the node v: a gray node
is a bundle node and a white node is a conservation node. It
is possible to use the λ1(v) to have transformation internal
nodes as [3].

Definition 3 Let f be a bidflow in the R-NETBID N =
(D,START, END, c, l, λ). The value of f , val(f), is defined
as val(f) =

∑
b∈B val(b)fbEND, where val(v) is

val(v) =

{
0 if v = START

λ2(D−1
f (v)) if v 6= START, END.

D−1
f (v) denotes the set of all vertices w ∈ V (D) such that

(w, v) ∈ E(D) and fwv > 0. λ2(D−1
f (v)) is the rule (speci-

fied by the second label associated to vertex v) of computing
val(v) from the values of its predecessors which send flows
into v.

Definition 4 Let N = (D,START, END, c, l, λ) be a R-
NETBID. The R-valuation designated by N is the function
vN : P(R) → R+, where for each S ⊆ R,
vN (S) = max{val(f)|f ∈ FN , fSTART r = 0 ∀r ∈
R− S}.

By the above two definitions, the value associated by N to
a set S of resources is the maximum sum of the values of the
(disjoint) bundles which are contained in the set (assignment)
S. This is in concordance with the definition of a v-basis
given in section 3 for a superadditive valuation v. However,
the NETBID structure defined above is more flexible in or-
der to express any valuation. If the bidder desires to express
that at most k bundles from some set of bundle nodes must
be considered, then these nodes are connected to a new inte-
rior node and this last node linked to a new superbundle node
by a directed edge having as lower bound 1 and capacity k.
Clearly, any valuation represented in a XOR language can be
obtained in such way and any R-valuation can be represented.

The NETBIDS submitted by the bidders are merged by the
arbitrator in a common NETBID sharing only the nodes cor-
responding to START and R, and also a common END
node in which are projected the corresponding END nodes
of the individual NETBIDS. This common NETBID is a sym-
bolic representation of the aggregate valuation of the society.
We consider the following definition.
Definition 5 Let Ni = (Di,STARTi, ENDi, ci, li, λi) be the
R-NETBID of the agent i ∈ I . The aggregation R-NETBID
of {Ni|i ∈ I} is the R-NETBID Na = (Da,STARTa,

ENDa, ca, la, λa), where Da = (Va, Ea) has
Va = {STARTa, ENDa} ∪ R ∪ Ba ∪ Ia, Ba (respectively Ia)
being the disjoint union of all individual bundle node sets Bi

(respectively, internal nodes Ii);
Ea = {STARTa}×R∪Ba×{ENDa}∪∪i∈I(Ei−({STARTi}×
R ∪Bi × {ENDi})).
All directed edges (STARTa, r) have the capacity ca = 1 and
the lower bound la = 0. No directed edge (b,ENDa) has
capacity and lower bound. All the remainder capacities and
lower bounds are obtained from the corresponding values in
the individual NETBIDS. Similarly are constructed the label
rules λa(v). If a resource node ra has different λ2 values in
some local networks, then ra is connected to new copies of
it by directed edges with ca = 1 and la = 0, and this new
nodes are connected by directed edges corresponding to the
local NETBID.

This definition is illustrated in Figure 7.
From this construction, the following theorem can be proved
Theorem 4 If in a FRA system each bidder’s i R-valuation,
vi, is represented by R-NETBID Ni (i ∈ I), then the ag-
gregate R-valuation va is designated by the aggregate R-
NETBID Na, that is, va = vNa .

Proof. Let S ⊆ R. If If O = (O1, . . . , On) is a maxi-
mum S-allocation, that is, va(S) =

∑
i∈I vi(Oi), then for each

i ∈ {1, . . . , n} = I , vi(Oi) = vNi(Oi) can be obtained as val(fi),
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for a maximum value bidflow fi in Ni. The flows (fi)i∈I induce a
flow fa in the NETBID Na, with val(fa) =

∑
i∈I vi(Oi), that

is val(fa) = va(S). Conversely, each maximum value bidflow
fa in Na can be decomposed into disjoint bidflows fi in the NET-
BID Ni, which must be maximum value bidflows. It follows that
val(fa) =

∑
i∈I val(fi) =

∑
i∈I vNi(S) = va(S).2

The maximum value of a bidflow in the NETBIDNa is the
social welfare value: the computation of this value implicitly
solves the WD problem (by a simple bookkeeping of agents
owning the winning bundles in the aggregate NETBID).

5 Discussion
Several bidding languages for CAs have previously been pro-
posed, arguably the most compelling of which allow bidders
to explicitly represent the logical structure of their valuation
over goods via standard logical operators. These are referred
as “logical bidding languages” (e.g. [8]). For instance, an OR
bid specifies a set of < bundle, price > pairs, where the bid-
der is willing to buy any number of the specified bundles for
their respectively specified prices. This is equivalent to spec-
ifying a set of single-bundle bids. An XOR bid specifies a
set of < bundle, price > pairs, where the bidder is willing
to pay for only one of the bundles for its corresponding price.
Nisan’s OR* language [8] provides constraints within an OR
bid via “phantom variables” (see also [6]). One explanation
of restricting operators to just OR and XOR in the logical
framework adopted by these languages, is given by the char-
acteristics of the accompanying WD-solving methodology
the language designers proposed. Boutilier and Holger [1]
made the next logical step with the LGB language, which al-
lows for arbitrarily nested levels combining goods and bun-
dles by the standard propositional logic operators: OR, XOR,
and AND. Day [5] introduces bid tables and bid matrices as
a bidding language more connected to the economic litera-
ture on restricted preferences and assignment games. Cavallo
and colleagues [2], introduce TBBL, a tree-based bidding lan-
guage that has several novel properties. In TBBL, valuations
are expressed in a tree structure, where internal nodes in the
tree correspond to operators for combining subsets of goods,
and individual goods are represented at the leaves. TBBL al-
lows agents to express preferences for both buying and selling
goods in the same tree. Thus, it is applicable to a combinato-
rial exchange (CE), a generalization of a CA that is important
in many multiagent systems. TBBL also provides an explicit
semantics for partial value information: a bidder can specify
an upper and lower bound on their true valuation, to be re-

fined during bidding. TBBL is a logical tree-based bidding
language for CEs. It is fully expressive, yet designed to be
as concise and structured as possible. Finally, Cerquides and
colleagues [3], explicitly addresses the case of bidding lan-
guages for CEs by extending the classical < bundle, price >
view of a bid to a < transformation, price > pair. This
work is extended by Giovanucci and colleagues [7], which
provide an interesting Petri Nets formalism to reason about
these CAs extensions.

In this paper we proposed a new visual framework for bid-
ding languages. We have motivated our approach by analyz-
ing adequate resource allocation systems (semantics) and in-
troduced our work in a theoretical manner. We also presented
a number of intuitive examples with the purpose of highlight-
ing the advantages of our work. We believe that when bidders
are able to express a wide variety of preferences to a sealed-
bid or proxy agent, NETBID flows allow to iteratively gener-
ate an economically satisfactory market outcome. Moreover,
the format for the representation of bidder preferences serves
to reinforce the global perspective on the implementation of
combinatorial auctions using a new computational technique
(CSP based) for determining auction outcomes. We are cur-
rently pursuing this line of work for practical evaluation.
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