
HAL Id: lirmm-00410651
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00410651v1

Submitted on 21 Aug 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

First IJCAI International Workshop on Graph
Structures for Knowledge Representation and Reasoning

(GKR@IJCAI’09)
Madalina Croitoru, Christophe Gonzales, Jérôme Lang, Boris Motik,

Marie-Laure Mugnier

To cite this version:
Madalina Croitoru, Christophe Gonzales, Jérôme Lang, Boris Motik, Marie-Laure Mugnier. First
IJCAI International Workshop on Graph Structures for Knowledge Representation and Reasoning
(GKR@IJCAI’09). pp.59, 2009. �lirmm-00410651�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00410651v1
https://hal.archives-ouvertes.fr

FIRST IJCAI WORKSHOP ON

GRAPH STRUCTURES FOR

KNOWLEDGE REPRESENTATION

AND REASONING

Madalina Croitoru

Christophe Gonzales

Jerome Lang

Boris Motik

Marie – Laure Mugnier

FIRST IJCAI WORKSHOP ON GRAPH STRUCTURES FOR

KNOWLEDGE REPRESENTATION AND REASONING

Madalina Croitoru

Christophe Gonzales

Jerome Lang

Boris Motik

Marie – Laure Mugnier

Program Committee

J o s d e B ru i j n , F r e e U n i v e rs i t y o f B o z e n - B o l za n o , I t a l y , d eb r u i j n @ i n f . u n i b z . i t

C o r n el i u s C r o i t o ru , A l . I . C u za U n i v . , I a s i , R o m a n i a , cr o i to r u @ i n f o . u a i c . ro

P a u l Do r a n , A R T, C S , U n i v e rs i t y o f L i v e r p o o l , U K, p d o ra n @ cs c . l i v . a c . u k

M a th i eu D a q u i n , K MI , O p en U n i v e rs i ty , U K , M. D a q u i n @ o p en . a c . u k

S r i n a n d a n D a sm a h a p a tr a , E C S , S o u t h a m p t o n , U K, s d @ e c s . s o to n . a c . u k

K e es v a n D e em t er , U n i v . o f A b e r d e en , U K , k . v d e e m t e r @ a b d n . a c . u k

Ha r r y D el u g a c h , U n i v . o f H u n t sv i l l e , U S A , d el u g a ch @ c s . u a h . e d u

F a b i e n Ga n d o n , IN R IA , S o p h i a A n t i p o l i s , F ra n c e , F a b i en . G a n d o n @ s o p h i a . i n ri a . f r

J o h n Ho w s e , U n i v o f B r i g h t o n , U K , Jo h n . H o w s e@ b t o n . a c . u k

R o b er t J a s c h k e, U n i v er s i ty o f K a s s e l , G er m a n y , j a e s ch k e @ cs . u n i - ka s s e l . d e

M a ry K e e l e r , V i v o Mi n d I n t e l l i g en c e , I n c . , U S A , m k e e l e r@ u . w a sh i n g t o n . ed u

U f f e K j r u l f f , A a l b o rg U n i v e rs i t y , D en m a r k, u k@ c s . a a u . d k

Mi c h el L e cl e r e , L I R M M, U n i v . Mo n t p el l i e r I I , F ra n c e , l e c l e r e @ l i r m m . f r

G u y Mi n ea u , U n i v er s i t e L a v a l , C a n a d a , g u y . m i n e a u @ f c . u l a v a l . ca

T h o m a s D y h r e N i e l s en , A a l b o r g U n i v e rs i t y , D en m a r k, t d n @ cs . a a u . d k

A l u n P re e c e , S ch o o l o f C o m p u t er S ci en c e , C a rd i f f U n i v e r s i t y , U K , A . D . P r e e c e @ c s . c a rd i f f . a c . u k

Ju a n A n t o n i o R o d ri g u ez A g u i l a r , I I I A , B a r c el o n a , S p a i n , j a r @ i i i a . c s i c . es

S e b a s t i a n R u d o l p h , A I F B, K a r l s ru h e , G e rm a n y , sr u @ a i f b . u n i - ka r l s ru h e . d e

A n n e S ch l i ch t , W I N , Ma n n h ei m , G e rm a n y , a n n e@ i n f o rm a ti k . u n i - m a n n h ei m . d e

E r i c S a l v a t , I . M . E . R . I . R . , P e r p i g n a n , F ra n c e , e r i c . s a l v a t @ i m e ri r . co m

D a n T e c u ci , U n i v er s i ty o f T e x a s , U S A , t e cu ci @ c s . u t e xa s . ed u

R a ll o u T h o m o p o ul o s , I N R A , U MR I A T E , M o n tp e l l i e r , F ra n c e, ra l l o u @ s u p a g ro . i n r a . f r

N i c W i l s o n , C o r k C o n st ra i n t C o m p u ta t i o n C en t r e , I r el a n d , n . wi l so n @ 4 c . u c c . i e

The development of effective techniques for knowledge representation and

reasoning (KRR) is a crucial aspect of successful intelligent systems. Different

representation paradigms, as well as their use in dedicated reasoning systems,

have been extensively studied in the past. Nevertheless, new challenges,

problems, and issues have emerged in the context of knowledge representation

in Artificial Intelligence (AI), involving the logical manipulation of

increasingly large information sets (see for example Semantic Web,

BioInformatics and so on). Improvements in storage capacity and performance

of computing infrastructure have also affected the nature of KRR systems,

shifting their focus towards representational power and execution

performance. Therefore, KRR research is faced with a challenge of developing

knowledge representation structures optimized for large scale reasoning. This

new generation of KRR systems includes graph-based knowledge

representation formalisms such as Bayesian Networks (BNs), Semantic

Networks (SNs), Conceptual Graphs (CGs), Formal Concept Analysis (FCA), CP-

nets, GAI-nets, all of which have been successfully used in a number of

applications. The goal of this workshop is to bring together the researchers

involved in the development and application of graph-based knowledge

representation formalisms and reasoning techniques.

GKR 2009 @ IJCAI Organisers

Using Maximal Join for Information Fusion

Claire LAUDY
Thales Research & Technology

Palaiseau, France
claire.laudy@thalesgroup.com

Jean-Gabriel GANASCIA
Computer Science Laboratory of Paris 6

University of Paris 6, Paris, France
jean-gabriel.ganascia@lip6.fr

Abstract

Information fusion is a very active research do-
main. A lot of studies exist dealing with informa-
tion fusion at a low level of semantics. Our claim
is that information should be fused at a high level
of semantics and using a symbolic representation.
Previously, we intuitively presented a framework
for high-level symbolic fusion. Our approach relies
on the use of the conceptual graphs model. Domain
knowledge is a major point of the fusion process.
The use of conceptual graphs for knowledge rep-
resentation fusion eases the process of expressing
domain knowledge and fusion heuristics. In this
paper, we formalize our approach. In particular,
we detail and formalize the introduction of domain
knowledge inside the fusion process. We validate
our approach within the context of a TV program
recommendation system.

1 Introduction
The first step of a decision-making process is to gather the
relevant pieces of information and to combine and fuse them
in order to have a global representation of the external world.
The information sources may be redundant and express dif-
ferent points of view. Furthermore, the information can be ac-
quired through different electronic sensors or may even come
from humans and convey a lot of implicit knowledge. Com-
bining all the information items distributed across the differ-
ent sources in order to build a coherent and accurate global
view is a very difficult and time consuming task.

Information fusion is defined as the use of techniques that
combine information items comming from different sources
in order to merge them. Information fusion is a very active
research domain (see www.isif.org). Studies exist that deal
with different types of information. A lot of studies deal with
the fusion of data expressed at a low level of semantics, but
our claim is that information should be fused at a high level
of semantics and using a symbolic representation. As the in-
formation items coming from the different sources may depict
different points of view of a situation or use different levels of
details, their fusion may lead to conflict between the informa-
tion that should be fused. Domain knowledge is then used to

solve these conflicts and fuse properly the observations. Us-
ing a high level of semantics and a symbolic representation of
the domain knowledge and of the fusion heuristics will allow
domain experts, with no particular skills in knowledge rep-
resentation or mathematics, to parameterize the system with
their own preferences (i.e. their own heuristics) derived from
their knowledge of the domain.

In [Laudy and Ganascia, 2008] we presented a framework
for high-level symbolic fusion. Our approach relies on the use
of the conceptual graphs model ([Sowa, 1984]). Using con-
ceptual graphs eases the expression of the fusion heuristics
and the domain knowledge. We also take the advantage of the
operators that are defined among the conceptual graphs struc-
tures. The maximal join operation of two conceptual graphs
is of major interest. Given two graphs that share compatible
subgraphs, the maximal join attempts to build a new graph
in which the two initial graphs are fused, according to their
compatible subgraphs. We introduce the use of fusion heuris-
tics inside the maximal join in order to take into account the
domain knowledge and the user preferences that are neces-
sary to achieve a good quality of fusion. We call them Fu-
sion Strategies. Fusion strategies are rules encoding domain
knowledge, used in order to extend the notion of compatibil-
ity between the concepts of two graphs.

We conducted a preliminary study within the context of a
recommendation system for intelligent numerical television.
The recommendation system analyzes TV program descrip-
tions and decides to recommend the programs or not to a spe-
cific user. We used our fusion platform in order to obtain
precise and reliable TV program descriptions, both regarding
the schedule and the content description of the program.

These preliminary studies gave the general idea of our ap-
proach and introduced it intuitively. The aim of the present
paper is to formalize the approach. In particular, as said be-
fore, the use of domain knowledge is a major point of the fu-
sion process, so we detail the introduction of domain knowl-
edge inside the maximal join operation.

This paper is organized as follows. We briefly review our
approach in Section 2. In Section 3, we detail the definition of
the fusion strategies and the constraints they should respect.
Section 4 presents our extension of the maximal join with the
use of fusion strategies. We illustrate our approach within the
TV program recommandation system in Section 5. In Section
6, we compare our approach to related works. We finally

conclude and present future work.

2 Conceptual Graphs for Symbolic Fusion
In [Laudy and Ganascia, 2008], we presented a framework for
high-level information fusion that uses the conceptual graphs
formalism. Using a generic and expressiv formalism such
as Conceptual Graphs to represent the information items that
have to be fused allows us to use our fusion platform within
different application domains. The model of the domain may
be restricted to a few concepts and relations (as for the dec-
sription of TV programs), or may be much more complex,
with a lot of concepts linksd with each other through many
different relationships (as for crisis management, see [Laudy
and Goujon, 2009].

The Conceptual Graphs model was developed by JF Sowa
in [Sowa, 1984]. In this work, we consider a subset of the
conceptual graphs named Simple Graphs ([Chein and Mug-
nier, 2008]). A Simple Graph G is defined by a set of concept
nodes CG, a set of relation nodes RG, a set of edges EG and
a naming function lG. The labels of the concept nodes are de-
fined by a concepyual type and an individual marker. The re-
lation nodes are labeled with a conceptual relation type. The
edges incident to a relation node r are ordered and labeled
with (r, i, c), with 1 ≤ i ≤ n, n being the arity of r and c
the concept linked to r through this edge. A support is de-
fined that contains all the conceptual types. In this work, we
consider that the support is a lattice.

The observations that are acquired from the different sen-
sors are stored as conceptual graphs. To fuse them, we use the
maximal join operation defined by Sowa. As shown in Figure
1, the maximal join allows to fuse two compatible subgraphs
of two conceptual graphs. Graph G3 is the result of the fusion
of G1 and G2 using the maximal join operation.

According to Sowa ([Sowa, 1984] pp. 101-103), to be
joined maximally, two graphs G1 and G2 must share compati-
ble subgraphs. In other words, they must have a common gen-
eralization G0 with compatible projections P1 : G0 → G1
and P2 : G0 → G2. P1 and P2 are compatible, if for each
concept c of G0:

• P1(c) and P2(c) have a common sub-type different from
⊥,

• the individual markers of P1(c) and P2(c) are conform
to their most general common sub-type,

• the individual markers of P1(c) and P2(c) are either
equals, or one of them is undefined.

The maximal join of G1 and G2 is built by joining them on
the maximally extended compatible projection.

The maximal join is a fusion operator. Furthermore, it
gives several results, which depict the different ways of com-
bining the information, that is to say, the different fusion hy-
pothesis. However, as stated in [Laudy and Ganascia, 2008],
using the maximal join only is not sufficient in order to fuse
information coming from real systems. Real data is noisy and
knowledge about the domain is often needed in order to fuse
two different but compatible values into a single one. Obser-
vations such as a person named ”J. Smith” and a one named

Figure 1: Example of a maximal join operation

”Mr. John Smith” are not equals, but our background knowl-
edge let us believe that the two observations rely to the same
person.

Using domain knowledge, the notion of compatibility be-
tween concepts is extended from compatibility of conceptual
types only to compatibility of individual markers. We use fu-
sion strategies, which are rules encoding domain knowledge
and fusion heuristics. The definition of the fusion strategies
are divided into two parts :

• The definition of the compatibility conditions between
two concepts, and

• the definition of how to process the fused value of two
concepts.

3 Fusion Strategies
Formally, the fusion strategies are expressed as rules that em-
compass two functions: a compatibility testing function, and
a fusion function. These two functions are expressed by do-
main experts and contain the domain knowledge necessary to
achieve a good level of fusion.

Let S be a lattice of conceptual types and l be a set of
individual markers. E is the set of concept nodes defined on
S× l, G1 and G2 are two conceptual graphs defined on S and
c1 and c2 are concepts belonging to E such that c1 ∈ G1 and
c2 ∈ G2.

A fusion strategy strategyfusion is defined as follows:

strategyfusion = if fcomp(c1, c2)
then ffusion(c1, c2)
else {c1, c2}

where fcomp : E × E → {true, false} is a function testing
the compatibility of two concept nodes,
and ffusion : E × E → E is a fusion function upon the
concepts nodes of the graphs.

The fusion strategies applied on two concept nodes result
either in a fused concept node if the initial nodes are compati-
ble, or in the initial nodes themselves if they are incompatible.

3.1 Definition of the Compatibility Function
The compatibility function can be defined either regarding the
distance that exists between two values or the similarity be-
tween them. These two measures (distance and similarity)
are defined by domain experts, given the requirements of the
application.

If the compatibility is defined regarding the similarity of
the two concepts, the similarity measure is compared to a
threshold defined by domain experts. The compatibility func-
tion fcomp is then defined as follows :

fcomp(c1, c2) = sim(c1, c2) ≥ thresholdsim

If the compatibility is processed regarding the distance that
exists between the concepts, the distance measure is also
compared to a threshold defined by domain experts and the
compatibility function is given as follows:

fcomp(c1, c2) = dist(c1, c2) ≤ thresholddist

3.2 Definition of the Fusion Function
The fusion function allows, for any couple of concept nodes,
to process, if it exists, the concept node resulting from the
fusion of the two initial nodes:

ffusion(c1, c2) = c

where c ∈ E is the concept that results from the fusion of c1

and c2.
It is sometimes necessary to know the context of two ob-

servations in order to determine whether they are compatible
or not as well as to determine the result of their fusion. In
these cases, the compatibility and fusion functions defined by
the domain experts, take into account the neighboring con-
cepts and relations of the concept nodes to be processed. Two
types of context can be considered :

• The role of the processed concepts, which is defined by
the neighboring relations that have this concept as target;

• The whole observation, that is to say the whole graphs
that have to be fused.

In such cases, we add respectively, the role (i.e. the set of
incomming icident relations) or the whole initial graphs in
the signature of the fusion function. We used both types of
context withing the application on TV programs description
fusion that we detail hereafter.

4 Maximal Join given a Fusion Strategy
The fusion strategies are used to extend the maximal join op-
eration that was initially defined by Sowa. Therefore, the
building of the set of the fusion hypothesis of two graphs is
still directed by the search of compatible projections. The no-
tion of compatibility between two concept nodes is extended,
as details hereafter. Furthermore and the construction of the
joint (i.e. fused) concepts is also modified, allowing to use
heuristics in order to choose the concept values.

In this section, we explain how we propose to use domain
knowledge and fusion heuristics inside the maximal join op-
eration. We call this process “maximal join given a fusion
strategy”.

In the remaining of this section, we use the following no-
tations:

• E is the set of all the concept nodes which types are
defined on a support S ,

• H , G1 and G2 are conceptual graphs defined on S,

• fcomp is a compatibility function that is defined on E ×
E → {true, false},
• ffusion is a fusion function defined on E × E → E and
• a fusion strategy strategyfusion that encompasses fcomp

and ffusion

Definition: Compatible concepts given a fusion strategy
Two concepts c1 = [t1 : m1] and c2 = [t2 : m2]
are compatible given strategyfusion if the following
conditions are verified:
• t1 and t2 have a most general common sub-type t

different from ⊥,
• m1 and m2, are respectively the individual markers

of c1 and c2 and conform to t,
• m1 is undefined and m = m2 or m2 is unde-

fined and m = m1 or m1 = m2 = m or
fcomp(c1, c2) = true and ffusion(c1, c2) = c =
[t : m]

If c1 and c2 are compatible, we can merge them and the
resulting concept is c = [t : m].

Definition: Compatible relations Two relations r1 and r2

are compatible if the following conditions are verified:
• They share the same conceptual type;
• for each i such that there exist an edge incident to

r1 labeled (r1, i, c1), there exist an edge (r2, i, c2)
such that c1 and c2 are compatible;

• for each i such that there exist an edge incident to
r2 labeled (r2, i, c2), there exist an edge (r1, i, c1)
such that c1 and c2 are compatible;

Definition: Compatible graphs given a fusion strategy
Two graphs G1 and G2 are compatible given
strategyfusion if there exists an isomorphism p
from G1 to G2 such that for each node n of G1, n and
p(n) are compatible.

The fusion of compatible graphs G1 and G2 according to
a fusion function ffusion consists of replacing each concept
node c of G1 by ffusion(c, p(c)).

Definition: Maximal join given a fusion strategy A maxi-
mal join operation between two graphs G1 and G2 ac-
cording to a fusion function ffusion is obtained by fus-
ing two of their compatible sub-graphs SG1 and SG2

according to ffusion . Furthermore, SG1 and SG2 are
such that, no sub-graphs SG′

1 and SG′
2 respectively of

G1 and G2 exist with:
• SG′

1 and SG′
2 compatible and

• SG1 is a sub-graph of SG′
1 and SG2 id a sub-graph

of SG′
2.

When applying the maximal join given a strategy opera-
tion between two graphs, one may obtain several results. In-
deed, there are as many results as the number of couples of
maximal (with respect to node sets inclusion) compatible sub-
graphs SG1 and SG2 between the two initial graphs. These
different results depict the different fusion hypothesis and
are therefore of importance regarding the global objective of
semi-supervised fusion.

5 Experimentations
5.1 Context
We applied the approach within a TV program recommenda-
tion system. Based on background information and the de-
scription of a new program, the system evaluates whether the
new TV program is of interest to a specific user. The descrip-
tion must therefore be very detailed concerning the content
of the program itself. It should also be as precise as possible
concerning the broadcast times.

The recommendation system initially used the live stream
of metadata associated with the video stream on the TNT
(Télévision Numérique Terrestre). This stream gives descrip-
tions of TV programs that are very precise concerning the
begin and end times of programs. However, no description
of the content of the program is given. In order to obtain
more detailed and precise descriptions of the TV programs,
the descriptions coming from the TNT are fused to ones com-
ing from an on-line TV magazine. The descriptions contain
much more details about the contents (summary of the pro-
gram, category, actors, presenters etc).

5.2 Fusion Strategies
In order to measure the quality of fusion using different fu-
sion strategies, we launched our experimentations using the
fusion platform first combined with no strategy and then with
three different ones. The first experiment -no fusion strategy-
is equivalent to using the initial maximal join operator for in-
formation fusion. The three strategies are the following ones:

• Strategy 1 extends dates compatibility. Two dates are
compatible if the difference between the two is less than
five minutes. If two dates are compatible but different,
the fused date should be the earliest one if it is a “begin
date” and the latest one otherwise.

• Strategy 2 extends dates and titles compatibility. The
dates compatibility is the same as for strategy 1. Two
titles are compatible if one of them is contained in the
other one.

• Strategy 3 extends dates and titles compatibility. The
dates compatibility is the same as for strategy 1. Two
titles are compatible if the length of the common sub-
strings exceeds a threshold.

We detail hereafter examples of compatibility and fusion
functions used in the three fusion strategies. We will not re-
call here the whole support that we defined for TV program
descriptions and that is described in [Laudy and Ganascia,
2008]. Roughly, this support contains conceptual types such
as “Program”, “Title”, “content”, ... which denote the basic
attributes that one can find in any TV program description.

Title compatibility
The function described here is the one used in the strat-

egy 3. The value of a “Title” concept node is a string that
represent the title of the described program. Our similarity
function relies on the total length of the common substrings
between the two titles. Two individual concept nodes typed

“Title” with individual markers t1 and t2 are compatible if
and only if:

lengthOfCommonSubStrings(t1, t2)
max(length(t1), length(t2))

≥

max(length(t1), length(t2)) ∗ 0, 5

Date compatibility
Intuitively, we want to represent the fact that two dates are

compatible if they differ from less than 5 minutes .
In order to manipulate the dates as numbers and ease the

comparisons, we apply a simple transformation. Each date
is given as the number of seconds that passed since a refer-
ring date. Two individual concept nodes typed “Date” with
individual markers d1 and d2 are compatible if and only if:

|d1 − d2| ≤ 300

Fusion of compatible dates
For the fusion of concept nodes of type “Title”, our strategy

consists in taking the longest of the two proposed titles:

ffus([Title : t1], [Title : t2]) = fustitle(t1, t2)

with fustitle : S × S → ET (where ET is the set of all the
concept nodes of type “Title”) is defined as follows:{

fustitle(t1, t2) = t1 if length(t1) ≥ length(t2)
fustitle(t1, t2) = t2 if length(t2) > length(t1)

5.3 Results
We realized the experimentations using sixteen TV channels.
The aim is to obtain as much TV program descriptions as
possible, concerning the TV programs scheduled on a TV
channel, during one day. Our experimentation protocol is the
following one. We request every 5 minutes the two sources
of information to give us the next program scheduled on one
channel. The two provided TV program descriptions are then
fused using the fusion platform combined with one of the fu-
sion strategies.

In order to compare the results of the fusion to the pro-
grams that were really performed, we collected TV program
descriptions from the INAthèque. The INA, Institut National
de l’Audiovisuel, collects the descriptions of all the programs
that have been broadcast on the French TV. The exact begin
and end times are recorded, as well as a brief description of
the contents. We processed the percentage of programs that
were correctly found, according to the different strategies.
By correctly found, we mean that the fused program descrip-
tion is well formed and the values of the individual markers
are compatible with the ones of the description stored in the
INAthèque.

Figure 2 depicts the model of a well formed description.
We added unicity constraints on this model, in order to spec-
ify that some of the subgraphs of the model should be present
atmost one time in a fused description. For instance, a well
formed TV program has only one title (cf. figure 2). The
same applies to begin and end times. To test whether a fused

Figure 2: model for a TV program description

description F is well formed, we verify that for each subgraph
Mi of the model M on wich a unicity constraint applies, there
is a unique isomorphism from Mi to a subgraph Fi of F such
that Fi is more specific than Mi.

Figure 3 shows the results that we obtained on a represen-
tative selection of TV channels. As expected, we can see that
the fusion of observations using the maximal join operation
only is not sufficient. Only the descriptions with strictly iden-
tical values are fused. There is too much noise in real data for
a fusion process that does not take into account some knowl-
edge about the domain. Therefore, we applied the three pre-
viously cited fusion strategies. The more the compatibility
constraints between two values are relaxed, the better the re-
sults are. It is equivalent to inject more and more domain
knowledge in the fusion process. The issue then is to find the
right amount of knowledge that has to be injected.

6 Related Works

6.1 Information fusion based on graph structures

The necessity of taking into account high-level information
has recently been reported by the information fusion commu-
nity. Recent works such as [Buford et al., 2008], [Sambhoos
et al., 2008] and [Laskey, 2008] insist on the importance of
such information and propose new approaches for informa-
tion fusion, taking into account observations provided by hu-
mans. Works such as [Matheus et al., 2003] insist on the
importance of using ontologies to represent knowledge. Fur-
thermore, graph structures are often used to store information.
Therefore, information fusion based on graphs structures is a
major stake.

In [Rickard, 2006], information items are stored as graphs
and further fused. However, the formalism that is used to
store the information items is not easily understandable. Our
aim is to let the end users (domain experts) express their pref-
erences and constraints over the observations that should be
fused. Therefore the understandability of the knowledge rep-
resentation formalism is a major concern.

In the work related by [Sambhoos et al., 2008], informa-
tion item extracted from texts written in natural language are
stored as RDF triples. These triples are then organized in
more complex graph structures called “observation graphs”.
Requests can then be processed on the set of observations,
in order to determine whether a specific situation occurred or
not.

6.2 Similarity of concepts
The issue of processing the similarity of two concepts that
belong to two conceptual graphs was studied in [Zhong et al.,
2002] for instance. The operation of projection is used for
semantic information retrieval. A request graph is projected
on the graphs of a knowledge base were information is stored
as conceptual graphs. In order to improve the performance of
their system, the authors use a similarity measure between the
concepts of the request graph and the concepts of the infor-
mation graphs. Besides the ones that are equal, the concepts
that are similar enough are linked one to another. The simi-
larity measure relies on the use of the type hierarchy and the
difference between two concept types is lessen according to
their depth in the type hierarchy.

[Gandon et al., 2008] uses an extension of the similarity
measure proposed in [Zhong et al., 2002] in order to relax
the constraint of equality or specialization of the conceptual
types during the projection of one graph on a second one.

The major drawback of these two approaches, regarding
our aim of information fusion, is that they don’t take into ac-
count the similarity between the concepts values. Our fusion
approach has to be able to deal with the fusion of concepts
that have different but sufficiently individual markers.

6.3 Entity Reconciliation
Entity Reconciliation is a problem faced in many domains
such as data bases merging, ontology alignment, natural lan-
guage processing, etc. where several source of information
are used. It consists of deciding whether two descriptions (or
identifiers) refer to the same entity of the real world.

The first studies regarding entity reconciliation relied on
similarity processing of the different entity identifiers. The
measures developed within these studies are tuned to specific
application domains. Further studies such as [Bilenko and
Mooney, 2003] propose learnable measures, so that the ap-
proach remains generic and can be adapted to different appli-
cation domains, thanks to a learning phase.

More recently, studies combine the comparison of identi-
fiers with the use of the context of the compared entity de-
scriptions. Among others, the graphs structures are used,
when complex entities or situations are structured as graphs.
According to their neighbors in the graph they belong to,
it is possible to decide whether two identifiers relate to the
same entity ([Bhattacharya and Getoor, 2005] and [Sais et
al., 2007] for instance).

7 Conclusion and Perspectives
In previous work, we intuitively presented an approach for
information fusion, using the conceptual graphs model. The
model is used for domain knowledge representation and for
fusion. For the fusion process, we rely on the use of the max-
imal join operation defined by Sowa which is central to our
fusion process. However, domain knowledge is very impor-
tant within the fusion process. It is used in order to confront
the information items coming from the different sources and
resolve conflicts between the different points of view if nec-
essary.

Figure 3: Percentage of programs properly found ((1) no strategy, (2) strategy 1, (3) Strategy 2, (4) Strategy 3)

In this paper, we detail our approach and formalize the use
of domain knowledge inside maximal join operation, within
the fusion process. We illustrate our work within the context
of a TV program recommendation system and emphasize on
the importance of using domain knowledge inside the fusion
process.

Among others, our future work will concentrate on a step
prior to the fusion. Indeed, relying on the studies dealing
with graph similarity ([Sorlin et al., 2003], [Gandon et al.,
2008]...), we will develop an other facet of our work. Prior
to the fusion phase, we will focus on the discrimination of
the observations that should be fused or not, regarding their
global compatibility. The fusion of two graphs using the max-
imal join operation may be complex and time consuming, ac-
cording to the structure of the graphs that should be fused.
Our aim then, is to verify first, using simple and local compar-
isons relying on similarity measures and unicity constraints
whether two graphs are compatible and thus mergeable.

References
[Bhattacharya and Getoor, 2005] Indrajit Bhattacharya and

Lise Getoor. Entity resolution in graph data. Technical re-
port, University of Maryland, College Park, October 2005.

[Bilenko and Mooney, 2003] M. Bilenko and R. J. Mooney.
Adaptive duplicate detection using learnable string simi-
larity measures. In proceeding of the 9th ACM SIGKDD
International Conference on Knowledge Discovery and
Data Mining, Washington, DC, USA, 2003.

[Buford et al., 2008] J.F. Buford, L. Lewis, and G. Jakob-
son. Insider threat detection using situation-aware mas.
In 11th International Conference on Information Fusion,
pages 212–219, Cologne, Germany, 2008.

[Chein and Mugnier, 2008] M. Chein and M.L. Mugnier.
Graph-based Knowledge Representation. Computational
Foundations of Conceptual Graphs. Springer, 2008.

[Gandon et al., 2008] F. Gandon, O. Corby, I. Diop, and
M. Lo. Distances sémantiques dans des applications de
gestion d’information utilisant le web sémantique. In Se-
mantic similarity workshop, EGC 2008, Sophia Antipolis,
France, 2008.

[Laskey, 2008] K. Laskey. Probabilistic ontologies for
knowledge fusion. In 11th International Conference on In-
formation Fusion, pages 1402–1409, Cologne, Germany,
2008.

[Laudy and Ganascia, 2008] C. Laudy and J-G. Ganascia.
Information fusion in a tv program recommendation sys-
tem. In 11th International Conference on Information Fu-
sion, pages 1455–1462, Cologne, Germany, July 2008.

[Laudy and Goujon, 2009] C. Laudy and B. Goujon. Soft
data analysis within a decision support system. In to ap-
pear in FUSION 2009, 2009.

[Matheus et al., 2003] C. Matheus, M. Kokar, and K. Ba-
clawski. A core ontology for situation awareness. In 6th
International Conference on Information Fusion, pages
545–552, Cairns, Queensland, Australia, 2003.

[Rickard, 2006] J. T. Rickard. Level 2/3 fusion in conceptual
spaces. In 9th International Conference on Information
Fusion, Florence, Italy, 2006.

[Sais et al., 2007] Fatiha Sais, Nathalie Pernelle, and Marie-
Christine Rousset. L2r: a logical method for reference
reconciliation. In Twenty-second AAAI Conference on Ar-
tificial Intelligence, pages 329–334, July 2007.

[Sambhoos et al., 2008] K. Sambhoos, J. Llinas, and E. Lit-
tle. Graphical methods for real-time fusion and estimation
with soft message data. In 11th International Conference
on Information Fusion, pages 1621–1628, Cologne, Ger-
many, 2008.

[Sorlin et al., 2003] S. Sorlin, P-A Champin, and C. Sol-
non. Mesurer la similarité de graphes étiquetés. In
9èmes Journées Nationales sur la résolution pratique de
problèmes NP-Complets, pages 325–339, 2003.

[Sowa, 1984] J. F. Sowa. Conceptual Structures. Informa-
tion Processing in Mind and Machine. Addison-Wesley,
Reading, MA, 1984.

[Zhong et al., 2002] J. Zhong, H. Zhu, J. Li, and Y. Yu. Con-
ceptual graph matching for semantic search. In 10th in-
ternational Conference on Conceptual Structures, pages
92–106, 2002.

Generalizing Continuous Time Bayesian Networks with Immediate Nodes

Luigi Portinale and Daniele Codetta-Raiteri
Department of Computer Science

University of Piemonte Orientale “A. Avogadro”�
portinal, raiteri � @di.unipmn.it

Abstract
An extension to Continuous Time Bayesian Net-
works (CTBN) called Generalized CTBN (GCTBN)
is presented; the formalism allows one to model, in
addition to continuous time delayed variables (with
exponentially distributed transition rates), also non
delayed or “immediate” variables, which act as
standard chance nodes in a Bayesian Network.
The usefulness of this kind of model is discussed
through an example concerning the reliability of
a simple component-based system. A semantic
model of GCTBNs, based on the formalism of
Generalized Stochastic Petri Nets (GSPN) is out-
lined, whose purpose is twofold: to provide a well-
defined semantics for GCTBNs in terms of the un-
derlying stochastic process, and to provide an ac-
tual mean to perform inference (both prediction and
smoothing) on GCTBNs. The example case study
is then used, in order to highlight the exploitation
of GSPN analysis for posterior probability compu-
tation on the GCTBN model.

1 Introduction
Temporal probabilistic graphical models allow for a factor-
ization of the state space of a process, resulting in better mo-
deling and inference features. Such models are usually based
on graph structures, grounded on the theory of Bayesian Net-
works (BN). When time is assumed to be discrete, Dynamic
Bayesian Networks (DBN) [7; 10] can be adopted. However,
a discrete time assumption is not always adequate; for these
reasons, Continuous Time Bayesian Networks (CTBN) have
been proposed in [11; 12] and refined in [14]. Extensions to
the basic model have also been proposed both regarding the
use of indirect graph models [4] and the use of Erlang-Coxian
distributions on the transition time [6].

In this paper, we propose another kind of extension and,
in particular, a generalization of the standard CTBN frame-
work, by allowing the presence of nodes which have no ex-
plicit temporal evolution; the values of such nodes are, in
fact, “immediately” determined, depending on the values of
other nodes in the network. The resulting framework is called
Generalized CTBN (GCTBN) and is formally presented in
Sec. 2. GCTBNs allow the modeling of processes having

both a continuous-time temporal component and an immedi-
ate component capturing the logical/probabilistic interactions
among modeled variables. While these modeling features
are actually possible in discrete time DBNs, our work is, at
the best of our knowledge, the first attempt trying to mix in
the same BN, continuous-time delayed nodes with standard
chance nodes.

In case of continuous time, a model having similar features
can be found in the framework of Petri Nets, namely Gen-
eralized Stochastic Petri Nets (GSPN) [1]1 . Briefly, GSPNs
are stochastic Petri nets, with two different sets of transitions,
namely temporal with an exponentially distributed delay, and
immediate transitions (with no delay), having priority over
temporal ones. We propose to express a GCTBN model in
terms of a GSPN, by means of a set of translation rules (see
[13] for details). This translation is twofold: ����� it provides a
well-defined semantics for a GCTBN model, in terms of the
underlying stochastic process it represents (this is discussed
in Sec. 4); ���	� it provides an actual mean to perform infer-
ence on the GCTBN model, by exploiting well-studied analy-
sis techniques for GSPNs, as described in Sec. 5.

Actually, in case of a CTBN exact inference may often be
impractical, so approximations through message-passing al-
gorithms on cluster graphs [12; 14], or through sampling [4;
5] have been proposed. In the present work, we take advan-
tage of the correspondence between GCTBN and GSPN, in or-
der to propose inference algorithms for GCTBN models (both
for prediction and smoothing), based on GSPN solution algo-
rithms and providing the exact solution of the model.

The possibilities offered by GCTBNs, can be exploited in
several applications. For example, in system reliability anal-
ysis, it is very practical to distinguish between system com-
ponents (having a temporal evolution) and specific modules
or subsystems, whose behavior has to be modeled for the
analysis. For instance, in Fault Tree Analysis (FTA), ba-
sic events represents the system components with their fail-
ure rates, while non-basic events are logical gates identifying
modules of the system under examination [15]. In Dynamic
Fault Trees [3], logical gates identifying sub-modules, can be
combined with dynamic gates, modeling time-dependent de-
pendencies (usually assuming continuous time) among com-

1Because of space restrictions, we refer the interested reader to
[1; 13] for details and formal definitions.

ponents or sub-modules. Also in this case, it is very impor-
tant to distinguish, at the modeling level, between delayed
and immediate entities. Of course, similar considerations ap-
ply in other tasks as well, as in medical diagnosis, financial
forecasting, biological process modeling, etc. Sec. 3 provides
a simple case study in the reliability field, supporting the pre-
sentation of the concepts in the following sections.

2 The generalized CTBN model
Following the original paper in [11], a CTBN is defined as
follows:
Definition 2.1 Let
��
�������������
�� be a set of discrete vari-
ables, a CTBN over
 consists of two components. The
first one is an initial distribution ���� over
 (possibly spec-
ified as a standard BN over
). The second component is a
continuous-time transition model specified as (1) a directed
graph � whose nodes are
 � ����������
 � (and with ������
�� � de-
noting the parents of
!� in �); (2) a conditional intensity
matrix " �$#&% ')(�*+�$#�, for every
 �.-
 .
We can now introduce the notion of a Generalized CTBN
(GCTBN).
Definition 2.2 Given a set of discrete variables
 �/
0�1�������2��
��43 partitioned into the sets 5 (delayed variables)
and 6 (immediate variables) (i.e.
��7598:6 and 59;<6=�?>),
a Generalized Continuous Time Bayesian Network (GCTBN)
is a pair @A�CB��D�� �E�GF whereH � �� is an initial probability distribution over
 ;H � is a directed graph whose nodes are
I������������
�� (and

with �����J
 � � denoting the parents of
 � in �) such that
1. there is no directed cycle in � composed only by

nodes in the set 6 ;
2. for each node
 - 6 a conditional probability ta-

ble ��K
ML �����J
N�PO is defined (as in standard BN);
3. for each node Q - 5 a conditional intensity matrix"SR % ')(�* R , is defined (as in standard CTBN).

Delayed (or temporal) nodes are, as in case of a CTBN, nodes
representing variables with a continuous time evolution ruled
by exponential transition rates, and conditioned by the val-
ues of parent variables (that may be either delayed or imme-
diate). Immediate nodes are introduced, in order to capture
variables whose evolution is not ruled by transition rates as-
sociated with their values, but is conditionally determined at
a given time point, by other variables in the model. Such
variables are then treated as usual chance nodes in a BN and
have a standard Conditional Probability Table (CPT) associ-
ated with them.

A few words are worth to be spent for the structure of the
graph modeling the GCTBN. While it is in general possible to
have cycles in the graph (as in CTBN) due to the temporal na-
ture of some nodes, such cycles cannot be composed only by
immediate nodes. Indeed, if this was the case, we would in-
troduce static circular dependencies among model variables.

Finally, it is worth noting that the initial distribution � ��
can in general be specified only on a subset of
 . In particu-
lar, let TVUM6 be the set of root nodes (i.e. node with no parent
in �) which are immediate, then the initial distribution can

be computed as � �� �W� �XZY\[^] R�_a` *+b�c4Xd, ��K QfegL ������Qhe��iO . In
fact, while it is necessary to specify an initial distribution over
delayed variables, the distribution on the immediate variables
can be determined depending on the values of their parents;
of course if an immediate variable is modeled as a root node,
an initial prior probability is needed2.

3 An illustrative example
We now consider a case study which can be easily modeled
in form of GCTBN. This is a typical case in the field of reli-
ability analysis, and consists of a small system composed by
the main component A and its “warm” spare component B.
This means that initially both components are working, but
A is active while B is dormant; in case of failure of A, B is
activated in order to replace A in its function. We assume that
the activation of B occurs with a 0.99 probability. If B fails
before A, B can not replace A.

The system is considered as failed if A is failed and B is
dormant or failed. We suppose that only while the system is
failed, the components A and B undergo repair. As soon as
the repair of one of the components is completed, the com-
ponent re-starts in working state: if A is repaired the system
becomes operative again and the repair of B is suspended; if
instead B is repaired, this may determine one of these two sit-
uations: 1) B may become active with probability j9�lkm� n	n
and consequently the system becomes operative again and the
repair of A is suspended. 2) B may become dormant with
probability �$oSj , so the system is still failed and the repair of
B goes on.

The component time to failure or repair is a random
variable ruled by the negative exponential distribution ac-
cording to the component failure or repair rate respec-
tively. In the case of the main component p , the fail-
ure rate is qsr =1.0E o 06 t c � . The failure rate of u , qsv ,
changes according to its current state: if u is dormant, q v
is equal to 5.0E o 07 t c � ; if instead u is active, q v is
equal to 1.0E o 06 t c � . Because of this, the spare is de-
fined as “warm” [3]. A and B have the same repair rate:w r = w v =0.01 t c � .

3.1 The GCTBN model
The case study described above is represented by the GCTBN
model in Fig. 1 where the variables p , u , xyQSx represent
the state of the component A, the component B and the whole
system respectively. All the variables are binary because each
entity can be in the working or in the failed state (for the
component B, the working state comprises both the dormancy
and the activation). In particular, we represent the working
state with the value � , and the failed state with the value � .

The variable p influences the variable u because the fail-
ure rate of the component B depends on the state of A. Both
the variables p and u influence the variable x.QSx because the

2Actually, since prior probabilities on immediate root nodes
are a special case of CPT, we could also simply write z|{}�~
z {����� _a��� zD� ����� z��h��������� , to emphasize the fact that, for the speci-
fication of the temporal evolution of the model, the only initial distri-
bution is on delayed nodes (the other parameters are actually a fixed
specification on the network).

state of the whole system depends on the state of the compo-
nents A and B. The arcs connecting the variable x.Q�x to p
and u respectively, concern the repair of the components A
and B: only while the system is failed, they can be repaired.

The variables p and u in the GCTBN model in Fig. 1 are
delayed variables (Sec. 2) and are drawn as double-circled
nodes: both variables implicitly incorporate a Continuous
Time Markov Chain (CTMC) composed by two states: �
(working) and � (failed). Due to the assumption that both
components are initially supposed to work, the initial proba-
bility distribution is set equal to � for states p?�C� and uV�C� .
In the case of p , the current value of the rates q r and w r de-
pends on the current value of the variable x.Q�x , the only one
influencing p . This is shown by the Conditional Intensity
Matrix (CIM) reported in Tab. 1.a, where we can notice that
the rate w r is not null only if the value of x.QSx is � . The rateq r instead, is constant.

In the case of the variable u , the current value of the ratesqsv and w v depends on the current value of the variables p
and x.Q�x , as shown by the CIM appearing in Tab. 1.b, whereq v is increased only when p is equal to � and x.Q�x is equal to� (this implies that B is active). As in the case of the variablep , the rate w v is not null only if the value of x.QSx is � . Notice
that the combination p����	��x.Q�x7�V� is impossible, so the
corresponding entries are not significant.

The variable x.Q=x is immediate (Sec. 2) and is shown as a
circle node in Fig. 1. It is characterized by the CPT appearing
in Tab. 1.c. In particular, x.QSx is surely equal to � if p is
equal to � , and surely equal to � if both p and u are equal to� . In the case of p equal to � and u equal to � , x.QSx assumes
the value � with probability 0.99 (this implies the activation
of the spare component B), or the value � with probability
0.01 (this implies that B is still dormant).

A B

SYS

P(B)P(A)λA | SYS
µA | SYS

λB | A, SYS
µB | A, SYS

P(SYS | A, B)

Figure 1: GCTBN model of the case study.

4 A Petri Net semantics for GCTBN
The combination in a single model of entities explicitly evolv-
ing over time with entities whose determination is “imme-
diate”, has been already proposed in frameworks other than
CTBN; as we have already noticed in Sec. 1, DBNs provide an
example, in case of discrete time. In case of continuous time,
GSPNs allow to model both kinds of entities by means of
temporal and immediate transitions respectively. This means
that, in case both an immediate and a temporal transition are
enabled, the firing of the former takes precedence over the
firing of the latter. Immediate transitions may also have dif-
ferent priority levels among them.

The stochastic process associated with a GSPN is a homo-
geneous continuous time semi-Markov process that can be

a)

� �
� � � � ����

1.0E-06 ���g��
1.0E-06 ���g�� � � � ����

0 ���g��
0.01 ���g�

b)

� �
� � � � � ���� �

5.0E-07 � �g�� � � �
1.0E-06 ���g�� �
5.0E-07 � �g�

� � � � � � �� �
0 ���g�� � � �
0 � �g�� �

0.01 � �g�

c)
� ¡ � � � Prob.� � �

1� � �
0� � �
1� � �
0� � �

0.99� � �
0.01� � �

0� � �
1

Table 1: a) CIM for the variable p . b) CIM for the variable u .
c) CPT for the variable x.QSx in the GCTBN model in Fig. 1.

analyzed either by solving the so called Embedded Markov
Chain or by removing from the set of possible states, the so-
called vanishing states or markings and by analyzing the re-
sulting CTMC [1]. Vanishing states are the state (or mark-
ings) resulting from the firing of immediate transitions; they
can be removed, since the system does not spend time in such
states. This removal operation has also the advantage of re-
ducing (often in a significant way) the set of possible states to
be analyzed.

Solution techniques for GSPNs have received a lot of atten-
tion, especially with respect to the possibility of representing
in a compact way the underlying CTMC and in solving it effi-
ciently [8; 9]. Once a GCTBN has been compiled into a GSPN
[13], such techniques can be employed to compute inference
measures on the original GCTBN model (see Sec. 5).

There are two main analyses that can be performed with a
GSPN: steady state and transient analysis. In the first case,
the equilibrium distribution of the states is computed, while
in the latter, such a distribution is computed at a given time
point. In particular, solving a GSPN (for either steady state or
transient analysis) can provide the probability distribution of
the number of tokens in each place. This information can then
be exploited, in order to perform inference on the original
GCTBN model as it will be shown in Sec. 5.

4.1 The GSPN model for the case study
According to the conversion rules described in [13], the
GCTBN of the case study in Fig. 1 can be converted into the
GSPN model shown in Fig. 2 where the places p , u and x.QSx
correspond to the variables in the GCTBN model. The value
of a GCTBN variable is mapped into the marking (number of
tokens) of the corresponding place in the GSPN. Let us con-
sider the place u in the GSPN: the marking of the place u
can be equal to � or � , the same values that the variable u
in the GCTBN can assume. u is a delayed variable and its

initialization is modeled in the GSPN by the immediate tran-
sitions u ¢i£d¢i¤ � and u ¢i£d¢ ¤ � called “init” transition. Such
transitions are both initially enabled to fire with the effect of
setting the initial marking of the place u to � or � respec-
tively. The probability of these transitions to fire corresponds
to the initial probability distribution of the variable u .

The variation of the marking of the place u is determined
by the timed transitions u � � and u � � . The transitionu � � is enabled to fire when the place u contains one to-
ken; the effect of its firing is setting the marking of u to � .
The transition u � � instead, can fire when the marking of the
place u is equal to � , and turns it to � . The dependency of the
transition rate of a variable on the values of the other variables
in the GCTBN model, becomes in the GSPN model, the de-
pendency of the firing rate of a timed transition on the mark-
ings of the other places. For instance, in the GCTBN model
the variable u depends on p and x.QSx ; let us consider q4v ,
the transition rate of u from � to � depending on the values of
the variables p and x.Q=x (Tab. 1.b). In the GSPN model, q v
becomes the firing rate of the timed transition u � � whose
value depends on the marking of the places p and x.QSx , and
assumes the same values reported in Tab. 1.b. The firing rate
of the timed transition u � � instead, will correspond to the
rate w v reported in Tab. 1.b, still depending on the marking
of the places p and x.QSx .

The initialization of the marking of the place p is mod-
eled by the immediate init transitions p ¢i£d¢ ¤ � and p ¢i£d¢i¤ � ,
while the variation of its marking is modeled by the timed
transitions p � � and p � � , but in this case their firing rate
will depend only on the marking of the place x.QSx , because
in the GCTBN model the variable p depends only on the vari-
able x.QSx . Such variable is immediate in the GCTBN and
depends on p and u . Therefore in the GSPN each time the
marking of the place p or of the place u is modified, the
marking of x.Q=x has to be immediately updated: each time
the transition p � � , p � � , u � � or u � � fires, one token
appears in the place ¥�¦=jm¤P§hx.QGx ; this determines the firing
of the immediate transition ¨1¥1©�¥�¤ xyQSx � or ¨1¥�©�¥�¤ x.QSx �
having priority over the other immediate transitions (priority
level ªC��� in Fig. 2), with the effect of removing any to-
ken inside the place x.QSx . At this point, the marking of such
place has to be set according to the current marking of the
places p and u . This is done by one of the immediate tran-
sitions ©�¥�¤ x.QSx � , ©�¥�¤ x.Q=x � , ©�¥�¤ x.QSx « , ©�¥�¤ xyQSx ¬ ,©�¥�¤ xyQ�x . Each of them corresponds to one entry having
not null probability in the CPT of the variable x.Q=x in the
GCTBN model (Tab. 1.c). Each of such transitions has the
same probability and the same effect on the marking of the
place x.QSx , as the corresponding entry in the CPT.

5 Inference
Standard inference tasks in temporal probabilistic models are
prediction and smoothing [10]. Prediction is the task of com-
puting the probability of a set of queried variables, given past
evidence, i.e. predicting a future state taking into considera-
tion the observations up to now (a special case occurs when
the last evidence time point and the query time are the same
and is called Filtering or Monitoring). Smoothing is the task

A
A_1_2 A_2_1

2
2

B
B_1_2 B_2_1

2
2

A_init_1 A_init_2 B_init_1 B_init_2

22

SYS

set_SYS_1

set_SYS_2 set_SYS_3 set_SYS_4 set_SYS_5

2 2

2

2

2

2

2
2

2

2

22

A_init B_init

empty_SYS

reset_SYS_1

reset_SYS_2

2

2

π 2

π 2

2 2
1.0 1.00.0 0.0

1.0 1.0 0.99 0.01 1.0

3

3

timed transition

immediate transition

place

oriented arc

inhibitor arc

λBλA µA µB

Figure 2: GSPN model obtained from the GCTBN in Fig. 1.

of estimating what happened ®°¯±k time points in the past,
given all the evidence (observations) up to now. Such tasks
can be accomplished, depending on the model adopted, by
inference procedures usually based on specific adaptation of
standard algorithms for Bayesian Networks. For instance, in
DBN models, both exact algorithms based on junction tree
[10] as well as approximate algorithms exploiting the net
structure [2] or based on stochastic simulation can be em-
ployed. In this paper, we propose the conversion into GSPN,
and the GSPN analysis methods, as means to compute ex-
act inference on the GCTBN model, for both prediction and
smoothing tasks.

Computing the probability of a given variable assignment
²�³ � at time ¤ , will correspond to compute the probability
of having ¢ tokens in the place modeling
 at time ¤ . In par-
ticular, if ����� is the probability function associated with the
GCTBN model and �D¨ / 3 is the probability function associ-
ated with the GSPN model, then ���J
�´y�?³ � �µ�¶�D¨ /�·
=´y�¢�3 , where
�´ is the value of
 at time ¤ and

·
�´ is the num-
ber of tokens in the place corresponding to
 at time ¤ .
5.1 Prediction Inference
The task of prediction consists in computing the posterior
probability at time ¤ of a set of queried variables "�¸¹5º806 ,
given a stream of observations (evidence) ¥1´ � ���������E¥�´�» from
time ¤E� to time ¤�¼ with ¤E�:½¶�����h½M¤�¼�½M¤ . Every evidence ¥�´ _
consists of a (possibly different) set of instantiated variables.

Prediction can then be implemented by repeatedly solving
the transient of the corresponding GSPN at the observation
and query times. Of course, any observation will condition
the evolution of the model, so the suitable conditioning oper-
ations must be performed before a new GSPN resolution. The
pseudo-code for the prediction procedure is shown in Fig. 3.
Notice that, in the special case of filtering, the last evidence
would be available at the query time (i.e. ¤���¤ ¼ in Fig. 3);
in such a case, the update of the transition weights (last state-
ment in the for cycle) is not necessary, as well as the final
transient solution. The procedure would then simply output

Procedure PREDICTION
INPUT: a set of queried variables ¾ , a query time ¿ , a set of
temporally labeled evidences ÀiÁ ��ÂPÃiÃPÃiÂ ÀiÁ »with ¿ �)Ä ÃiÃPÃ Ä ¿ » Ä ¿
OUTPUT: Å�ÆÇ¾sÁ�È ÀiÁ ��ÂPÃiÃPÃiÂ À Á »�É
let ¿ËÊdÌ { ;
for Í�Ì �

to ÎmÏ
solve the GSPN transient at time ÆÐ¿ # ¿ # �g� É ;compute from transient, Ñ # Æ � É ÌDÅhÒEÏ } _ È À Á #EÓ for

} _Ô� �GÕ.Ö
;

update the weights of the immediate init transitions of
} _

according to Ñ # Æ � É ; Ó
solve the GSPN transient at time Æ×¿ ¿ » É ;
compute from transient, Ò�Ì�ÅhÒEÏ�¾ Ó

;

output Ò ;
Figure 3: The prediction inference procedure.

�D¨ / "!L ¥�´�3 computed from the last transient analysis.
In case there is evidence available at time ¤ � ��k , if the

evidence is on variables
 - 5�8ØT , then it is incorporated
into their “init” distribution; if the evidence is on variables
 - 6GoÙT , then the “init” of the other variables are updated
by solving the transient at time ¤ � �?k .

5.2 Smoothing Inference
The smoothing task consists in computing the probability at
time ¤ of a set of queried variables "�¸M5M8G6 , given a stream
of observations (evidence) ¥ ´ � ���������E¥ ´�» from time ¤ � to time¤�¼ with ¤|½7¤E�S½C�����d½7¤�¼ . The issue is how to condition on
variables observed at a time instant that follows the current
one. The idea is then to try to reformulate the problem in
such a way that it can be reduced to a prediction-like task.
The approach is then based on the application of the Bayes
rule as follows:����" ´ L ¥ ´ � ����������¥ ´ »1�y�?ÚÔ����" ´ �&����¥ ´ � ���������E¥ ´ »fL " ´ ��7ÚÔ����"D´&������¥�´ � L "D´&������������¥�´�»hL ¥�´ � ���������E¥�´�» �g� �Û"D´&�

In this way, every factor in the above formula is condi-
tioned on the past and can be implemented as in prediction.
However, the computation of the normalization factor Ú , re-
quires that a separate computation must be performed for ev-
ery possible assignment of the query " . The interesting point
is that such computations are independent, so they can be pos-
sibly performed in parallel3. Once the computation has been
performed for every query assignment, then results can be
normalized to get the actual required probability values.

The pseudo-code for the smoothing procedure is shown in
Fig. 4. The normalize operator, just divide any entry of
the vector p by the sum of all the entries, in order to provide
the final probability vector of the query.

5.3 Example of inference in the case study
Consider again the case study of Fig. 1. Concerning predic-
tion, let us consider to observe the system working (x.QSx¹��) at time ¤I�Ü��k�Ý�t and the system failed (x.QSxÞ�ß�) at
time ¤|�V�Gà\��k	Ý�t . By considering the procedure outlined in
Fig. 3 we can compute the probability of component A being
working at time ¤.�¶:à���k	Ý�t , conditioned by the observation

3An alternative can be to directly compute the denominator of the
Bayes formula (i.e. the probability of the evidence stream); however,
this requires a larger number of transient solutions if the length of the
observation stream is greater than the the number á of assignments
of â (i.e.if ãSäNá), as is usually the case.

Procedure SMOOTHING
INPUT: a set of queried variables ¾ , a query time ¿ , a set of
temporally labeled evidences ÀiÁ ��ÂPÃiÃPÃiÂ ÀiÁ »with ¿ Ä ¿ �ZÄ ÃPÃiÃ Ä ¿ »
OUTPUT: Å�ÆÇ¾sÁ�È ÀiÁ ��ÂPÃiÃPÃiÂ À Á »�É ;
let å be the cardinality of possible assignments æ # (1 ç\ÍJçfå) of ¾ ;
A: array[N];
for Í�Ì �

to åSÏ
//possibly in parallel
A[i]=SMOOTH(æ #); Ó

output normalize(A);

Procedure SMOOTH(q) Ï¿ËÊZÌ<¿ ;
solve the GSPN transient at time ¿ ;
compute from transient, Ò4Ì�ÅmÒEÏ&¾�Ì<æ Ó ;Àiè)Ì<æ ;
for Í�Ì �

to ÎmÏ
compute from transient, Ñ # �g� Æ � É ÌDÅhÒ�Ï } _ È Àiè Ó for

} _)� �GÕyÖ
;

update the weights of the immediate init transitions of
} _

according to Ñ # �g� Æ � É ;solve the GSPN transient at time Æ×¿ # ¿ # �g� É ;compute from transient, Ñ # Æ×À É ÌDÅhÒEÏ&À Á #�Ó ;Ò4Ì:Ò Ñ # Æ×À É ;À èéÌ<À Á # ; Ó
output Ò ; Ó

Figure 4: The smoothing inference procedure.

stream, as follows: (1) we solve the transient at ¤��ê��kgÝ�t
and we compute the probabilities of p and u , conditioned by
the observation x.QSxl�ë� ; (2) we use the above computed
probabilities as the new init probabilities for the places p andu of the GSPN; (3) we solve the transient for another time
interval ¤µ�V��k	Ý�t and we compute the probabilities of p andu , conditioned by the observation x.Q�x°�V� ; (4) we use the
above computed probabilities as the new init probabilities for
the places p and u of the GSPN; (5) we solve the transient
for a time interval ¤��ì«=àh��kgÝ�t and we finally compute the
probability of the query p . Tab. 2 shows the values computed

Time (h) Å�Æ � Ì � È À É ÅdÆ � Ì � È À É ÅdÆ ¡ Ì � È À É ÅdÆ ¡ Ì � È À É� {P{P{P{P{ { Ã í { í �P�iî { Ã { í {&ïPï � { Ã í&ð �iñPñ ð { Ã { ñ ï ðPðPð� {P{P{P{P{ { � { Ã {&ï ��ñ&� í { Ã í �iî ð ï �ð {P{P{P{P{ 0.521855 0.478145 - -

Table 2: Probabilities for prediction inference in the case
study (¥ is the current accumulated evidence).

during the above process. The last row shows the required
results.

Concerning smoothing inference, let us suppose to have
observed the system working at time ¤��º«�àg��kgÝ�t and failed
at time ¤y�?òàa��k	Ý�t . We ask for the probability of componentp at time ¤y�?�)ài��k	Ý�t , conditioned by the above evidence. By
considering the procedure outlined in Fig. 4 we can compute
the required probabilities as follows: (1) we first consider the
case pó�ô� ; (2) we solve the transient at ¤y�¶�|à1��kgÝ�t and we
compute ¨\�:�?����p?�C��� ; (3) we condition p and u on p?�� and we determine the new init probabilities for p and u ; (4)
we solve the transient for ¤.�C��kgÝ�t (to reach time «màË��k	Ý�t) and
we compute ¨��=�7��� x.Q�xõ�V��� ; we also condition p and u
on x.Q�xö�C� and we use such values as new init probabilities
for places p and u ; (5) we solve the transient for ¤y�¶�.à���kgÝ2t
(to reach time �à���k	Ý�t) and we compute ¨1«����� x.Q�xö�¶��� ;
(6) we compute the un-normalized probability of pÞ�÷� asj)�õ�÷¨\��à\¨���à\¨1« ; By performing the above steps also for
the case pC�º� we can similarly compute the un-normalized

probability of pë�ë� , namely j�� . A simple normalization
over jé� and j4� will then produce the required results. Tab. 3
shows the values computed during the above process (partial
results ¨\�	��¨��f�E¨�« are shown in bold).

ÅdÆ � Ì � É at ¿gÌ �sø�� {Pù = 0.833086
Time (h) Å�Æ � Ì � È À É Å�Æ ¡ Ì � È À É Å�Æ � � � Ì � È À É ÅdÆ � � � Ì � È À É� {P{P{P{P{ � { Ã î í ���iúPî - -ú {P{P{P{P{ { Ã í ��ú í î�� { Ã î ð ñ { �iî 0.999988 -ð {P{P{P{P{ - - - 0.000022

p1=0.0000183277 ÅdÆ � Ì � É at ¿gÌ �sø�� {Pù = 0.166914
Time (h) Å�Æ � Ì � È À É Å�Æ ¡ Ì � È À É Å�Æ � � � Ì � È À É ÅdÆ � � � Ì � È À É� {P{P{P{P{ { { Ã íPíPíPí �P� - -ú {P{P{P{P{ { Ã { ðiûPû ñPî { Ã í&ð �iñ&� í 0.999950 -ð {P{P{P{P{ - - - 0.000049

p2=0.0000081784

Å�Æ � Ì � È À É ü �ü ��ý üEþ =0.691452Å�Æ � Ì � È À É ü�þü ��ý üEþ =0.308548

Table 3: Probabilities for smoothing inference in the case
study (¥ is the current accumulated evidence).

6 Conclusions and Future Works
In this paper we have presented a generalized CTBN formal-
ism, allowing one to mix in the same model continuous time
delayed variables with standard “immediate” chance vari-
ables. The usefulness of this kind of model has been dis-
cussed through an example concerning the reliability of a
simple component-based system. The semantics of the pro-
posed GCTBN formalism has been provided in terms of Gen-
eralized Stochastic Petri Nets (GSPN), a well-known formal-
ism isomorph to semi-Markov processes, through which it is
also possible to exploit well established analysis techniques,
in order to perform standard prediction or smoothing infer-
ence. In particular, adopting GSPN solution algorithms as
the basis for GCTBN inference, allows one to take advan-
tage of specialized methodologies for solving the underlying
stochastic process, that are currently able to deal with ex-
tremely large models; in particular, such techniques (based
on data structures like matrices or decision diagrams) allow
for one order of magnitude of increase in the size of the mod-
els to be solved exactly, with respect to standard methods,
meaning that models with an order of ��k � � tangible states can
actually be solved [8; 9].

However analyzing a GCTBN by means of the underlying
GSPN is only one possibility that does not take explicit ad-
vantage of the structure of the graph as in CTBN algorithms
[12; 14]. Our future works will try to investigate the possibil-
ity of adopting cluster-based or stochastic simulation approx-
imations, even on GCTBN models, and in comparing their
performance and quality with respect to GSPN-based solu-
tion techniques. In particular, since Petri nets are a natural
framework for event-based simulation, it would be interest-
ing to investigate how simulation-based approximations can
be actually guided by the underlying GSPN model. Finally,
since symbolic representations (based on matrices or deci-
sion diagrams) have been proved very useful for the analy-
sis of GSPN models, it would also be of significant interest
to study the relationships between such representations and

the inference procedures on probabilistic graphical models in
general, since this could in principle open the possibility of
new classes of algorithms for BN-based formalisms.

References
[1] M. Ajmone Marsan, G. Balbo, G. Conte, S. Donatelli,

and G. Franceschinis. Modelling with Generalized
Stochastic Petri Nets. J. Wiley, 1995.

[2] X. Boyen and D. Koller. Tractable inference for com-
plex stochastic processes. In Proceedings UAI 1988,
pages 33–42, 1998.

[3] J. Bechta Dugan, S.J. Bavuso, and M.A. Boyd. Dy-
namic fault-tree models for fault-tolerant computer sys-
tems. IEEE Trans. on Reliability, 41:363–377, 1992.

[4] T. El-Hay, N. Friedman, and R. Kupferman. Gibbs sam-
pling in factorized continuous time Markov processes.
In Proc. 24rd UAI’08, 2008.

[5] Y. Fan and C. Shelton. Sampling for approximate in-
ference in continuous time Bayesian networks. In Proc.
10th Int. Symp. on AI and Mathematics, 2008.

[6] K. Gopalratnam, H. Kautz, and D.S. Weld. Extending
continuous time Bayesian networks. In Proc. AAAI’05,
pages 981–986, Pittsburgh, PA, 2005.

[7] U. Kjaerulff. dHugin: a computational system for dy-
namic time-sliced Bayesian networks. International
Journal of Forecasting, 11:89–101, 1995.

[8] A.S. Miner. Decision diagrams for the exact solution of
Markov models. Proceedings in Applied Mathematics
and Mechanics (PAMM), 7(1), 2007.

[9] A.S. Miner and D. Parker. Symbolic representation
and analysis of large probabilistic systems. In Valida-
tion of Stochastic Systems, LNCS 2925, pages 296–338.
Springer, 2004.

[10] K. Murphy. Dynamic Bayesian Networks: Representa-
tion, Inference and Learning. PhD Thesis, UC Berkley,
2002. http://www.cs.ubc.ca/ murphyk/Thesis/thesis.html.

[11] U. Nodelman, C.R. Shelton, and D. Koller. Continuous
Time Bayesian Networks. In Proc. 18th UAI’02, pages
378–387, 2002.

[12] U. Nodelman, C.R. Shelton, and D. Koller. Expectation
propagation for continuous time Bayesian networks. In
Proc. 21st UAI’05, pages 431–440, 2005.

[13] L. Portinale and D. Codetta-Raiteri. A GSPN
semantics for continuous time Bayesian networks
with immediate nodes. Technical Report TR-INF-
2009-03-03-UNIPMN, Computer Science Dept., UPO,
2009. http://www.di.unipmn.it/TechnicalReports/TR-INF-
2009-03-03-UNIPMN.pdf.

[14] S. Saria, U. Nodelman, and D. Koller. Reasoning at
the right time granularity. In Proc. 23rd UAI’07, pages
421–430, 2007.

[15] W. G. Schneeweiss. The Fault Tree Method. LiLoLe
Verlag, 1999.

Join Bayes Nets: A New Type of Bayes net for Relational Data

Oliver Schulte
Computer Science Dept.
Simon Fraser University

oschulte@cs.sfu.ca

Hassan Khosravi
Computer Science Dept.
Simon Fraser University

hkhosrav@cs.sfu.ca

Bahareh Bina
Computer Science Dept.
Simon Fraser University

bba18@cs.sfu.ca

Flavia Moser
Computer Science Dept.
Simon Fraser University

fmoser@cs.sfu.ca

Abstract
Many real-world data are maintained in relational
format, with different tables storing information
about entities and their links or relationships. The
structure (schema) of the database is essentially
that of a logical language, with variables rang-
ing over individual entities and predicates for
relationships and attributes. Our work combines
the graphical structure of Bayes nets with the
logical structure of relational databases to achieve
knowledge discovery in databases. We introduce
Join Bayes nets, a new type of Bayes nets for
representing and learning class-level dependencies
between attributes from the same table and from
different tables; such dependencies are important
for policy making and strategic planning. Focusing
on class-level dependencies brings advantages
in terms of the simplicity of the model and the
tractability of inference and learning. As usual
with Bayes nets, the graphical structure supports
efficient inference and reasoning. We show that
applying standard Bayes net inference algorithms
to the learned models provides fast and accurate
probability estimates for queries that involve
attributes and relationships from multiple tables.

1 Introduction
Many real-world applications store data in relational format,
with different tables for entities and their links. Standard ma-
chine learning techniques are applied to data stored in a single
table, that is, in nonrelational, propositional or “flat” format
[10]. The field of statistical-relational learning (SRL) aims
to extend machine learning algorithms to relational data [6].
One of the major machine learning tasks is to use data to
build a generative statistical model that represents the joint
distribution of the random variables that describe the appli-
cation domain [6]. In the single-table learning setting, the
goal is often to represent predictive dependencies between
the attributes of a single individual (e.g., between the intel-
ligence and ranking of a student). In the SRL setting, the
goal is often to represent in addition dependencies between
attributes of different individuals that are related or linked to
each other (e.g., between the intelligence of a student and the
difficulty of a course given that the student is registered in
the course). Many SRL models represent such dependencies
on two different levels, a class dependency model and an in-
stance dependency model. For instance, in a graphical SRL
model, the nodes in the instance dependency model represent

attributes of individuals or relationships [5]. The nodes in the
class dependency model correspond to attributes of the tables.
A class-level model is instantiated with the specific entities,
their attributes and their relationships in a given database to
obtain an instance dependency model. For instance, the class-
level model may contain a node age(S) to represent the age of
a generic member of the student class, and the instance model
may contain a node age(Jack) to represent the age of a spe-
cific student Jack . The node age(Jack) inherits the parame-
ters and associations indicated at the class level for age(S).

In this paper we apply Bayes nets (BNs) to model class-
level dependencies between variables that appear in separate
tables. What is new about our approach is that we focus
on class-level variables only rather than making predictions
about individual entities. Our class-level Bayes nets con-
tain nodes that correspond to the descriptive attributes of the
database tables, plus Boolean nodes that indicate the presence
of a relationship; we refer to these as Join Bayes nets (JBNs).
We introduce a new database join operation as a conceptual
aid that provides semantics for JBNs. The focus on class-
level dependencies brings advantages in terms of the simplic-
ity of the model and the tractability of inference and learn-
ing, while it involves some loss of expressive power, because
our BN model cannot answer queries about individual enti-
ties. Examples of applications that provide motivation for the
class-level queries answered by our BN include the following.

(1) Policy making and strategic planning. A university ad-
ministrator may wish to know which program characteristics
attract high-ranking students, rather than predict the rank of
a specific student in a specific program.

(2) Query optimization is one of the applications of SRL
where a statistical model predicts a probability for given
join conditions that can be used to infer the size of the join
result [7]. The join conditions often do not involve specific
individuals.

This paper defines JBN models and a probabilistic seman-
tics for them. Our algorithmic contribution is an efficient
dynamic programming procedure for parameter learning
in JBNs. This algorithm solves the problem of estimating
frequencies conditional on the absence of a relationship. Due
to the construction of our Bayes nets, class-level queries can
be answered using standard BN inference algorithms “as is”.

Paper Outline We review background from relational
databases and Bayes nets. Then we introduce our class-level
Bayes nets and define their semantics. We describe algo-
rithms for structure learning and parameter estimation. The
algorithms and the inference capabilities of the Bayes nets
they learn are evaluated on three data sets, one artificial and

two real-word ones (the MovieLens and the Financial data
set).
Related Work Researchers in statistical-relational learning
have developed a number of generative models that include
attributes and relationships of entities; for an overview see [8;
4; 3]. Markov Logic Networks (MLNs) are a prominent
class of SR models that are based on undirected graphs [3].
The most direct comparison of JBNs is with other directed
models; we discuss Bayes Logic Networks (BLNs) [9]
and Probabilistic Relational Models (PRMs) [5, Sec.5.5.3].
Similar points of comparison apply to other SRL models.

The class-level model of a BLN—-called a Bayes Logic
Program (BLP)—is syntactically similar to a JBN: a JBN
with n nodes into a n translates into n BLP clauses of
the form xi|parent i,1, parent i,2, . . . , parent i,k, where
i = 1, . . . , n indexes the nodes and node xi has k parents. In
addition, a BLP features combining rules. These specify how
instance-level predictions from information about different
related entities are to be combined into a single prediction.
For instance, if the task is to predict a specific student’s
intelligence based on his grade in 10 courses he has taken,
the class-level BLP clauses may be used to predict the
intelligence based on a single course, and the combining rule
would specify how to collect these predictions into a single
prediction for the specific student. A feature of JBNs not nec-
essarily present in BLPs is that variables ranging over entities
are associated with entity types (e.g., S ranges over entities
in the Student table); the use of such types is key for the
probabilistic semantics of JBNs. As for inference, it appears
that in principle a BLP could be translated into a Bayes net
and standard BN inference algorithm could be used to carry
out class-level inference; to our knowledge, this approach to
lifted inference with BLNs has not yet been evaluated.

The class-level model of a PRM is also a directed graphi-
cal model, and the nodes in the PRM graph are essentially the
same as in Join Bayes nets (if the PRM includess uncertainty
about the existence of links [5, Sec.5.5.3]). Nodes are associ-
ated with entity types as in a JBN. In the case in which entity
types may be related to themselves (e.g., the Parent relation-
ship relates people to people), a PRM may contain self-loops.
In order to make predictions about individual entities given
the other entities they are related to, a PRM requires the speci-
fication of an aggregate function for many-many relationships
[5, Def.5.2]. For instance, if the task is to predict a specific
student’s intelligence based on his grade in 10 courses he has
taken, a PRM may specify that the prediction is to be based
on the student’s average grade. The CP-tables for a class-level
PRM may be defined in terms of the value of the aggregate
functions. In that case, standard BN algorithms cannot be ap-
plied to the class-level PRM, and adaptations are required [5].

In addition to inference, the two major differences between
JBNs and PRMs resp. BLNs concern semantics and learning.
(1) In terms of semantics, SR models are usually viewed as
a template for instance-level models: For a given database,
the class-level model is instantiated with the specific entities,
their attributes and their relationships to obtain an instance-
level model, which inherits the parameters specified at the
class level. In contrast, we do not view our class-level BNs
as templates for instance-level BNs. Thus we avoid problems
with potential cycles at the entity level, which is a major
concern for directed relational models [5]. (2) In order to
make predictions about individual entities given the other
entities they are related to, BLNs and PRMs require extra
components in addition to the Bayes net-like class-level
structure (combining rules resp. aggregate functions). While

Student(student id, intelligence , ranking)
Course(course id, difficulty , rating)
Professor (professor id, teaching ability, popularity)
Registered (student id, Course id, grade, satisfaction)

Table 1: A relational schema for a university domain. Key
fields are underlined. An instance for this schema is given in
Figure 1.

these extra components considerably increase the expressive
power of these models, they also substantially increase the
complexity of learning. In particular, fitting the models to
data requires evaluating their predictive power with regard
to instance-level predictions that are based on the entire rela-
tional context of an entity. In contrast, inference and learning
for JBNs can be carried out efficiently with algorithms whose
design we outline in this paper.
2 Preliminaries
We employ notation and terminology from [11] for a
Bayesian Network. A Bayes net structure is a directed
acyclic graph (DAG) G, whose nodes comprise a set of
random variables denoted by V . A Bayes net (BN) is a pair
〈G, θG〉 where θG is a set of parameter values that specify
the probability distributions of children conditional on in-
stantiations of their parents, i.e. all conditional probabilities
of the form P (X = x|paG

X). These conditional probabilities
are specified in a conditional probability table for variable
X or CP-table. We write P (X1 = x1, ..., Xn = xn) = p,
sometimes abbreviated as P (x1, ..., xn) = p, to denote
that the joint probability of random variables X1, . . . , Xn
taking on values x1, . . . , xn is p. We also use vector notation
P (X = x) = p.

We assume a standard relational schema containing a
set of tables, each with key fields, descriptive attributes,
and possibly foreign key pointers. A database instance
specifies the tuples contained in the tables of a given database
schema. We assume that tables in the relational schema
are divided into entity tables and relationship tables. This
is the case whenever a relational schema is derived from
an entity-relationship model (ER model) [13, Ch.2.2]. The
symbol E refers to entity tables, and the symbol R refers to
relationship tables. Table 1 shows a relational schema for a
university domain. A field or attribute named name in table
T is denoted by T.name . Each attribute has a domain of
values denoted by dom(T.name). The number of tuples in a
table T for a database instanceD is written as |T |D. We view
a descriptive attribute of an entity table E as a deterministic
function of an entity from E, and a descriptive attribute of
a relationship table R as a deterministic function of entities
linked by R. The relationship R itself can be viewed as a
Boolean function that indicates for each entity tuple of the
appropriate type whether it is linked by R. The natural join
of two tables is the set of tuples from their cross product that
agree on the values of fields common to both tables.
3 Join Bayes Nets and the Attribute-Relation Table
A Join Bayes net contains a node for each attribute field
in the database, and a Boolean indicator node for each
relationship table. The definition assumes that a given basic
entity table is referenced at most once in a given relationship
table. A generalization for the case in which entity sets may
be related to themselves is treated in [12].

Definition 1 A Join Bayes Net (JBN) structure for a

database schema with entity tables and relationship tables
is a DAG G with one node for each descriptive attribute
A.name in the database, whose domain is dom(A.name),
and one binary node for each relationship table in the
database.

We adopt the following functional notation for the vari-
ables in a JBN. We use a mnemonic Roman letter, e.g. V ,
to refer to a given entity table (e.g., S for the Student table,
C for the Course table). An entity attribute node for the
table is denoted by name(V) (e.g., ranking(S)). The node
for a descriptive attribute R.name of a relationship table is
denoted by name(V1, . . . , Vk) where V1, . . . , Vk refers to
the entity tables linked to R by foreign key constraints (e.g.,
grade(S,C)). Similarly, the indicator node for R is denoted
by R(V1, . . . , Vk) (e.g., Registered(S,C)). Figure 1(e)
shows a JBN for the university schema with this notation.

We associate with a given database D a joint distribution
PD over relationships and descriptive attributes, which is
defined by a new join table—called the attribute-relation
table—that is constructed as follows.
1. Form the cross product of all entity tables.
2. Extend the table with descriptive attributes of the re-

lationship tables and one additional Boolean field for
each relation. The boolean field for relationship table R
takes the value T when the relationship R holds for the
corresponding entity tuple and takes on the value F oth-
erwise. When R is true for an entity tuple, the descriptive
attributes of R are filled in with the corresponding values.

3. When R is false for an entity tuple, the descriptive
attributes of R are assigned the value ⊥ for “undefined”.

4. Remove the primary key columns.
The attribute-relation table is viewed as a regular data table
whose row frequencies represent a joint distribution over its
columns, which is the database distribution PD. Figure
1(d) shows the attribute-relation table for a small instance of
the university schema.
Discussion The database distribution is closely related
to joins as expressed in Datalog-style query languages
like the DRC [13]. In logic queries, a table join cor-
responds to a conjunction; for instance, the join of the
Registration table with the Student table selecting courses
with rating = 2 is expressed by the query formula
〈S,C : Registered(S,C), rating(C) = 2〉. The probability
assigned to this conjunction by the database distribution is
the size of the join result in the database that corresponds
to the conjunction, divided by the maximum size of the join
result given the foreign key constraints:

PD(Registered(S,C) = T , rating(C) = 2) = (1)
|〈S,C : Registered(S,C), rating(C) = 2〉|D

|Student |D × |Course|D
Equation (1) illustrates that the probabilities assigned by

the attribute-relation table have a natural alternative interpre-
tation. It also implies that from an estimation of the database
distribution PD, we can readily compute an estimate of join
sizes, which is an important application for query selection.

We define the database distribution over the full cross prod-
uct of the entities rather than just the join of entities with rela-
tionship tables. In relationship tables, entities with more links
appear more frequently than others. As a result, the probabil-
ity of an attribute value derived from the join of relationships
with entities may not reflect the real statistical information.

For instance, in Figure 1, in the join of the Student table with
the Registered table the frequency of rows with rating = 2 is
1/2, whereas the frequency of rows in the Course table with
rating = 2 is 1/3. This is one of the problems often raised
for basing statistical learning on a join table. The attribute
relation table overcomes the problem by using the cross prod-
uct of entities, so all entities from a given table appear in the
same number of rows regardless of how many links they have.
The subset of rows of the attribute-relation table in which
the indicator variable R = T corresponds to the join of the
entity tables with the relationship table R. We now consider
learning a JBN model for a given database distribution.
4 Parameter Estimation with a Virtual Join Algorithm
This section treats the problem of computing conditional
frequencies in the database distribution, which corre-
sponds to computing sample frequencies in the single
table case. The main problem is computing probabilities
conditional on the absence of a relationship. For instance,
to compute PD(difficulty(C) = 2|intelligence(S) =
3,Registered(S,C) = T), a frequency count on the
constraints given by the query is done on the join of
the Registered , Student , and Course tables. However,
computing conditional probabilities on queries with false
relationships (e.g., Registered(S,C) = F) raises difficulties
because it involves non-existent links (cf. [5]). This problem
arises because a JBN includes relationship indicator vari-
ables such as Registered(S,C), and building a JBN therefore
requires modelling the case where a relationship does not
hold. In principle, frequencies in the database conditional on
the absence of links can be computed with frequency counts
over the rows in the attribute-relation table where the link is
absent. However, because materializing this table is generally
not feasible, we instead use a virtual join algorithm that com-
putes the frequencies in the entity join table without actually
constructing the entity join. The virtual join algorithm is a dy-
namic programming algorithm for estimating joint probabili-
ties in a database instance whose database operations involve
only: (1) Joins of existing relationship tables with entity
tables, and (2) Joins of existing relationship tables with other
existing relationships tables that share an entity type (foreign
key pointer). Relationship tables, such as Registered , are
typically much smaller than the cross product of their related
entities [5], so the join operations (1) and (2) are feasible for
SQL queries, and our algorithm is much more efficient than
explicitly constructing the attribute relation table.
Virtual Join Algorithm: Outline and Example Our
algorithm computes joint probabilities. Conditional proba-
bilities can easily be computed from joint probabilities via
the equation P (x|y) = P (x, y)/

∑
x′P (x′, y) where the

summation is taken over all possible values of x. The basic
idea can be described as follows. From probability laws, we
have the relation

P (x, R = F) = P (x)− P (x, R = T). (2)

Equation (2) shows how we can reduce a probability
involving a nonexistent relationship R = F to two other
computations that do not involve the nonexistent relationship:
(1) the case in which we do not condition on the value of R,
and (2) the case in which we condition on R = T . Let us
consider first the case in which the joint probability involves
only a single relationship variable together with descriptive
attributes of entities (cf. [5, Sec.5.8.4.2]). In that case, the
probability P (x, R = T) can be obtained from a frequency

Figure 1: Database Table Instances: (a) Student , (b) Registered (c) Course . To simplify, we added the information about
professors to the courses that they teach. (d) The attribute-relation table is formed in two steps: (1) take the cross product of the
student and course table (3 x 3 = 9 rows) and extend it with the matching attribute and relationship information. (2) Remove
the primary entity keys from the cross product of the entities. (e) A Join Bayes Net for the university schema variables.

count in the relationship table R in the database. The prob-
ability P (x) may involve descriptive attributes from more
than one entity table. It can be computed using the fact that
distinct entity tables are independent, unless they are linked
by a relationship variable [12], so the joint probability P (x)
is calculated by multiplying frequencies from entity tables.

Inductively, consider a joint probability involving m > 0
false relationships R1 = F , .., Rm = F . Then first, change
one of the false relationships to be true, e.g., R1 = T ,
and compute the joint probability for this case recursively,
since it involves one less false relationship. Second, change
the state of the chosen relationship to be unspecified, e.g.,
R1 = unspecified , and compute the conditional probability
for this case recursively, since it involves one less false re-
lationship. In our dynamic program, frequencies with fewer
false relationship variables are computed first, so the two fre-
quencies can be looked up from the previous computations.

Example. Figure 2 shows how to compute a joint proba-
bility with exactly one false relationship for the database in-
stance of Figure 1. To illustrate the case with multiple re-
lationships, suppose the university schema features another
entity table TA(ta id , expertise) to record the expertise of
teaching assistants and another relationship table relation
Assigned(ta id , course id) to record which assistants are
assigned to which course. Figure 2 shows how the compu-
tation of a joint probability with two false relationships can
be reduced to two probabilities, each without the false rela-
tionship Assigned(TA, C) = F . [12] provides further im-
plementation details, including pseudocode and complexity
analysis. In the next section we apply the parameter estima-
tion algorithm to build Join Bayes nets for three relational
datasets.
5 Evaluation and Experiments
We present results of applying our learning algorithms to
three relational data sets, the MovieLens and Financial
real-world databases, and an artifical University database for
the schema given in 1. Our evaluation method comprises the
following steps.

1. Learn a JBN structure for each database. For comparison,

we also apply a standard structure learning algorithm for
Markov Logic Networks to each database.

2. Fill in the CP-tables with maximum likelihood estimates.
3. Apply a standard Bayes net inference algorithm to

estimate conditional frequencies in the database, and
compare the estimates to the result of directly computing
conditional frequencies with SQL queries.

5.1 System Resources, Algorithms and Datasets
Our implementation used many of the procedures in version
4.3.9-0 of CMU’s Tetrad package [2]. Our Java code is avail-
able from the senior author upon request. All experiments
were done on a QUAD CPU Q6700 with a 2.66GHz CPU
and 8GB of RAM.

Learning Algorithms A description of our structure
learning method is beyond the scope of this note, but is
provided in [12]. Our method is modular in that it upgrades
any propositional single-table BN learner to a JBN learner.
We used the Tetrad implementation of GES search [1] with
the BDeu score (uniform structure prior, ESS=8) as the
base single-table BN learning program. After learning a
JBN structure, parameter estimation is carried out using the
algorithm described in the previous section.

Inference Algorithms JBN inference was carried out with
Tetrad’s Rowsum Exact Updater algorithm. A direct com-
parison of class-level inference with other SRL formalisms
is difficult as the implementations we could find support
only instance-level queries. For example, both the Alchemy
package for MLNs [3] and the Balios BLN engine [9] support
only queries with ground atoms. We could not obtain source
code for PRM inference.

Data sets Our datasets are available on-line at
ftp://ftp.fas.sfu.ca/pub/cs/oschulte/datasets/.

University Database. In order to check the correctness of
our algorithms directly, we manually created a small data set,
based on the schema given in 1. The entity tables contain 38
students, 10 courses, and 6 Professors. The Registered table
has 92 rows and the RA table has 25 rows.

Figure 2: To illustrate the recursive scheme of our parameter estimation algorithm. The top example for the database instance
in Figure 1 reduces the computation of a joint probability involving one false relationship to two without any false relationship
indicators. The bottom example shows for a generic database instance how the computation of a joint probability involving
two false relationships can be reduced to two with just one false relationship each.

MovieLens Database. The second data set is the Movie-
Lens data set from the UC Irvine machine learning reposi-
tory. It contains two entity tables: User with 941 tuples and
Item with 1,682 tuples, and one relationship table Rated with
100,000 ratings. The User table has 3 descriptive attributes
age, gender , occupation . We discretized the attribute age
into three bins with equal frequency. The table Item rep-
resents information about the movies. It has 17 Boolean at-
tributes that indicate the genres of a given movie; a movie
may belong to several genres at the same time. For example, a
movie may have the value T for both the war and the action
attributes. The full table with 100,000 ratings exceeded the
memory limits of Tetrad, so we randomly picked 40% of the
ratings of the relationship table as input data.

Financial Database. The third data set is a modified ver-
sion of the financial data set from the PKDD 1999 cup. We
adapted the database design to fit the ER model. We have
two entity tables: Client with 5369 tuples and Account with
4,500 tuples. Two relationship tables, CreditCard with 5,369
tuples and Disposition with 892 tuples relate a client with
an account. The Client table has 10 descriptive attributes:
the client’s age, gender and 8 attributes on demographic data
of the client. The Account table has 3 descriptive attributes:
information on loan amount associated with an account, ac-
count opening date, and how frequently the account is used.

5.2 Experimental Results
We evaluate structure learning, parameter estimation and
inference with Join Bayes nets. Table 2 presents a summary
of the run time for parameter learning and structure learning
for the data sets. The computation times are well within the
range of practical feasibility (40 min for the most difficult
experiment).

Learning The graphs learned are shown in Figures 1, 3,
and 4. In the MovieLens data set, the algorithm finds a
number of cross-entity table links involving the age of a
user. Because genres have a high negative correlation, the
algorithm produces a dense graph among the genre attributes.
We simplified the graph by omitting genre variables that have
only indirect links with the rating or User attributes. The
richer relational structure of the Financial data set is reflected
in a more complex graph with several cross-table links. The
birthday of a customer (translated into discrete age levels)
has especially many links with other variables.

The university database is small enough to materialize
its attribute-relation table and verify the correctness of our
parameter estimates directly. For the larger databases, this
is not feasible. The next section provides an indirect way

Figure 3: The JBN structures learned by our merge learning
algorithmfor the MovieLens Data set.

Figure 4: The JBN structures learned by our merge structure
learning algorithmfor the Financial Data set.

to check the learning algorithms by comparing the proba-
bilities estimated by the JBN with the database frequencies
computed directly from SQL queries.
Inference To avoid bias, we randomly generated 10
queries, each involving 4 nodes, for each data set according
to the following procedure. We compared the probabilities
predicted by the JBN with the frequencies in the database

Data set PL SL in JBN
University 0.495 0.64
Movie Lens 2,018 135
Financial 2,472 574

Table 2: The run times—in seconds—for structure learning
(SL) and parameter learning (PL) on our three data sets.

Figure 5: Comparing the probability estimates and run times
from the learned JBN models with SQL queries. Not all SQL
queries for the Financial data set terminated with a result.
The average is taken over 10 randomly generated queries.

as computed by an SQL query, as well as the run times for
computing the probability using the JBN vs. the SQL. We do
not expect the probabilities predicted by a JBN to be exactly
the same as the data frequencies, for the same reason that in
the single table case a BN learner would not just reproduce
the sample frequencies: the absence of links in the graph en-
tails probabilistic independence between variables that may
be slightly correlated in the data. But since we use maximum
likelihood estimates, and our sample sizes are not small, we
would expect the predicted probabilities to be fairly close to
the sample frequencies if the JBN structure is adequate. This
expectation is confirmed by our results: we see in Figure 5
that the predicted probabilities are close to the data frequen-
cies. For the small university data set, SQL queries are faster
than JBN inference. But for the larger MovieLens data set,
model inference is much faster, and for the largest Financial
data set, SQL queries were infeasible when conditioning
on the absence of relationships, whereas the JBN returns an
answer in around 10 seconds. Where the SQL queries did
return a frequency, it was close to the JBN estimate.

We observed that the number of tuples in the database
table is a very significant factor for the speed of SQL queries
but does not affect JBN inference. This is an important
observation about the data scalability of JBN inference:
While the learning algorithms depend on the size of the
database, once the learning is completed, query processing
is independent of database size. So for applications like
query optimization that involve many calls to the statistical
inference procedure, the investment in learning a JBN model
is quickly amortized in the fast inference time.

6 Conclusion
We showed how Join Bayes nets can be used to represent
class-level dependencies between attributes of entities or

relationships. This contrasts with instance-level depen-
dencies between attributes of specific entities. Class-level
generic dependencies are of interest in themselves, and they
support applications like policy making, strategic planning,
and query optimization. We defined a new semantics
for class-level Bayes nets based on a new database join
operation. The focus on class-level dependencies brings
gains in tractability of learning and inference. We described
efficient and scalable algorithms for structure and parameter
estimation in Join Bayes nets. Inference can be carried
out with standard algorithms “as is”. An evaluation of our
methods on three data sets shows that our algorithms are
computationally feasible for realistic table sizes, and that the
learned structures represented the statistical information in
the databases well. After learning has compiled the database
statistics into a Join Bayes net, querying these statistics via
the net is faster than directly with SQL queries, and does not
depend on the size of the database.
References
[1] David Maxwell Chickering and Christopher Meek.

Finding optimal bayesian networks. In UAI, pages
94–102, 2002.

[2] The Tetrad project: Causal models and statistical data,
2008. http://www.phil.cmu.edu/projects/tetrad/.

[3] Pedro Domingos and Matthew Richardson. Markov
logic: A unifying framework for statistical relational
learning. In Introduction to Statistical Relational
Learning [8].

[4] Lise Getoor and Christopher P. Diehl. Link mining: a
survey. SIGKDD Explorations Newsletter, 7(2):3–12,
2005.

[5] Lise Getoor, Nir Friedman, Daphne Koller, Avi Pfeffer,
and Benjamin Taskar. Probabilistic relational models.
In Introduction to Statistical Relational Learning [8].

[6] Lise Getoor and Ben Taskar. Introduction. In Getoor
and Taskar [8], pages 1–8.

[7] Lise Getoor, Benjamin Taskar, and Daphne Koller.
Selectivity estimation using probabilistic models. ACM
SIGMOD Record, 30(2):461–472, 2001.

[8] Lise Getoor and Ben Tasker. Introduction to statistical
relational learning. MIT Press, 2007.

[9] Kristian Kersting and Luc De Raedt. Bayesian logic
programming: Theory and tool. In Introduction to
Statistical Relational Learning [8].

[10] Tom M. Mitchell. Machine Learning. McGraw-Hill,
New York, 1997.

[11] J. Pearl. Probabilistic Reasoning in Intelligent Systems.
Morgan Kauffmann, 1988.

[12] Oliver Schulte, Hassan Khosravi, Flavia Moser, and
Martin Ester. Join bayes nets: A new type of bayes
net for relational data. CS-Learning Preprint Archive,
http://arxiv.org/abs/0811.4458, 2008.

[13] J. D. Ullman. Principles of database systems, volume 2.
Computer Science Press, 1982.

Hierarchy Analysis of Knowledge Networks

Cliff Joslyn
Chief Scientist for Knowledge Sciences
Pacific Northwest National Laboratory

cjoslyn@pnl.gov

Abstract
Knowledge systems technologies are dominated by
graphical structures such as ontologies, semantic
graph databases, and concept lattices. A critical
but typically overlooked aspect of all of these struc-
tures is their admission to analyses in terms of for-
mal hierarchical relations. Transitivities of net-
work links necessarily result in hierarchical levels,
whether explicitly within directed acyclic graphs
(DAGs) or implicitly through the identification of
cycles. And whether from transitive link types in
semantic graphs, or the explicit lattice structures of
Formal Concept Analysis, the partial order repre-
sentations of whatever hierarchy is present within
a knowledge structure afford opportunities to ex-
ploit these hierarchical constraints to facilitate a
variety of tasks, including ontology analysis and
alignment, visual layout, and anomaly detection.
In this short survey paper we introduce the basic
concepts involved and address the impact of a hi-
erarchical (order-theoretical) analysis on directed
acyclic graphs in knowledge systems tasks.

1 Introduction
Knowledge systems technologies are dominated by graphical
structures, including:

• Semantic graph databases[19] take the form of la-
beled directed graphs implemented in RDF1. Their
OWL2 ontological typing systems are also labeled di-
rected graphs, frequently dominated by directed acyclic
graph (DAG) and other hierarchical structures. Fig. 1
shows a toy example, where the ontology of classes on
the left forms the typing system for the semantic graph
of node and link instances on the right.

• Concept lattices [10; 11; 17] are hierarchical lattice
structures derived from identifying the maximal connec-
tions among groups of objects and properties (rows and
columns) of an attribute matrix, called a formal context.
Fig. 2 shows a simple example from[11], indicating se-
mantic generality of the attributes in terms of the number
of their shared objects, andvice versa.

1http://www.w3.org/RDF
2http://www.w3.org/TR/owl-features

While other examples of graph-based knowledge struc-
tures abound, what characterizes these structures in partic-
ular is their hierarchical nature. There is an increasing
emphasis on hierarchical structure in network science[4;
5], but these methods partition the set of nodes of an un-
derlying simple (undirected) graph to produce a hierarchical
decomposition. We are interested rather in theintrinsic hier-
archical (level-based) nature of an underlyingdirectedgraph.

A good example is our concept lattice in Fig. 2, which is an
explicit hierarchy in its entirety, as are semantic taxonomies
such as the Gene Ontology[2] (GO3). But where OWL on-
tologies include hierarchical class structures, other portions
can be non-hierarchical. And more general knowledge struc-
tures like semantic graphs are not explicitly or necessarily
hierarchical, but may contain large hierarchical components.

In practice, ontologies are dominated by their “hierarchical
cores”, specifically their class hierarchies connected byis-a
subsumptive andhas-part compositional links. And many
of the most common links in RDF graphs are transitive, in-
cludingcauses, implies, andprecedes. We will show
in Sec. 3 below that any transitive link yields a hierarchical
structure in terms of the connectivity of its strongly connected
components, and is thus amenable to a hierarchical analysis.

Whether from transitive link types in semantic graphs, or
the explicit lattice structures of concept lattices, the partial
order representation of whatever hierarchy is present within
a knowledge structure affords opportunities to exploit these
hierarchical constraints for a variety of tasks, including

Clustering and Classification: Including characterizing a
portion of a hierarchy (e.g. groups of ontology nodes)
to identify common characteristics[15; 23],

Alignment: Casting ontology matching[8]4 as mappings be-
tween hierarchical structures[13; 14].

Induction from Source Data: For example using concept
lattices to induce ontologies from textual relations[17].

Visualization: Including exploiting the level structure of hi-
erarchies to achieve a satisfactory layout[16].

In general, such a hierarchical analysis, when available,
promises complexity reduction, improved user interaction

3http://www.geneontology.org
4http://www.ontologymatching.org

Thing

Weapon

Bio Explosives

Anthrax Smallpox

Group

Place

Is-a

Terrorist
Organization

Country

State

County

Has-part

Has-part

Has-part

Strain A Strain B

USA

Ohio

Al Qaeda

Located

Posseses

ONTOLOGY = TYPE GRAPH

Al Qaeda :
Group

Strain B:
Anthrax

Ohio:
State

Possesses Located

FACT BASE =
INSTANCE SEMANTIC GRAPH

Figure 1: Toy model of a semantic graph database. (Left) Ontological typing system as a labeled, directed graph of classes
(sample instances shown below dashed links). (Right) Conforming instance sub-graph.

with the knowledge base, and improved layout and visual an-
alytics. In the remainder of this short survey paper we expli-
cate the basic concepts referred to here and draw connections
among these application areas.

2 DAGs and Partial Orders
Mathematically, hierarchies are represented as partially or-
dered sets (posets), which are reflexive, anti-symmetric, and
transitive binary relationsP = 〈P,≤〉 on an underlying finite
set of nodesP [7]. While we typically think of hierarchies as
tree structures, more general kinds of hierarchies have “mul-
tiple inheritance”, where nodes can have more than one par-
ent. These include lattice structures like the concept lattice in
Fig. 2, where pairs of nodes have unique least common sub-
sumers (and unique greatest lower bounds as well); partial
orders where pairs of nodes can have an indefinite number of
least common subsumers and greatest lower bounds; and fi-
nally general DAGs can also include “transitive links” which
form shortcuts across paths.

Consider simple DAG in the top of Fig. 3. The two transi-
tive links1 → H, 1 → E connect the two paths1 → K → H
and1 → C → I → E respectively. Given a DAGD, the
DAG P(D) produced by including all possible transitive links
consistent with its paths is itstransitive closure, and deter-
mines an ordered setP(D) = 〈P,≤〉 wherea ≤ b ⊆ P if
there is a directed path froma to b in D. The graphV(D)
produced from a DAGD by removing all its transitive links
(its transitive reduction[1]) determines acover relation or
Hasse diagram. Thus each cover relationV determines a
unique posetP(V), andvice versaa posetP determines a
unique coverV(P); each DAGD determines a unique poset
P(D) and coverV(D); and each unique poset-cover pair de-
termines a class of DAGs equivalent by transitive links.

For a DAGD we can measure itsdegree of transitivity as

TR(D) :=
|D \ V(D)|

|P(D) \ V(D)|
,

where\ is set subtraction, we interpret each structure as the
binary relation onP 2 of its incidence matrix, and| · | is cardi-
nality, so that| · | is the number of links in·, seen as a graph.
TR(D) measures the number|D \ V(D)| of transitive links
in D relative to the total possible number|P(D) \ V(D)| in

Figure 3: (Top) A DAGD. (Left) Transitive reductionV(D).
(Right) Transitive closureP(D).

its transitive closureP(D). In Fig. 3 we haveTR(D) = 2
11 ,

indicating a relatively low degree of transitivity.
In knowledge systems such as ontologies, our interpreta-

tion of the presence or absence of transitive links in DAGs
is significant. If the link-type in question is anti-transitive,
so that transitive links are disallowed, then clearly the pres-
ence of transitive links is in error. If, on the other hand, the
link-type in question is atransitive, so that transitive links are
allowed, but not required, then theTR(D) measures this ex-
tent. But finally, if, as is the case with our subsumption and
composition types, the link type represents a fully transitive
property, then the presence of transitive links are irrelevant or
erroneous. Effectively, such link types live in the trasitively
equivalent class of DAGs, that is, in the partial orderP(D),
andTR(D) can be used as an aid to the user or engineer to
identify issues with the underlying ontology.

3 The Hierarchical Cores of Directed Graphs
So central to the consideration of hierarchy in a knowledge
network is the question of the presence and prevalence of
DAGs in general directed graphs which can possibly have
cycles. Consider the network shown in Fig. 4 using a stan-
dard network layout with a primarily radial link distribution
around centralized nodes. We can analyze this network as:

Figure 2: (Left) A formal context of objects and their properties. (Right) Its concept lattice. From[11].

B

MG

I

H

C

EJ
D

1

R

K

L
A

N

O

P

Q

F

T

S

Figure 4: A network.

• Identify the leaves as those nodes
{A, D, G, H, K, M, O, Q}with no children.

• Identify the roots as those nodes{1} with no parents.

• Identify the strongly connected components (SCCs[21])
as those sets of nodes which are directed cliques, where
a directed path exists between all pairs on nodes. Each
SCC is either a single directed cycle or a union of di-
rected cycles, and are necessarily disjoint from each
other: if two SCCs intersect, they’d form a single SCC
together. In the example, there are two SCCs,X =
{C, F, T} (a single 3-cycle) andY = {P, R, S, N} (the
union of the two 3-cycles{N, R, P} and{N, S, P}).

• Identify the transitive links, these are the two links1 →
M shortcutting the 3-paths1 → B → M and 1 →
L → M , and the linkC → D shortcutting the 4-path
C → I → E → D.

Fig. 5 shows our network with these components identified.
We proceed by contracting each SCC to a new node in

a higher-order space, combining any multiple links between
SCCs into one. The resulting structure is necessarily a DAG
D. Finally, we derive the transitive reduction of the cyclic
decomposition to eliminate the transitive links, measuring

Figure 5: Components of the network’s cyclic decomposi-
tion: roots are squares, leaves are oblongs, transitive links
are dashed arrows, and strongly connected components are
shown in dashed circles.

TR(D). The resulting hierarchy is shown in Fig. 6, where the
two SCCs are replaced with new nodesX andY respectively.
While this structure is substantially similar, of course these
two new nodes will be identified as being new meta-nodes,
and available for “double-clicking” to open up the SCCs re-
vealing the original structure below.

While such an approach to a “cyclic decomposition” is a
known standard for directed graphs[6], it is not usually ap-
plied for hierarchical anlaysis. Note that the layout is adjusted
to bring the root to the top and the leaves to the bottom, and to
emphasize the stratified nature of the hierarchy. This concept
of “level” or rank is central to our approach, and will be dealt
with in Sec. 4.1 below.

In addition to deriving the base cyclic decomposition, we
are also interested in some numerical quantities such as the
number of roots, leaves, and SCCs, along with the spectrum
of sizes of the SCCs. Depending on the results of these mea-
surements, it may or may not be appropriate to proceed with
a hierarchical analysis of the network.

In particular, for a DAGD produced from an underlying
directed graphG, we can measure the degree of cyclicity as

L

MG
I

H

X

EJ

D

1

Y

KB

A

O

Q

Figure 6: The network’s cyclic decomposition displayed as a
hierarchy.

C(G) := |D|/|G|. As two extremes,C(G) = 1/|G|, so that
the network consists of a single, large SCC; or, ifC(G) = 1,
then the network was already a DAG at the outset, and no
SCCs are observed. In either event, continuing with a hierar-
chical analysis would not be fruitful. But if there are a num-
ber of moderately sized SCCs, then the resulting hierarchical
structure will provide greater simplification and a stratified
view of the underlying complex structure.

4 Measures on Hierarchical Graphs
Given a hierarchical structure as a DAG represented by its
transitive closure posetP, perhaps derived as the cyclic de-
composition of a network, or provided natively as in a tax-
onomic ontology, we now have a number of tools available
to measure this hierarchical structure. Here we discusses
interval-valued rank measuring the vertical level of nodes,
andorder metrics measuring the distances between nodes.
See[12; 16; 18] for more details.

4.1 Interval-Valued Rank
Given a hierarchy e.g. in Fig. 6, we are concerned with the
proper representation of the vertical level of each node, as
represented by its positioning in a layout. We note that all
children of the root are the same “distance” from the root, but
if these arealso leaves then they should be positioned further
down. In other words, we need to exploit the vertical distance
from both the topanda global bottom, in this case a virtual
node0 ∈ P we can insert and place below all the leaves.

For a, b ∈ P , let h∗(a, b) be the length of the maximum
path froma to b. Then the distance of a nodea ∈ P from
the root1 ∈ P is the top rank rt(a) := h∗(a, 1). Dually
we define thebottom rank rb(a) := h∗(0, 1) − h∗(0, b),
whereh∗(0, 1) is the overallheight of the structure. Then the
interval rank R̄(a) := [rt(a), rb(a)] becomes available as
an interval-valued measure of the vertical levels over whicha
can range, while therank width W (a) := rb(a) − rt(a) is a
measure of that range[16; 18].

We can exploit this vertical rank in terms of hierarchical
layout and visualization, as shown for our example now in

Fig. 7. Each node which sits on a complete chain (a path from
1 down to 0) of maximal size is placed horizontally at the
center of the page. Nodes are laid out horizontally according
to the size of their largest chains maximal chains. The result
it to place maximal complete chains along a central axis, and
short complete chains towards the outer edges. Nodes are
placed vertically according to the mathematical quantity of
the midpoint of their interval rank, but can be free to move
between top rankrt(a) and bottom rankrb(a).

The result is that while nodes on maximal complete chains
(all those intersecting the chain0 → D → E → I → X →
1 in the example) exist at a single level, some (for example
K) do not. While Fig. 7 shows a 2D layout, we have also
deployed this concept in a 3D layout[16].

4.2 Order Metrics
Given the need to perform operations like clustering or align-
ment on ontologies represented as ordered setsP = 〈P,≤〉, it
is essential to have a general sense of distanced(a, b) between
two nodesa, b ∈ P . The knowledge systems literature has fo-
cused onsemantic similaritiesto perform a similar function,
which are available whenP is equipped with a probability
distribution, derived, for example, from the frequency with
which terms appear in documents (for the Wordnet5 [9] the-
saurus), or genes are annotated to GO nodes.

So assume a poset〈P,≤〉 with a base probability distribu-
tionp: P → [0, 1],

∑
a∈P p(a) = 1, and a “cumulative” func-

tion β(a) :=
∑

b≤a p(a). We then generalize the join (least
upper bound) and meet (greatest lower bound) operations in
lattices as follows. Let↑ a := {b ≥ a} and↓ a := {b ≤ a}
are the up-set (filter) and down-set (ideal) respectively of a
nodea ∈ P . Then for two nodesa, b ∈ P , leta∇b := ↑ a∩↑ b
anda∆b := ↓ a ∩ ↓ b be the set of nodes above or below re-
spectively both of them. Then the generalized joina ∨ b is
the set of minimal (lowest) nodes ofa∇b, and the general-
ized meeta∧ b is the set of maximal (highest) nodes ofa∆b.
WhenP is a lattice, then|a ∨ b| = |a ∧ b| = 1, recovering
traditional join and meet.

Traditional choices for the semantic similarityS(a, b) be-
tween two nodes then include the measures of Resnik, Lin,
and Jiang and Conrath[3]:

S(a, b) = max
c∈a∨b

[− log2(β(c))]

S(a, b) =
2 maxc∈a∨b[log2(β(c))]
log2(β(a)) + log2(β(b))

S(a, b) = 2 max
c∈a∨b

[log2(β(c))] − log2(β(a)) − log2(β(b))

respectively. But most of these are not metrics (not satisfying
the triangle inequality), and all of these lack a general mathe-
matical grounding and require a probabilistic weighting.

Our approach uses ordered set metrics[20; 22] which can
use, but do not require, a quantitative weighting such as
β, and always yield a metric. They are based on valua-
tion functionsv: P → IR+ which are, first, either isotone
(a ≤ b → v(a) ≤ v(b)) or antitone (a ≤ b → v(a) ≥ v(b));
and then semimodular, in that

v(a) + v(b) ∼ v∇(a, b) + v∆(a, b),
5http://wordnet.princeton.edu

B

M G

I

H

X

E

J

D

1

Y

0

K

L

A

O Q

Lower Top Rank
Lower Bottom Rank

More Children
Fewer Parents

Higher Top Rank
Higher Bottom Rank

Fewer Children
More Parents

Top rank = 2
Bottom rank = 5 - 1 = 4

Rank = [2,4]

Max chain
Length 5 = Height

Min chain
Length 2

Virtual bottom

Top rank = 1
Bottom rank = 5 - 1 = 4

Rank = [1,4]

Top rank = 2
Min length from bottom: 2
Max length from bottom: 3

Bottom rank = 5 - 3 = 2
Rank = [2,2]

Other chain
Length 4

Shorter chains Longer chains Shorter chains

Figure 7: Chain layout of the cyclic decomposition of the network in Fig. 4.

where∼∈ {≤,≥, =}, yielding super-modular, sub-modular,
and modular valuations respectively; and

v∇(a, b) := min
c∈a∇b

v(c), v∆(a, b) := max
c∈a∆b

v(c).

Whether a valuationv is antitone or isotone, and then sub-
or super-modular, determines which of four distance func-
tions is generated, e.g. the antitone, supermodular case yields
d(a, b) = v(a) + v(b) − 2v∇(a, b). WhenP is a lattice, then
this simplifies tod(a, b) = v(a) + v(b) − 2v(a ∨ b).

Typical valuationsv include the cardinality of up-sets and
down-sets:v(a) = | ↑a|, v(a) = | ↓a|, and the cumulative
probabilities used in semantic similaritiesv(a) = β(a). In
this way, poset metrics generalize semantic similarities and
provide a strong basis for various analytical tasks.

5 Order Metrics in Ontology Alignment
A good example of the utility of this order theoretical technol-
ogy in knowledge systems tasks is in ontology alignment[13;
14]. An ontologyalignment is a mappingf :P → P′ taking
anchorsa ∈ P in one semantic hierarchyP = 〈P,≤〉 into
anchorsa′ ∈ P ′ in anotherP′ = 〈P ′,≤′〉. In seeking a mea-
sure of the structural properties of the mappingf , our pri-
mary criterion is thatf should not distort the metric relations
of concepts, taking nodes that are close together and making
them farther apart, orvice versa.

It should be noted that a “smooth” mapingf is neither nec-
essary nor sufficient to be a good alignment: one the one
hand, a good structural mapping may be available between
structures from different domains; and on the other, differ-
ences in semantic intent between the two structures may be

irreconcilable. Nonetheless, other things being equal, it is
preferable to have a more smooth mapping than not.

So, for two ontology nodesa, b ∈ P, consider thelower
cardinality distance dl(a, b) := | ↓a|+ | ↓ b| − 2 max

c∈a∧b
| ↓ c|.

We can measure the change in distance betweena, b ∈ P
induced byf as thedistance discrepancy

δ(a, b) := |d̄l(a, b) − d̄l(f(a), f(b))|,
where d̄l(a, b) := dl(a,b)

diamd(P)
∈ [0, 1] is the normalized

lower distance betweena and b in P given the diameter
diamd(P) := max

a,b∈P
d(a, b). We can measure the entire

amount of distance discrepancy at a nodea ∈ P compared
to all the other anchorsb ∈ P by summing

δf (a) :=
∑

b∈P

δ(a, b) =
∑

b∈P

|d̄l(a, b) − d̄l(f(a), f(b))|,

yielding the discrepancyδ(f) :=
∑

a∈P δf (a) of the align-
ment.

Consider the example in Fig. 8, with the partial alignment
functionf as shown, mapping only certain nodes{B, E, G}
from P to P′. Then we have e.g. the lower normalized dis-
tance between nodesE andG as d̄l(E, G) = 1/3; the dis-
tance discrepancy between the two nodesE, G in virtue of f
asδ(E, G) = |1/3−3/5| = .267; the entire distance discrep-
ancy at the nodeE asδf (E) = 2/5; and finally the distance
discrepancy for the entire alignment asδ(f) = .47.

6 Future Work
Our work continues across the range of tasks outlined here,
and includes a number of future targets:

G

B C

E K

I J

L

D

A H

P P’

f

0 0

Figure 8: An example alignment.

• A characterization of semantic similaritiesS in terms of
order metrics.

• Induction of new alignment links based on searching
for low-discrepancy mappings within the space of order
morphisms.

• Characterization of ontology link types in terms of hier-
archical structure, factoring transitive and non-transitive
link types.

• Identification of measures of centroid and dispersion in
ontology clustering tasks.

• Anomaly detection in concept lattice based on correla-
tion of interval rank and extent/intent size.

References
[1] Aho, AV; Garey, MR; and Ullman, JD: (1972) “The

Transitive Reduction of a Directed Graph”,SIAM Jour-
nal of Computing, v. 1:2, pp. 131-137

[2] Ashburner, M; Ball, CA; and Blake, JA et al.: (2000)
“Gene Ontology: Tool For the Unification of Biology”,
Nature Genetics, v. 25:1, pp. 25-29

[3] A Butanitsky and G Hirst: (2006) “Evaluating
WordNet-based Measures of Lexical Semantic Related-
ness”,Computational Linguistics, v. 32:1, pp. 13-47

[4] A Clauset, C Moore, M Newman: (2006) “Structural
Inference of Hierarchies in Networks”, in:Proc. 23rd
Int. Conf. on Machine Learning

[5] A Clauset, C Moore, M Newman: (2008) “Hi-
erarchical Structure and the Prediction of Missing
Links in Networks”, Nature, v. 453, pp. 98-101,
doi:10.1038/nature06830

[6] T Cormen, CE Leiserson, RL Rivest: (1990)Introduc-
tion to Algorithms, MIT Press, Cambridge MA

[7] BA Davey, HA Priestly: (1990)Introduction to Lattices
and Order, Cambridge UP, Cambridge UK, 2nd Edition

[8] Euzenat, Jérˆome and Shvaiko, P: (2007)Ontology
Matching, Springer-Verlag, Hiedelberg

[9] Fellbaum, Christiane, ed.: (1998)Wordnet: An Elec-
tronic Lexical Database, MIT Press, Cambridge, MA

[10] Ganter, Bernhard; Stumme, Gerd; and Wille, Rudolf,
eds.: (2005)Formal Concept Analysis: Foundations
and Applications, Springer-Verlag

[11] Ganter, Bernhard and Wille, Rudolf: (1999)Formal
Concept Analysis, Springer-Verlag

[12] Joslyn, Cliff: (2004) “Poset Ontologies and Con-
cept Lattices as Semantic Hierarchies”, in:Concep-
tual Structures at Work, Lecture Notes in Artificial In-
telligence, v. 3127, ed. Wolff, Pfeiffer and Delugach,
pp. 287-302, Springer-Verlag, Berlin

[13] CA Joslyn, B Baddeley, J Blake, C Bult, M Dolan, R
Riensche, K Rodland, A Sanfilippo, A White: (2009)
“Automated Annotation-Based Bio-Ontology Align-
ment with Structural Validation”,Proc. Int. Conf. on
Biomedical Ontology (ICBO 09)

[14] CA Joslyn, A Donaldson, P Paulson: (2008)
“Evaluating the Structural Quality of Se-
mantic Hierarchy Alignments”, Int. Semantic
Web Conf. (ISWC 08), http://dblp.uni-
trier.de/db/conf/semweb/iswc2008p.html#JoslynDP08

[15] Joslyn, Cliff; Mniszewski, Susan; Fulmer, Andy, and
Heaton, G: (2004) “The Gene Ontology Categorizer”,
Bioinformatics, v. 20:s1, pp. 169-177

[16] CA Joslyn, SM Mniszewski, SA Smith, PM We-
ber: (2006) “SpindleViz: A Three Dimensional,
Order Theoretical Visualization Environment for the
Gene Ontology”, in: Joint BioLINK and 9th Bio-
Ontologies Meeting (JBB 06), http://www.bio-
ontologies.org.uk/2006/download/
Joslyn2EtAlSpindleviz.pdf

[17] CA Joslyn, P Paulson, KM Verspoor: (2008) “Exploit-
ing Term Relations for Semantic Hierarchy Construc-
tion”, in: Proc. Int. Conf. Semantic Computing (ICSC
08), pp. 42-49, IEEE Computer Society, Los Alamitos

[18] CA Joslyn, A Pogel, S Schmidt: (2008) “Ordered Set
Interval Rank for Knowledge Systems Analysis and Vi-
sualization”, in preparation

[19] McBride, Brian: (2002) “Jena: A Semantic Web
Toolkit”, IEEE Internet Computing, v. 6:6, pp. 55-59

[20] Monjardet, B: (1981) “Metrics on Partially Ordered Sets
- A Survey”, Discrete Mathematics, v. 35, pp. 173-184

[21] Nuutila, Esko and Soesalon, Eljas: (1994) “On Find-
ing the Strongly Connected Components in a Directed
Graph”,Information Processing Letters, v. 49, pp. 9-14

[22] C Orum, CA Joslyn: (2009)Valuations and Metrics
on Partially Ordered Sets, in: Discrete Mathematics,
http://arxiv.org/abs/0903.2679v1, submitted

[23] Verspoor, KM; Cohn, JD; Mniszewski, SM; and Joslyn,
CA: (2006) “A Categorization Approach to Automated
Ontological Function Annotation”,Protein Science,
v. 15, pp. 1544-1549

Abstract
Explorations of graphical representation and rea-
soning have yielded intriguing results spanning
symbol, probability and signal processing. Here
we explore an integrative application of graphs, as
a path towards cognitive architectures of increased
elegance, functionality, and extensibility. The spe-
cific focus is on steps towards a graphical reim-
plementation and extension of the cognitive inner
loop within the Soar architecture. Alchemy, an im-
plementation of Markov logic, is used for initial
experiments, yielding insights into what will ulti-
mately be required for full graphical implementa-
tions of enhanced cognitive inner loops.

1 Introduction
In [Rosenbloom, 2009] a new strategy was laid out for de-
veloping cognitive architectures [Newell, 1990] via a uni-
form implementation level based on factor graphs
[Kschischang et al., 2001]. A cognitive architecture seeks
to provide a coherent integration of capabilities sufficient
for human-level artificial intelligence, whether in the con-
text of a detailed model of human cognition or a system
more loosely tied to the specifics of human behavior. Such
an architecture requires the integration of a wide range of
cognitive capabilities for, among other things, representa-
tion and memory, problem solving and planning, learning,
reflection, interaction (including perception and motor con-
trol, use of language, etc), and the social aspects of cogni-
tion (such as emotion, collaboration, etc.).
 The implementation level for cognitive architectures sits
below the architectural memories and mechanisms, and pro-
vides the technologies out of which they are built. Tradi-
tionally, it is simply a programming language of some sort
that may impact the efficiency, portability and robustness of
the architecture, but is itself of little theoretical interest. The
idea of basing the implementation level on graphical models
looks to go beyond this by leveraging the uniform manner in
which they support broad varieties of symbol, probability,
and signal processing. The intuition is that, if the range of
capabilities required for human-level intelligence can be
built out of, and integrated within, such a uniform substrate
then new architectures that are more elegant, functional and

extensible may be possible. The ultimate goal is thus to
determine whether a graphical implementation level can
enable a new and improved generation of architectures.
 As a step in this direction, I have been investigating a
graphical reimplementation and enhancement of the Soar
architecture [Rosenbloom et al., 1993]. Soar is one of the
longest standing – over 25 years – and most thoroughly in-
vestigated cognitive architectures. It also possesses the un-
usual status of existing in both relatively uniform (up
through version 8 [Laird and Rosenbloom, 1996]) and di-
verse (version 9 [Laird, 2008]) forms, providing a natural
path for reimplementation that starts with a uniform version
and then attempts a more uniform reintegration of later di-
versity. Simultaneously, opportunities can also be sought
for expanding beyond Soar’s predominant symbol process-
ing paradigm, through the deep integration of probability
and signal processing, in support of improved reasoning
about, and interaction with, the real world.
 This article: (1) examines what is involved in reconstruct-
ing a more uniform and functional graph-based cognitive
inner loop for Soar, i.e., its core decision cycle, in which
memory is accessed about the current situation and a deci-
sion is made about what to do next; (2) reports results from
experiments towards this end based on Alchemy [Domingos
et al., 2006]; and (3) identifies the path forward from here.
While not yet achieving a fully implemented and enhanced
version of Soar’s decision cycle, it does yield critical in-
sights into what will be necessary. First, however, the next
two sections cover prior background on cognitive scales,
Soar, and the graphical reimplementation of Soar.

2 Cognitive Scales and Soar
Part of the theory behind Soar as a model of human cogni-
tion is that scale counts in cognition [Newell, 1990]. As
cognition is analyzed in depth, the phenomena and their
properties change as the focus shifts from small spatiotem-
poral scales to larger ones. Newell discusses time scales
from 10-4 seconds (100 µs) up to 107 seconds (months), and
divides them into four bands in human cognition: biological
(10-4-10-2 seconds), cognitive (10-1-101 seconds), rational
(102-104 seconds) and social (105-107 seconds). In the bio-
logical band in particular there is also a spatial aspect to
these scales, since signals are limited in how far they can

A Graphical Rethinking of the Cognitive Inner Loop

Paul S. Rosenbloom
Department of Computer Science & Institute for Creative Technologies

University of Southern California
rosenbloom@usc.edu

travel within such small time frames. Organelles (10-4 sec-
onds), neurons (10-3 seconds) and neural circuits (10-2 sec-
onds) yield spatial scales within the biological band, before
primitive deliberate acts (10-1 seconds) and operations (100
seconds) are reached at the base of the cognitive band.
 The architectural mechanisms in the earlier uniform ver-
sions of Soar were traditionally mapped onto a subset of
these time scales, starting with the elaboration cycle at 10
ms (neural circuits), the decision cycle at 100 ms (deliberate
acts), and activity in problem spaces at 1 second (opera-
tions) above this. The elaboration cycle involves parallel
match (via a variant of the Rete algorithm [Forgy, 1982])
and firing of productions based on the contents of a global
working memory. Functionally, it achieves one round of
parallel associative retrieval of information relevant to the
current situation. Production actions specify knowledge for
potential retrieval while production conditions specify the
circumstances under which that knowledge is relevant.
Conditions also bind variables for use in actions.

The decision cycle involves repeated cycles of elabora-
tion until quiescence; i.e., until no more productions can
fire. This elaboration phase is followed by a decision based
on preferences retrieved during elaboration. The elabora-
tion phase yields an interpretation of the current situation,
while the decision either selects an operator or generates an
impasse if no operator can be selected. Impasses engender
reflection, enabling processing to recur at the meta-level on
the problem of making the decision. The decision cycle is
Soar’s cognitive inner loop – it accesses whatever knowl-
edge is immediately available about the current situation
and then attempts to decide what to do next.

A sequence of decisions yields activity in a problem
space, amounting to some form of search if knowledge is
limited and impasses occur. Search in problem spaces (ps-
search) is: slow, with each decision occurring at the 100 ms
level; serial, via a sequence of operator selections and ap-
plications; and potentially combinatoric, yielding trees that
grow exponentially in the depth of the search. However, ps-
search is open to control by any knowledge accessible dur-
ing the decisions that occur within it. When the knowledge
is sufficient to uniquely determine the outcome of each de-
cision, behavior is more accurately characterized as algo-
rithmic, or knowledge-driven, than as search.

Accessing knowledge during a decision can also be
viewed as a search process – termed knowledge search (k-
search) – but one that contrasts strongly with ps-search in
character. K-search is: fast, with a 10 ms cycle time, paral-
lel, both in match and firing of productions; and subexpo-
nential, at least in theory, if not in reality in most implemen-
tations. K-search occurs over a closed, extensionally de-
fined, set of structures – the knowledge/productions in the
system – rather than dynamically generating an open search
space in the manner of ps-search. It is inherently algo-
rithmic, rather than using an open cognitive loop, and is thus
not itself penetrable by additional control knowledge.

Chunking [Laird et al., 1986] is a learning mechanism in
Soar that generates new productions based on the results of
problem space activity during impasses. It compiles knowl-

edge that is initially only available through activity at time
scales of 1 second or more down to knowledge that is “im-
mediately available” for use at the 10 ms time scale.
Chunking, in combination with the flexibility of Soar’s
problem solving, has been shown to yield a much wider
range of learning behaviors than just simple speed ups
[Rosenbloom, 2006] – such as concept acquisition and epi-
sodic learning – but speeding up behavior remains its most
essential functionality. In fact, the difficulty of producing
some of these wider learning behaviors, and of integrating
them with routine cognitive activity, was a key driver in
Soar 9’s shift towards diversity. Soar 9 adds, among other
things, new varieties of long-term memory and learning.

3 Prior Work on the Elaboration Cycle
The work reported in [Rosenbloom, 2009] focused on reim-
plementing Soar’s elaboration cycle (10 ms); and, in par-
ticular, on factor-graph algorithms for production match.
Factor graphs in general provide a means of efficiently
working with nearly decomposable functions of many vari-
ables. They arose in coding theory, where they underlie the
surprisingly effective performance of turbo codes. They are
similar to Markov networks (aka Markov random fields) in
being undirected graphs with nodes that correspond to vari-
ables. However, in addition to variable nodes there are also
factor nodes that represent functions over subsets of the
variables. Factor nodes are analogous to clique poten-
tials/weights in Markov networks, but they are directly in-
corporated as network nodes in factor graphs. Inference in
factor graphs may be done through variations on the stan-
dard summary-product algorithm – a message passing ap-
proach that generalizes the more familiar (loopy) belief
propagation algorithm in Bayesian networks [Pearl, 1983] –
or via Monte Carlo methods.

Although Soar’s Rete match algorithm could potentially
be implemented directly via factor graphs, the focus of the
prior work was on match algorithms arising more naturally
from factor graphs. The investigation began with a straight-
forward, although ultimately naïve, approach. Working
memory was represented as a three dimensional array of
potential working memory elements, with one dimension for
each of the three slots of a working memory element – ob-
ject, attribute and value – and a value of one in every array
cell for which the corresponding element was in working
memory and zero otherwise. In the factor graph, variable
nodes corresponded to production variables while factor
nodes corresponded to conditions and actions. Match oc-
curred via the summary-product algorithm, passing mes-
sages about the legitimate bindings of condition variables,
and eventually converging on bindings for action variables.

Without going into the gory details, this initial approach
raised generality, correctness and efficiency issues that ul-
timately led, through a sequence of optimizations and con-
ceptual adjustments, to a new graphical match algorithm
combining: (1) a junction-tree-like approach for graph con-
struction, to enable the tracking of compatible combinations
of bindings for different variables; and (2) an N-dimensional
generalization of quad/octrees (called exptrees for lack of an

existing term) for working memory and messages that en-
ables uniform regions – i.e., regions in which all of the po-
tential working memory or message elements are either pre-
sent (one) or absent (zero) – to be matched without examin-
ing each element individually. The resulting match algo-
rithm yielded correct results with dramatically reduced
match times from the naïve approach. It also avoided creat-
ing the full production instantiations required by Rete, re-
ducing the worst-case bound on match cost to exponential in
the treewidth of a production rather than in the number of
conditions in the production (as in Rete).

Beyond match, the remainder of the elaboration cycle
consists of the firing of productions, empowering instanti-
ated actions to add and delete working memory elements by
flipping the corresponding array values from zero to one or
vice versa. Once working memory is updated, the next
elaboration cycle can begin.

4 Rethinking the Decision Cycle
In the work reported here, the focus has moved up to the
decision cycle (100 ms) – Soar’s cognitive inner loop –
comprising an elaboration phase and a decision. This is the
lowest level at which knowledge may affect decisions, at
which multiple fragments of knowledge may be combined,
and at which k-search may involve more than one cycle of
match and firing. It is also the key scale at which extending
Soar beyond strictly symbolic processing could lead to radi-
cally expanded functionality and at which it makes sense to
begin considering incorporation of Soar 9’s diversity.
 Any reimplementation of Soar’s elaboration phase must
support its three core functions: (1) elaborating the descrip-
tion of the current situation in working memory based on
relevant long-term knowledge; (2) generating operator pref-
erences based on this elaborated working memory; and (3)
altering working memory to reflect the application of se-
lected operators. The first two functions are mostly mono-
tonic, while the third is inherently non-monotonic. Overall,
operation is similar to that of a truth maintenance system
[Doyle, 1979], with operators determining the current as-
sumptions and elaborations automatically asserting and re-
tracting as these assumptions change.
 Two additional constraints on the long-term knowledge
must also be met by any reimplementation of the elaboration
phase. The first constraint is that it must be capable of be-
ing processed in bounded time and space. Soar’s produc-
tion-based elaboration phase runs in time that is bounded by
the volume of the elaboration phase – cost per production ×
number of productions × number of elaboration cycles. In
reality, the second dimension is close to constant, as a suita-
bly optimized Rete algorithm enables match time to remain
close to constant with growth in the number of productions
[Doorenbos, 1993]. However, the other two dimensions can
be problematic. As mentioned earlier, the cost per produc-
tion may be exponential in the size of the production. Even
worse, the length of the elaboration phase can be infinite –
new working memory elements can be generated on each
elaboration cycle that lead to more productions firing in the
next cycle. A reimplementation should at least avoid exac-

erbating these boundedness issues, and ideally improve on
them (such as the prior work’s improved match bound).
 The second constraint is that the long-term knowledge
must be learnable. Soar acquires productions via chunking,
and Soar 9 adds other mechanisms to acquire its additional
varieties of long-term knowledge; but satisfying this con-
straint in a graphical reimplementation is left to future work.
 Beyond these two constraints, the uniform versions of
Soar also lived with the constraint that all long-term knowl-
edge must be cast as productions. Productions have the
advantage that they are uniform, active, relatively flexible,
and learnable. They also have a long successful history in
cognitive modeling. Still, they have proven balky in dealing
with both declarative and perceptual knowledge, ultimately
leading to the elimination of this long held constraint in
Soar 9 and the addition of three new long-term memories –
two for declarative knowledge (semantic and episodic) and
one for perceptual knowledge (visual imagery) – each with
its own distinct variety of knowledge structures.
 The approach explored here is not to eliminate the third
constraint, but to replace it with one based on the varieties
of knowledge structures efficiently implementable via
graphical models. The hope is thereby to support a much
wider range of functionality – including symbol, probabil-
ity, and signal processing, as well as Soar 9’s new kinds of
knowledge structures – in a general yet uniform fashion.

The prior work discussed in Section 3 implemented a
complete elaboration cycle. A straightforward elaboration
phase is thus obtainable merely by repeating these cycles
until quiescence is reached. While such an elaboration
phase has been implemented, and initial ideas exist for ex-
tending it to continuous values and declarative memory, it
has a serious flaw in only being able to propagate informa-
tion forward across rule firings. Bidirectional information
flow is needed for probabilistic information to propagate
correctly across rules. It is also necessary for the implemen-
tation of trellis diagrams – in which a graph is composed of
a linked sequence of identical subgraphs – such as the hid-
den Markov models used in speech recognition and other
varieties of sequential signal processing.

The prior implementation supported bidirectional infor-
mation flow within rules, and reused the same rule graph on
each elaboration cycle – as is needed for a trellis – but the
only linkage across cycles was implicit in the working mem-
ory elements generated during early elaboration cycles and
matched on later ones. In addition to a graph for the
generalized rules, a graph representing rule instantiations
and the linkages among them may be needed to support
bidirectional information flow across the rule instantiations
generated within an elaboration phase.

In contrast to the elaboration phase, there are many fewer
constraints on the decision procedure that follows it. Deci-
sions in Soar were based on vote counting in a very early
version, on symbolic preferences – acceptable, reject, better
worse, etc. – in most versions, and on a combination of
symbolic and (additive) numeric preferences in Soar 9. The
key constraint on a reimplementation of the decision proce-
dure is that all of the preferences accessed during the elabo-

ration phase must be combined in an appropriate and tracta-
ble manner to yield either the selection of a unique operator
or the detection of an impasse.

5 Progress towards a New Decision Cycle
The lack of bidirectional message passing across elaboration
cycles in the existing implementation, in conjunction with a
desire to better understand the utility of existing graphical
languages – in particular those that already combine some
forms of symbolic and probabilistic reasoning, such as Al-
chemy, BLOG [Milch et al., 2007], and FACTORIE
[McCallum et al., 2008] – for implementing cognitive archi-
tectures, led to the decision to begin investigating the revi-
sion of Soar’s decision cycle via such a language. Alchemy,
which is based on combining first-order logic and Markov
networks to form Markov logic, was ultimately selected
because it: supports forms of both symbolic and probabilis-
tic processing along with nascent signal processing [Wang
and Domingos, 2008], provides an obvious approach to
working with both rules and their instantiations, is publi-
cally available, runs on multiple types of computers, and has
manuals, tutorials, and rapid response to emailed questions.1
 To date, several small-scale experiments have been run
with Alchemy: (1) re-implementing simple production sys-
tems that had previously been implemented via factor
graphs; (2) adding a form of semantic long-term memory to
the production memory; (3) exploring an implementation of
the eight puzzle, one of the earliest tasks investigated in
Soar [Laird and Newell, 1983] and the basis for early learn-
ing experiments with it [Laird et al., 1986]; and (4) experi-
menting with trellis diagrams.2
 In Alchemy, a Markov logic network (MLN) is defined
via first-order predicates and formulas, with weights as-
signed to the formulas. The MLN is then compiled into a
ground Markov network with binary nodes for each ground
predicate, links among nodes that appear in common formu-
las, and features for each possible ground formula. Infer-
ence is performed on this ground Markov network, unless
additional optimizations such as laziness (where grounding
only occurs for variables that take on non-default values
[Poon et al., 2008]) or lifting (where multiple ground atoms
are combined into single network nodes when they can be
guaranteed to pass the same messages during belief propa-
gation [Singla and Domingos, 2008]) are included.

The initial mapping of Alchemy to Soar’s decision cycle
focused on the first two functions of the elaboration phase:
elaborating the current situation in working memory based
on the contents of (a production-based) long-term memory,
and generating preferences. Productions were represented
as conditional formulas in an MLN file and the state of
working memory at the beginning of the decision cycle was

1 Alchemy has also been explored in the Icarus cognitive archi-

tecture [Langley and Choi, 2006], with a focus specifically on the
implementation of an inference component [Stracuzzi, 2009].

2 Several of these experiments have been replicated with
BLOG, but the results do not fundamentally alter the conclusions
reported here based on Alchemy.

represented as evidence in an Alchemy database file. A
single elaboration phase was then mapped onto a single in-
vocation of Alchemy’s inference procedure with this net-
work and database.

The details of this mapping and the ensuing experiments
are relatively uninteresting, so they are omitted here to con-
serve space. What is worth noting though are the implica-
tions of these experiments for a graphical reimplementation
of Soar in particular, and a graphical implementation level
for cognitive architectures in general. The most critical re-
sult is that the core of the mapping works, enabling a uni-
form elaboration phase that combines Soar’s standard rule-
based capabilities with probabilistic reasoning, simple trel-
lises and semantic memory. The approach solves the
aforementioned bidirectional, across rule, information flow
problem by compiling the rules into a ground Markov net-
work, and then performing inference in this ground network.
Because nodes in this network correspond to working mem-
ory elements, and each such node links to every other ele-
ment with which it coexists in a ground formula, the ground
Markov network provides a single linked network for the
entire elaboration phase. If the rules define a trellis, by
repetition across elaboration cycles, bidirectional inference
also occurs appropriately for it.

Another major result concerns the nature of production
match under this mapping. Alchemy does not use inference
in graphs to perform the equivalent of match for conditional
formulas. Instead, match corresponds to Alchemy’s extra-
network process of compiling (first-order) Markov logic
networks down to ground Markov networks. In essence, the
Markov logic network corresponds to the definition of the
production system while the ground Markov network corre-
sponds to working memory elements (the ground nodes) and
production instantiations (the ground formulas). In contrast
to the prior implementation, working memory elements cor-
respond to distinct nodes in this network rather than simply
serving as the basis for messages among nodes.

Given that the goal is ultimately to implement a broadly
functional cognitive architecture uniformly in graphs, Al-
chemy’s match-as-compilation approach is problematic. A
key question for future work therefore becomes whether it is
possible to unify match – i.e., the computation of ground
instances from first-order formulas – with the other neces-
sary forms of inference into a single graph that is processed
in a uniform manner, or whether it will be necessary to de-
velop a dual graph/network approach in which match occurs
via a first-order graph that generates, and is linked to, a
ground graph in which the remaining inference occurs. Ei-
ther way, the decision cycle will need to be extended from
its current two stages to three: (1) compilation/match to
generate a ground/instantiated network; (2) inference in the
ground/instantiated network; and (3) decision making.

A final significant outcome is more conceptual, and con-
cerns the general mapping between graphical systems and
the hierarchy of cognitive scales, particularly as mediated by
the mapping of both onto Soar. If the elaboration phase –
which performs k-search (100 ms) – consists of the compi-

lation of, and inference in, a multi-layer ground network,
then two important consequences follow:

1. The goal for a probabilistic first-order reasoner should
not be a single uniform system capable of directly
solving any problem no matter how complex. Instead,
it should be bounded to the needs of k-search; e.g.,
only being capable of finding local minima in the solu-
tion space. Problems too complex to be solved in this
manner would require a sequence of deliberate acts –
i.e., steps in a problem space (ps-search) at the 1-
second time scale – to move among local minima in
search of a global minimum. Systems like Alchemy
can get stuck in local minima [Stracuzzi, 2009], but
according to this argument that is all a flat inference
system should ever strive for. Reaching global minima
in general requires a sequence of deliberate acts.

2. Cycles of message passing map onto the neural circuit
(10 ms) scale. Functionally this implies that the 10 ms
scale supports (only) local propagation of information,
the 100 ms scale supports global propagation but
(only) local minima, and global minima generally re-
quire time scales of 1 sec and above unless the prob-
lem is particularly simple or the system gets lucky.

Beyond these major implications, several smaller yet still
interesting results have also been extracted from the map-
ping and resulting experiments:

3. Production systems utilize specific forms of non-
monotonic reasoning, including an implicit closed-
world assumption about the contents of working mem-
ory, and the ability to arbitrarily add and delete work-
ing memory elements. Such capabilities map awk-
wardly onto first-order reasoners, such as Alchemy.

4. Many production systems, Soar included, provide the
ability to generate new unique symbols via production
actions. Although such actions are local to individual
productions, the process of checking uniqueness is a
global activity that is difficult to implement through
local message passing in a graph/network.

5. Exptrees served a role in the prior work that is analo-
gous to what laziness and lifting achieve in Alchemy.
The latter mechanisms eliminate unnecessary computa-
tion, either by avoiding the processing of default val-
ues or by grouping together items that can be treated
the same. With exptrees, defaults are identified natu-
rally and items are grouped by region if their values
are identical. Exptrees appear to be a coarser ap-
proach, but it may ultimately be possible to bring these
approaches more into alignment.

6. Experiments with simple trellises (linked repetitions)
and semantic memory (encoded as ground atoms) have
shown the feasibility of incorporating both within the
decision cycle, but they involve computing most prob-
able explanations (MPEs) rather than the marginals
used for production match in the prior work to generate
all instantiations. One possibility for the future is to
localize the use of marginals to the generation of
ground networks from first-order networks, and use
MPE for all computations in the ground network.

Reflections on the first two of these smaller outcomes, in
conjunction with the prior conclusion that the 10 ms scale
only performs local propagation, has led to the conclusion
that neither non-monotonicity nor the generation of new
unique symbols should occur in individual productions (i.e.,
within an elaboration cycle). Non-monotonic reasoning has
an implicit global aspect to it, given that the current answer
is always dependent on nothing else being true that would
overturn it. Operator implementation – the third function of
the elaboration phase – and negated conditions in produc-
tions are examples of non-monotonic processing that thus
should be banned from rules and moved up to the level of
decision cycles. Generation of new unique symbols also
involves an obvious global aspect.

Beyond the issues of non-monotonicity and symbol gen-
eration, limiting global information propagation to decision
cycles and above implies that semantic memory, when de-
fined in terms of finding the best match in memory to a cue
[Anderson, 1990], should also occur at the level of decision
cycles, as it currently does in Soar 9. Even more critically,
though, this raises hard questions about the use of a global
working memory in production match. One possible resolu-
tion to this dilemma would be to allow operator application
to have global effects on working memory, as it is already
being shifted up to the decision level, but to require elabora-
tion to proceed via local propagation of information.
Whether this can work, and more generally how to develop
an effective architecture when all of the non-local forms of
processing currently embodied by rules are moved up to the
decision level, is a key issue for future work.

The actual decision making process has been neglected so
far in this discussion. Limited experiments have been per-
formed by leveraging Alchemy’s provision of weights on
formulas to encode preferences, and MPE inference to select
operators based on these preferences. This has proven ade-
quate for simple examples, but more complex ones are pres-
ently foundering on the preliminary step of dynamically
generating operator instantiations and the accompanying
unique symbols that are needed to identify them. Develop-
ing a full decision mechanism is thus left for future work.

6 Summary and Future Directions
This article has begun the exploration of graphical models
for Soar’s cognitive inner loop, with an Alchemy-based
implementation of an elaboration phase that combines
Soar’s symbolic, rule-based, long-term memory with prob-
abilities, simple bidirectional trellises and long-term seman-
tic memory. In the process, four directions for the future
have been explicitly called out: (1) satisfying the learnabil-
ity constraint on long-term knowledge; (2) unifying rule
match with inference in graphs while determining the re-
spective roles of marginal versus MPE inference; (3) under-
standing how to feasibly and functionally move all non-
local processing from the elaboration cycle to the decision
cycle; and (4) implementing a complete decision procedure.

In addition, the full incorporation of signal processing, for
perception and motor control, and of semantic and episodic
knowledge is critical, and remains to be done. Beyond the

inner loop, there is more of Soar to be explored, along with
other existing architectures and hybridizations among them.
Totally new architectures that take full advantage of what
graphical models provide also need investigation. The ulti-
mate intent is to definitively answer the question first posed
in [Rosenbloom, 2009] as to whether implementing cogni-
tive architectures on top of a uniform graph-based imple-
mentation level can yield a new generation of architectures
with improved uniformity, functionality, and extensibility.

Acknowledgments
This effort was made possible by sabbatical support from
the USC Viterbi School of Engineering plus funding from
the Institute for Creative Technologies (ICT). ICT’s Cogni-
tive Architecture Working Group has been invaluable for
semi-public exploration of these ideas. I would also like to
thank the Alchemy group at the University of Washington
for their help in installing Alchemy and working through
various issues that arose during experimentation with it.

References
[Anderson, 1990] John R. Anderson. The Adaptive Charac-

ter of Thought. Erlbaum, Hillsdale, NJ, 1990.
[Domingos et al., 2006] Pedro Domingos, Stanley Kok,

Hoifung Poon, Matt Richardson, and Parag Singla. Uni-
fying logical and statistical AI. In Proceedings of the 21st
National Conference on Artificial Intelligence, pages 2-
7, July 2006. AAAI Press.

[Doorenbos, 1993] Robert B. Doorenbos. Matching 100,000
Learned Rules. In Proceedings of the 11th National Con-
ference on Artificial Intelligence. Page 290-296, 1993.

[Doyle, 1979] John Doyle. A Truth Maintenance System.
Artificial Intelligence, 12(3): 251-272, 1979.

[Forgy, 1982] Charles L. Forgy. "Rete: A Fast Algorithm
for the Many Pattern/Many Object Pattern Match Prob-
lem". Artificial Intelligence, 19(1): 17-37, 1982.

[Kschischang et al., 2001] Frank R. Kschischang, Brendan
J. Frey, Hans-Andrea Loeliger. Factor graphs and the
sum-product algorithm. IEEE Transactions on Informa-
tion Theory, 47(2): 498-519, February 2001.

 [Laird, 2008] John E. Laird. Extending the Soar cognitive
architecture. In Artificial General Intelligence 2008:
Proceedings of the First AGI Conference, Memphis, TN,
March 2008. IOS Press.

 [Laird and Newell, 1983] John E. Laird and Allen Newell.
"A Universal Weak Method: Summary of Results." In
Proceedings of the Eighth International Joint Confer-
ence on Artificial Intelligence, pages 771-773,
Karlsruhe, FRG, August 1983. William Kaufmann.

 [Laird and Rosenbloom, 1996] John E. Laird and Paul S.
Rosenbloom. The evolution of the Soar cognitive archi-
tecture. In D. M. Steier. and T. M. Mitchell (Eds.), Mind
Matters: A Tribute to Allen Newell, pages 1-50. Erl-
baum, Mahwah, NJ, 1996.

 [Laird et al., 1986] John E. Laird, Paul S. Rosenbloom,
and Allen Newell. Chunking in Soar: The anatomy of a
general learning mechanism. Machine Learning, 1(1):
11-46, March 1986.

 [Langley and Choi, 2006] Pat Langley and Dongkyu Choi.
A unified cognitive architecture for physical systems. In
Proceedings of the Twenty-First National Conference on
Artificial Intelligence. Boston, MA, 2006. AAAI Press.

[McCallum et al., 2008] Andrew McCallum, Khashayar
Rohanemanesh, Michael Wick, Karl Schultz and Sameer
Singh. FACTORIE: Efficient probabilistic program-
ming via imperative declarations of structure, inference
and learning. In Proceedings of the NIPS workshop on
Probabilistic Programming, Vancouver, Canada, 2008.

[Milch et al., 2007] Brian Milch, Bhaskara Marthi, Stuart
Russell, David Sontag, Daniel L. Ong, and Andrey
Kolobov. BLOG: Probabilistic models with unknown
objects. In L. Getoor and B. Taskar, (Eds.) Introduction
to Statistical Relational Learning, pages 373-398. MIT
Press, Cambridge, MA, 2007.

[Newell, 1990] Allen Newell. Unified Theories of Cogni-
tion. Harvard University Press, Cambridge, MA, 1990.

[Pearl, 1988] Judea Pearl. Probabilistic Reasoning in Intel-
ligent Systems: Networks of Plausible Inference. Morgan
Kaufman, San Mateo, CA, 1988.

[Poon et al., 2008] Hoifung Poon, Pedro Domingos, and
Marc Sumner. A general method for reducing the com-
plexity of relational inference and its application to
MCMC. In Proceedings of the 23rd AAAI Conference on
Artificial Intelligence, pages 1075-1080, July 2008.
AAAI Press.

[Rosenbloom, 2006] Paul S. Rosenbloom. A cognitive od-
yssey: From the power law of practice to a general learn-
ing mechanism and beyond. Tutorials in Quantitative
Methods for Psychology, 2(2): 43-51, 2006.

[Rosenbloom, 2009] Paul S. Rosenbloom. Towards a new
cognitive hourglass: Uniform implementation of cogni-
tive architecture via factor graphs. Submitted to the
Twenty-First International Joint Conference on Artificial
Intelligence, 2009.

[Rosenbloom et al., 1993] Paul S. Rosenbloom, John E.
Laird, and Allen Newell. The Soar Papers: Research on
Integrated Intelligence. MIT Press, Cambridge, MA,
1993.

[Singla and Domingos, 2008] Parag Singla and Pedro Dom-
ingos. Lifted first-order belief propagation. In Proceed-
ings of the 23rd AAAI Conference on Artificial Intelli-
gence, pages 1094-1099, July 2008. AAAI Press.

[Stracuzzi, 2009] David Stracuzzi. Personal Communica-
tion, 2009.

[Wang and Domingos, 2008] Jue Wang and Pedro Domin-
gos. Hybrid Markov logic networks. In Proceedings of
the 23rd AAAI Conference on Artificial Intelligence,
pages 1106-1111, July 2008. AAAI Press.

A generalised network flow approach to combinatorial auctions

Madalina Croitoru 1, Cornelius Croitoru2

1LIRMM (CNRS and Univ. Montpellier), France
2Universitatea Al. I. Cuza, Iasi, Romania

Abstract

In this paper we address the problem of (1) repre-
senting bids for combinatorial auctions and (2) em-
ploying those structures for “reasoning”. We pro-
pose a graph-based language who’s novelty lies (1)
in the use of generalized network flows to repre-
sent the bids and (2) in the interpretation of winner
determination as an adequate aggregation of indi-
vidual preferences. We motivate the language both
from representational and reasoning points of view
and show how our language represents the same
class of expressivity of bids more concisely com-
pared to existing work.

1 Introduction
In every Artificial Intelligence system addressing a given
problem there is a need to (1) represent the state of the world
and (2) reason about possible ways to solve the problem. In
this paper we address the problem of (1) representing bids for
combinatorial auctions and (2) employing those structures for
“reasoning” (winner determination). The proposed language
we detail is a visual, graph-based language based on network
flow modelling techniques that demonstrate better concise-
ness within the same expressivity classes.

Combinatorial auctions (CAs) can be looked at as a way
of approaching allocation problems involving multiple het-
erogeneous goods. Bidding is the problem of representing
one’s valuation function over the set of goods on offer. It
plays a key role in both central aspects of the allocation prob-
lem: preference elicitation and winner-determination (WD).
As a consequence bidding languages have not only to address
representational issues but also to provide subsequent manip-
ulation techniques for reasoning aspects. Our motivation for
introducing a new language is based on the fact that existing
languages cannot concisely represent some structured valua-
tions that might occur in practical scenarios. Moreover, these
languages were not designed with partial value revelation in
mind; this is especially important in domains where the valu-
ation problem is hard. Following from above mentioned rep-
resentational choices the algorithms for winner determination
cannot fully take advantage of the structural optimisation po-
tential of the problem at hand.

This paper proposes a visual language for combinatorial

auctions based on generalised flow networks. The nodes of
the network will represent either (1) resources, (2) bundles
of resources or (3) composite nodes used for calculation of
certain partial valuations. The flow defined on the edges will
allow concise description of an exponential number of bids.
The same structure will be used for the auctioneer to unify all
bidders’ valuations. The winner determination problem will
then be translated into a special MAX FLOW problem on the
proposed network structure.

The paper is structured as follows. In section 2 we motivate
our language from a representational viewpoint and demon-
strate its conciseness. The formal, rigorous semantics of the
language are introduced in section 3. Based on the constructs
from section 3 we guarantee the soundness of the syntax fur-
ther introduced in section 4. Section 5 concludes the paper.

2 Motivation
A hypergraph (or a bundle system) is a pair H = (R,B)
where R is a finite set (the resources set, the set of goods)
called the vertex set of H and B is a family of subsets of
R. The members of B are called hyperedges and they are
subsets of resources, or bundles. A hypergraph H can be
explicitly represented in visual manner by a bipartite graph
B(H) having one vertex class corresponding to the resources
set R and the other class corresponding to the H’s bundles,
and connecting by an edge a bundle vertex to its correspond-
ing (members) resource vertices. This is shown in Figure 1.

r n

B j

r i

r 1

B 1

B m

Figure 1: Bipartite graph representation of a bundle system

The bipartite graph has |R| + |B| vertices and
∑

B∈B |B|
edges. If H is given explicitly, this is a concise and intu-
itive representation for a bundle system. The (directed) edges

of this bipartite graph suggest the containment relation of re-
sources to bundles. However, if H is given by using some
constructive (or implicitly) rules, the bipartite representation
must be extended in order to be an effective representational
tool. For example, if B is the family of all bundles having
d |R|2 e resources, then the corresponding bipartite graph has an
exponential number of bundle vertices and edges. We will ex-
tend the above containment relation (of resources to bundles)
by using paths (a resource belongs to a bundle if and only if
there is a certain path from the resource vertex to the bun-
dle vertex) and a mechanism to express which path must be
considered in order to instantiate a given bundle. This mech-
anism is based on a simple extension of network flows, which
is described bellow.

In our representational networks we will use the following
graphical primitives depicted in Figure 2:

s
t

(a) (b) (c) (d)

lb,ub

(e)

Figure 2: Elements of a bidflow network

The node (a) is the start node of the network (sometimes the
label start is used instead of s). From this node the flow is
pushed (on the arcs leaving it) in the network. The flow on
each arc is a nonnegative integer value. If the flow fij on an
the arc ij is positive it must satisfy the restriction lbij ≤ fij ≤
ubij , where the lower bound lb (sometimes denoted by l), and
the upper bound ub (sometimes called capacity and denoted
by c) are indicated as labels on the arc, as in construction
(e) in Figure 2. The arcs without bound constraints (having
lb = 0 and ub = ∞) are not labelled.

The nodes of type (b) are transit nodes, that is nodes which
automatically distribute the total incoming flow (the sum of
the flows on all arcs entering such a node) on the arcs leav-
ing it. In other words, in these nodes the flow conservation
law holds. They can have name-labels inside of the oval, for
modelling or referring necessities.

The start node is connected by an arc labelled 0, 1 to a node
of type (b) labelled r, for each resource r ∈ R. From the flow
conservation law (which holds in the transit node labelled r)
and by the integrality of flows, either the flow on the arc sr
is 1, and there is exactly one arc with flow value 1 leaving
the node r, or the flow on the arc sr is 0, meaning that the
resource r will belong to no bundle. In the former case, a
path with positive flows on its arcs will be constructed, which
eventually will reach a type (c) node.

The nodes of type (c) are bundle nodes, which pass-on the
incoming flow exactly on one arc leaving them. The flow
on this arc is set to 1. Furthermore, a bundle node b is “on”
only if all the flows on the arcs entering it are positive. The
intuition is that such a node collects all the resources r ∈
R which belongs to a path starting from s, having positive
flows on its arcs and ending in b. If the bundle represented

r n

B
s r i

t

r 1

0,1

0,1

0,1

0,1

0,1

0,1

0,1

0,1

C lb, ub

Figure 3: An exponential sized bundle system

by the node b is a not a member of B (the bundle system to
be represented by the network) then the arcs leaving b are
used to simulate (disjoint) unions in order to construct such
a member via paths with positive arc flows. Of course, the
structure of the network will prevent the existence of cycles.
If the bundle represented by the node b is a member of B, then
there is an arc bt, leaving b and entering the terminus node of
the network (type (d) in Figure 2, labelled end).

Let us consider again the bundle system H = (R,B),
where B is the family of all bundles having dn

2 e resources
(n = |R|). The network representing H using the above prin-
ciples is given in Figure 3. If the ub and lb values on the arc
cb are set to dn

2 e, then for each dn
2 e-subset S of R we can

consider the flow fS by putting: fS
sr = 1, fS

rc = 1 ∀s ∈ S;
fS

sr = 0, fS
rc = 0 ∀r ∈ R − S; fS

cb = dn
2 e; and fS

bt = 1.
Clearly, the bundle represented by the node b is S. Con-
versely, it is not difficult to see that each non null flow f in
this network generates a dn

2 e-bundle Bf of R, by consider-
ing Bf = {r ∈ R|f(sr) = 1}. Note that the network has
only 2|R|+ 4 nodes and 2|R|+ 2 arcs. It follows that the in-
ternal data structures have total polynomial size and also the
number of variables (arc flows values) used is small.

A nice property of this type of representation is that if we
are interested in an induced subhypergraph, that is to consider
the members of B contained in some subset S ⊆ R, then it
suffices to block the flow on the arcs sr for r ∈ R − S, by
considering ubsr = 0. This is clearly important for the use of
v-basis as described in section 3. The restriction given by the
Corollary in that section, could also be avoided in a succinct
way (equivalently, considering Nisan’s OR* language [8]) by
adding a transit node, a new bundle node and an arc with ub
set to 1 as described in Figure 4.

s
t s

B t0,1

Figure 4: Implementing OR* trick.

In order to represent valuation functions using bids (i.e.v-
basis) it is necessary to describe a mechanism to specify the
the bid value of a bundle. This is obtained by associating val-

ues to the flows via special labels of network nodes. These
labels indicate simple local functions which must be incre-
mentally applied to values of the tail nodes from which the
flow enter in the current node. The resulting network is called
NETBID and is formally described in the section 4.

3 Semantics
This section presents that rationale that led to the contribu-
tion of the paper. The results obtained in this section build
upon [4] and will lay the foundations for the semantics of
the language in a rigorous, complete manner. A Combina-
torial Auction (CA) can be interpreted as an abstraction of
a marked-based centralized distributed system for the deter-
mination of adequate allocations of heterogenous indivisible
resources. In such an Adequate Resource Allocation (ARA)
system, there is central node a, the auctioneer, and a set of n
nodes, I = {1, . . . , n}, the bidders, which concurrently de-
mand bundles of resources from a common set of available
resources, R = {r1, . . . , rm}, held by the auctioneer.

The auctioneer broadcasts R to all n bidders, asking them
to submit in a specified common language, the bidding lan-
guage, their R-valuations over bundles of resources. Bidder’s
i R-valuation, vi, is a non-negative real function on P(R),
expressing for each bundle S ⊆ R the individual interest
(value), vi(S), of bidder i in obtaining S. Naturally, it is as-
sumed that vi(∅) = 0, and vi(S) ≤ vi(T) whenever S ⊆ T .
No bidder i knows the valuation of any other n − 1 bidders,
but all the participants in the system agreed on an adequate
outcome: (1) Based on bidders’ R-valuations, the auctioneer
will determine a resources allocation O = (O1, . . . , On),
specifying for each bidder i her obtained bundle Oi. O is a
(weak) n-partition of R, that is Oi∩Oj = ∅, for any different
bidders i and j, and ∪i=1,nOi = R. The global (social) value
of the outcome is va(O) =

∑
j=1,n vj(Oj); (2) O is an ad-

equate allocation: if some bidder i does not receive its most
wanted bundle (there is S ⊆ R such that vi(S) > vi(Oi))
this is explained by the fact that the social (global) value of
the outcome va(O), would not increase if she will receive S:
va(O) =

∑
j=1,n vj(Oj) ≤

∑
j=1,n vj(O′j) = va(O′), for

any allocation O′ = (O′1, . . . , O
′
n) having O′i = S.

It is not difficult to see that there exists always such ad-
equate allocation: let O∗ = (O∗1 , . . . , O∗

n) be such that
va(O∗) = max{va(O)|O is a n-partition of R}; if there is
i and S such that vi(S) > vi(O∗), then, by the choice of
O∗, va(O∗) ≥ va(O′) for every n-partition O′ with O′i = S.
Conversely, if O is an adequate allocation and O∗ is a max-
imum value allocation such that va(O∗) > va(O), then (by
the non-negativity property of the valuations) there is a bid-
der i such that vi(Oi) < vi(O∗i). Since O is adequate, taking
S = O∗i , it follows that va(O) ≥ va(O∗), (since O∗ is a
n-partition of R with O∗

i = S), a contradiction. We have
obtained that an allocation is adequate if and only if it is a
maximum value allocation.

The task of the auctioneer finding a maximum value alloca-
tion for a given set of bidder valuations {v1, . . . , vn}, is called
in the CA’s field the Winner Determination Problem (WDP).
This is a NP-hard problem, being equivalent to weighted set-
packing. It tends to be solvable in many practical cases, but
care is often required in formulating the problem to capture

structure that is present in the domain ([9]).
WDP can be parameterized by the set R of resources, con-

sidering a fixed set I of bidders and bidders’ R-valuations
{vi|i ∈ I}. Therefore we can write WDP (R) and its cor-
responding maximum value va(R). With these notations,
WDP (S) and va(S) are well defined for each subset S ⊆ R
(by considering the restriction of vi to P(S)).

In this way, we have obtained a global R-valuation va as-
signing to each bundle S ⊆ R the maximum value of an S-
allocation to the bidders from I . By the above observation,
this maximum value is the value of an adequate S-allocation.
Therefore WDP can be interpreted as the problem of con-
structing a social aggregation of the R-valuations of the bid-
ders.

If we denote by V(R) the set of all R-valuations, it is
natural to consider in our ARA system the set of super-
additive R-valuations due to the synergies among the re-
sources: SV(R) = {v ∈ V(R)| v(B1 ∪ B2) ≥ v(B1) +
v(B2) for all B1, B2 ⊆ R, B1 ∩B2 = ∅}.

It is not difficult to see that if all vi ∈ I are superadditive
then va is superadditive. Indeed, if B1, B2 ⊆ R,B1∩B2 = ∅,
then va(B1)+va(B2) =

∑
i∈I vi(O1

i)+
∑

i∈I vi(O2
i), where

O1 is a maximum B1-allocation and O2 is a maximum B2-
allocation; since O with Oi = O1

i ∪O2
i (i ∈ I) is a B1 ∪B2-

allocation and vi(O1
i) + vi(O2

i) ≤ vi(O1
i ∪ O2

i), it follows
that va(B1) + va(B2) ≤ va(B1 ∪B2).

The following lemma gives an interesting characterization
of superadditive bidding.

Let us denote V OR(R) = {v ∈ V(R)| v(B) =
maxA⊆B [v(A) + v(B −A)] for all B ⊆ R}. Then,

Lemma 1 SV(R) = V OR(R).
Proof. If v ∈ SV(R) then for each B ⊆ R and A ⊆ B we have

v(B) ≥ v(A ∪ (B − A)) ≥ v(A) + v(B − A), therefore v(B) ≥
maxA⊆B [v(A) + v(B − A)]. Since, for A = ∅, we have v(B) =
v(∅) + v(B), it follows that v(B) = maxA⊆B [v(A) + v(B −A)],
that is v ∈ V OR(R). Conversely, let v ∈ V OR(R). If B1, B2 ⊆
R, B1∩B2 = ∅, then v(B1∪B2) = maxA⊆B1∪B2 [v(A)+v(B1∪
B2 −A)] ≥ v(B1) + v(B1 ∪B2 −B1) = v(B1) + v(B2), that is
v ∈ SV(R).2

Combining this remark on the superadditivity of va and
Lemma 1 we obtain:

Theorem 1 If in an ARA system all bidders’ R-valuations
are superadditive, then the aggregate R-valuation va satisfies
va(A) = maxB⊆A[va(B) + va(A−B)] for all A ⊆ R.

Let v ∈ V(R). A v-basis is any B ⊆ P(R) such that for
each A ⊆ R we have v(A) = maxB∈B,B⊆A[v(B) + v(A −
B)]. In other words, if B is a v-basis, then the value of v(A) is
uniquely determined by the values of v on the elements of the
basis contained in A, for each A ⊆ R. The elements of a v-
basis, B ∈ B, are called bundles and the pairs (B, v(B))B∈B
are called bids.

Clearly, v ∈ V OR(R) if and only if P(R) is a v-basis. On
the other hand, if B ⊆ P(R) is a v-basis and B ⊆ R, then
B ∪ {B} is a v-basis too. Therefore, v ∈ V(R) has a v-basis
iff P(R) is a v-basis. Using Lemma 1, we obtain the well
known result (Nisan, [8]):

Corollary A R-valuation v ∈ V(R) has a v-basis iff v ∈
SV(R).

Let now consider an ARA system in which all bidders’
R-valuations are superadditive. Each bidder i ∈ I sends
to the auctioneer its vi-basis Bi. The aggregate R-valuation
va can be represented by a va-basis Ba, which is obtained
by merging the individual basis Bi in a very simply way:
Ba = ∪i∈IBi and if B ∈ Ba then va(B) = max{vi(B)|i ∈
I and B ∈ Bi}.

Indeed, by theorem 1, we have va(A) =
maxB⊆A[va(B) + va(A − B)], for all A ⊆ R. If
O = (O1, . . . , On) is a maximum A-allocation, then
va(A) =

∑
i∈I vi(Oi). If vi(Oi) > 0, then it is not difficult

to see that vi(Oi) = va(Oi) ≥ vj(Oi) for all j ∈ I and
va(A) = va(Oi)+

∑
j∈I−{i} vj(Oj) = va(Oi)+va(A−Oi).

Furthermore, since Bi is a vi-basis there is Bi ∈ Bi such
that vi(Oi) = vi(Bi) + vi(Oi − Bi), vi(Oi) = va(Bi) and,
moreover, va(A) = va(Bi) + va(A−Bi).

We obtained the following interesting representational the-
orem:

Theorem 2 If in an ARA system the bidder superadditive R-
valuations vi are represented using vi-basisBi for each i ∈ I ,
then the aggregate R-valuation va is represented by the va-
basis Ba = ∪i∈IBi, by taking va(B) = max{vi(B)|i ∈
I and B ∈ Bi}, for all B ∈ Ba.

We note here that Lemma 1 can be extended to ob-
tain a similar characterization of a subclass of additive R-
valuations.

Let us consider SUPV(R), the set of all supermodular R-
valuations, that is SUPV(R) = {v ∈ V(R)| v(B1 ∪ B2) ≥
v(B1) + v(B2)− v(B1 ∩B2) for all B1, B2 ⊆ R}.

Clearly, SUPV(R) ⊂ SV(R).
Also, we restrict the set of OR-valuations, by consider-

ing strongly OR-valuations (sOR-valuations): V sOR(R) =
{v ∈ V(r)| v(B) = maxA1,A2⊆B [v(A1) + v(A2) − v(A1 ∩
A2)] for all B ⊆ R}.

Lemma 2 SUPV(R) = V sOR(R).
Proof. If v ∈ SUPV(R), then for each B ⊆ R and A1, A2 ⊆ B

we have v(B) ≥ v(A1 ∪ A2) ≥ v(A1) + v(A2) − v(A1 ∩ A2),
therefore v(B) ≥ maxA1,A2⊆B [v(A1) + v(A2) − v(A1 ∩ A2].
Since, for A1 = B and A2 = ∅, we have v(B) = v(B) + v(∅) −
v(B ∩ ∅), it follows that v(B) = maxA1,A2⊆B [v(A1) + v(A2)−
v(A1 ∩ A2], that is v ∈ V sOR(R). Conversely, let v ∈ V sOR(R).
If B1, B2 ⊆ R, then v(B1 ∪ B2) = maxA1,A2⊆B1∪B2 [v(A1) +
v(A2) − v(A1 ∩ A2)] ≥ v(B1) + v(B2) − v(B1 ∩ B2), that is,
v ∈ SUPV(R).2

As above, we have

Theorem 3 If in an ARA system all bidders’ R-valuations
are supermodular, then the aggregate R-valuation va satisfies
va(B) = maxA1,A2⊆B [v(A1) + v(A2)− v(A1 ∩A2)]
for all B ⊆ R.

4 Syntax
The proposed language is based on the following two novel
ideas: (1) The use of generalized network flows to represent
the bids; and (2) The interpretation of the WD as an adequate
aggregation of individual preferences.

In the new language, each bidder submits to the arbitra-
tor a generalized flow network representing its bids. We call

such a network flow NETBID and it will represent the val-
uation of the bidder. More precisely, if the set of resources
is R = {r1, r2, . . . , rm}, then in the NETBID of each agent
there is a special node START connected to m nodes rj by
directed edges having capacity 1. An integer flow in NET-
BID will represent an assignment of resources to the agent by
considering the set of resources rj with flow value 1 on the
directed edge (START, rj). The node rj is an usual node,
that is, it satisfies the conservation law: the total (sum) of in-
coming flows equals the total flow of outcoming flows. In the
network there are also bundle nodes which do not satisfy the
conservation law, which are used to combine (via their inputs
flows) different goods in subset of goods. The combination is
conducted by the (integer) directed edges flows together with
appropriate lower and capacity bounds. For example, the ad-
ditive valuation, v(S) = |S| for each subset S of R can be
represented by the NETBID in Figure 5.

start

r 1

r 2

r i

r n

0,1

0,1

0,1

0,1

0,1

0,1

0,1

0,1

end

card

Figure 5: Additive valuation network

There is an important improvement over other existing
graph-oriented bidding languages namely the possibility that
a bundle node to represent an entire hypergraph having as
vertices the resource set R. Furthermore, the nodes values
are given by using labels on bundles nodes, which are posi-
tive real numbers or even procedural functions having as ar-
guments the values of the incoming flows. This has as conse-
quence a higher expressiveness of the bidding language.

Once the NETBID has been constructed, any maximum
value flow (in the sense described above) will represent the
valuation function of the agent. In particular cases it is not
difficult for a rational bidder to construct a NETBID repre-
senting his preferences. For example, the NETBID in Fig-
ure 6 expresses that the bidder is interested in a bundle con-
sisting in two or three resources of type E , together with the
resource M which adds 10 to the values sum of the particular
resources of type E:

start

E 1

E 3

E 5

E 4

E 2

M

0,1

0,1

0,1

0,1

0,1

0,1

end

+10

2,3

1,1

1

2

3

4

5

sum

Figure 6: Tbbl valuation network

An important extension of our flows is that if the flow is
null on some particular arc then it is not necessary that the
lower bounds and capacity constraint to be verified.

Formally a NETBID can be defined as follows.

Definition 1 A R-NETBID is a tuple
N = (D,START, END, c, l, λ):

1. D = (V, E) is an acyclic digraph with two distin-
guished nodes START, END ∈ V ; the other nodes, V −
{START, END}, are partitioned R ∪ B ∪ I: R is the set
of resources nodes, B is the set of bundles nodes and
I is the set of interior nodes. There is a directed edge
(START , r) ∈ E for each r ∈ R, and at least a directed
edge (b, v) ∈ E for each b ∈ B. There are no other di-
rected edges entering in a resource node. The remaining
directed edges connect resources nodes to bundle or in-
terior nodes, interior nodes to bundle or interior nodes,
bundle nodes to interior nodes or END node.

2. c, l are nonnegative integer partial functions defined on
the set of directed edges of D; if (i, j) ∈ E and c is de-
fined on (i, j) then c((i, j)) ∈ Z+, denoted cij , is the ca-
pacity of directed edge (i, j); l((i, j)) ∈ Z+, if defined,
is the lower bound on the directed edge (i, j) and is de-
noted lij; if (i, j) has assigned a capacity and a lower
bound then lij ≤ cij . All directed edges (START , r) have
capacity 1 and the lower bound 0. No directed edge
(b,END) has capacity and lower bound.

3. λ is a labelling function on V − {START, END} which
assign to a vertex v a pair of rules (λ1(v), λ2(v)) (which
will be described in the next definitions).

Definition 2 LetN = (D,START, END, c, l, λ) be a R-NETBID. A
bidflow inN is a function f : E(D) → Z+ satisfying the following
properties (fij denotes f((i, j))):

1. For each directed edge (i, j) ∈ E: if fij > 0 and cij is
defined, then fij ≤ cij; if fij > 0 and lij is defined, then
fij ≥ lij .

2. If v ∈ V − {START, END} has λ1(v) = conservation then∑
(i,v)∈E(D) fiv =

∑
(v,i)∈E(D) fvi.

3. For each v ∈ B, fvu ∈ {0, 1}; there is exactly one vertex
u such that fvu = 1 and this happens if and only if for each
w ∈ R ∪ I , such that (w, v) ∈ E(D), we have fwv > 0.

The set of all bidflows in N is denoted by FN .
In order to simplify our presentation we have considered

here that for each v ∈ V − {START, END}, λ1(v) ∈
{conservation, bundle} giving rise to the flow rules de-
scribed above. In all the figures considered here, the function
λ1(v) is illustrated by the color of the node v: a gray node
is a bundle node and a white node is a conservation node. It
is possible to use the λ1(v) to have transformation internal
nodes as [3].

Definition 3 Let f be a bidflow in the R-NETBID N =
(D,START, END, c, l, λ). The value of f , val(f), is defined
as val(f) =

∑
b∈B val(b)fbEND, where val(v) is

val(v) =

{
0 if v = START

λ2(D−1
f (v)) if v 6= START, END.

D−1
f (v) denotes the set of all vertices w ∈ V (D) such that

(w, v) ∈ E(D) and fwv > 0. λ2(D−1
f (v)) is the rule (speci-

fied by the second label associated to vertex v) of computing
val(v) from the values of its predecessors which send flows
into v.

Definition 4 Let N = (D,START, END, c, l, λ) be a R-
NETBID. The R-valuation designated by N is the function
vN : P(R) → R+, where for each S ⊆ R,
vN (S) = max{val(f)|f ∈ FN , fSTART r = 0 ∀r ∈
R− S}.

By the above two definitions, the value associated by N to
a set S of resources is the maximum sum of the values of the
(disjoint) bundles which are contained in the set (assignment)
S. This is in concordance with the definition of a v-basis
given in section 3 for a superadditive valuation v. However,
the NETBID structure defined above is more flexible in or-
der to express any valuation. If the bidder desires to express
that at most k bundles from some set of bundle nodes must
be considered, then these nodes are connected to a new inte-
rior node and this last node linked to a new superbundle node
by a directed edge having as lower bound 1 and capacity k.
Clearly, any valuation represented in a XOR language can be
obtained in such way and any R-valuation can be represented.

The NETBIDS submitted by the bidders are merged by the
arbitrator in a common NETBID sharing only the nodes cor-
responding to START and R, and also a common END
node in which are projected the corresponding END nodes
of the individual NETBIDS. This common NETBID is a sym-
bolic representation of the aggregate valuation of the society.
We consider the following definition.
Definition 5 Let Ni = (Di,STARTi, ENDi, ci, li, λi) be the
R-NETBID of the agent i ∈ I . The aggregation R-NETBID
of {Ni|i ∈ I} is the R-NETBID Na = (Da,STARTa,

ENDa, ca, la, λa), where Da = (Va, Ea) has
Va = {STARTa, ENDa} ∪ R ∪ Ba ∪ Ia, Ba (respectively Ia)
being the disjoint union of all individual bundle node sets Bi

(respectively, internal nodes Ii);
Ea = {STARTa}×R∪Ba×{ENDa}∪∪i∈I(Ei−({STARTi}×
R ∪Bi × {ENDi})).
All directed edges (STARTa, r) have the capacity ca = 1 and
the lower bound la = 0. No directed edge (b,ENDa) has
capacity and lower bound. All the remainder capacities and
lower bounds are obtained from the corresponding values in
the individual NETBIDS. Similarly are constructed the label
rules λa(v). If a resource node ra has different λ2 values in
some local networks, then ra is connected to new copies of
it by directed edges with ca = 1 and la = 0, and this new
nodes are connected by directed edges corresponding to the
local NETBID.

This definition is illustrated in Figure 7.
From this construction, the following theorem can be proved
Theorem 4 If in a FRA system each bidder’s i R-valuation,
vi, is represented by R-NETBID Ni (i ∈ I), then the ag-
gregate R-valuation va is designated by the aggregate R-
NETBID Na, that is, va = vNa .

Proof. Let S ⊆ R. If If O = (O1, . . . , On) is a maxi-
mum S-allocation, that is, va(S) =

∑
i∈I vi(Oi), then for each

i ∈ {1, . . . , n} = I , vi(Oi) = vNi(Oi) can be obtained as val(fi),

start

r 1

r 2

r i

r n

0,1

0,1

0,1

0,1

0,1

0,1

0,1

0,1

end

NETBID 1

NETBID 2

rn’

NETBID n

Figure 7: Aggregate NETBID

for a maximum value bidflow fi in Ni. The flows (fi)i∈I induce a
flow fa in the NETBID Na, with val(fa) =

∑
i∈I vi(Oi), that

is val(fa) = va(S). Conversely, each maximum value bidflow
fa in Na can be decomposed into disjoint bidflows fi in the NET-
BID Ni, which must be maximum value bidflows. It follows that
val(fa) =

∑
i∈I val(fi) =

∑
i∈I vNi(S) = va(S).2

The maximum value of a bidflow in the NETBIDNa is the
social welfare value: the computation of this value implicitly
solves the WD problem (by a simple bookkeeping of agents
owning the winning bundles in the aggregate NETBID).

5 Discussion
Several bidding languages for CAs have previously been pro-
posed, arguably the most compelling of which allow bidders
to explicitly represent the logical structure of their valuation
over goods via standard logical operators. These are referred
as “logical bidding languages” (e.g. [8]). For instance, an OR
bid specifies a set of < bundle, price > pairs, where the bid-
der is willing to buy any number of the specified bundles for
their respectively specified prices. This is equivalent to spec-
ifying a set of single-bundle bids. An XOR bid specifies a
set of < bundle, price > pairs, where the bidder is willing
to pay for only one of the bundles for its corresponding price.
Nisan’s OR* language [8] provides constraints within an OR
bid via “phantom variables” (see also [6]). One explanation
of restricting operators to just OR and XOR in the logical
framework adopted by these languages, is given by the char-
acteristics of the accompanying WD-solving methodology
the language designers proposed. Boutilier and Holger [1]
made the next logical step with the LGB language, which al-
lows for arbitrarily nested levels combining goods and bun-
dles by the standard propositional logic operators: OR, XOR,
and AND. Day [5] introduces bid tables and bid matrices as
a bidding language more connected to the economic litera-
ture on restricted preferences and assignment games. Cavallo
and colleagues [2], introduce TBBL, a tree-based bidding lan-
guage that has several novel properties. In TBBL, valuations
are expressed in a tree structure, where internal nodes in the
tree correspond to operators for combining subsets of goods,
and individual goods are represented at the leaves. TBBL al-
lows agents to express preferences for both buying and selling
goods in the same tree. Thus, it is applicable to a combinato-
rial exchange (CE), a generalization of a CA that is important
in many multiagent systems. TBBL also provides an explicit
semantics for partial value information: a bidder can specify
an upper and lower bound on their true valuation, to be re-

fined during bidding. TBBL is a logical tree-based bidding
language for CEs. It is fully expressive, yet designed to be
as concise and structured as possible. Finally, Cerquides and
colleagues [3], explicitly addresses the case of bidding lan-
guages for CEs by extending the classical < bundle, price >
view of a bid to a < transformation, price > pair. This
work is extended by Giovanucci and colleagues [7], which
provide an interesting Petri Nets formalism to reason about
these CAs extensions.

In this paper we proposed a new visual framework for bid-
ding languages. We have motivated our approach by analyz-
ing adequate resource allocation systems (semantics) and in-
troduced our work in a theoretical manner. We also presented
a number of intuitive examples with the purpose of highlight-
ing the advantages of our work. We believe that when bidders
are able to express a wide variety of preferences to a sealed-
bid or proxy agent, NETBID flows allow to iteratively gener-
ate an economically satisfactory market outcome. Moreover,
the format for the representation of bidder preferences serves
to reinforce the global perspective on the implementation of
combinatorial auctions using a new computational technique
(CSP based) for determining auction outcomes. We are cur-
rently pursuing this line of work for practical evaluation.

References
[1] C. Boutilier and H. Holger. Bidding languages for combinatorial

auctions. In Proceedings of the 18th International Joint Confer-
ence on Artificial Intelligence (IJCAI)., pages 1211–1217, 2001.

[2] R. Cavallo, D. Parkes, A. Juda, A. Kirsch, A. Kulesza, S. La-
haie, B. Lubin, L. Michael, and J. Shneidman. Tbbl: A tree-
based bidding language for iterative combinatorial exchanges.
In International Joint Conferences on A.I.: Workshop on Ad-
vances in Preference Handling, 2005.

[3] J. Cerquides, U. Endriss, A. Giovannucci, and J. Rodriguez-
Aguilar. Bidding languages and winner determination for mixed
multi-unit combinatorial auctions. In International Joint Con-
ferences on A.I., pages 1221–1226, 2007.

[4] M. Croitoru, P. Lewis, and C. Croitoru. Bidflow: a new graph-
based bidding language for combinatorial auctions. In Proceed-
ings of the 18th European Conference on Artificial Intelligence,
2008. to appear.

[5] R. Day. Expressing Preferences with Price-Vector Agents in
Combinatorial Auctions. PhD thesis, University of Maryland,
College Park., 2004.

[6] Y. Fujisima, K. Leyton-Brown, and Y. Shoham. Taming the
computational complexity of combinatorial auctions. In Pro-
ceedings of the Sixteenth International Joint Conference on Ar-
tificial Intelligence, pages 548–553, 1999.

[7] A. Giovannucci, J. Rodriguez-Aguilar, J. Cerquides, and U. En-
driss. Winner determination for mixed multi-unit combinatorial
auctions via petri nets. In Proceedings of the 6th international
joint conference on Autonomous agents and multiagent systems.
ACM, 2007.

[8] N. Nisan. Bidding and allocations in combinatorial auctions. In
ACM Conference on Electronic Commerce (EC-2000), 2000.

[9] M. Rothkopf, A. Pekec, and R. Harstad. Computationally
manageable combinatorial auctions. Management Science,
44:1131–1147, 1998.

A New Approach to Influence Diagrams Evaluation

Radu Marinescu
Cork Constraint Computation Centre

University College Cork, Ireland
r.marinescu@4c.ucc.ie

Abstract

Influence diagrams are a widely used framework
for decision making under uncertainty. The paper
presents a new algorithm for maximizing the ex-
pected utility over a set of policies by traversing
an AND/OR search space associated with an in-
fluence diagram. AND/OR search spaces accom-
modate advanced algorithmic schemes for graphi-
cal models which can exploit the structure of the
problem. The algorithm also exploits the determin-
istic information encoded by the influence diagram
and avoids redundant computations for infeasible
decision choices. We demonstrate empirically the
effectiveness of the AND/OR search approach on
various benchmarks for influence diagrams.

1 Introduction
An influence diagram is a graphical model for decision mak-
ing under uncertainty. It is composed by a directed acyclic
graph where utility nodes are associated to profits and costs
of actions, chance nodes represent uncertainties and depen-
dencies in the domain and decision nodes represents actions
to be taken. Given an influence diagram, a policy (or strat-
egy) defines which decision to take at each node, given the
information available at that moment. Each policy has a cor-
responding expected utility and the most common task is to
find an optimal policy with maximum expected utility.

Over the past decades, several exact methods have been
proposed to solve influence diagrams using local computa-
tions [Tatman and Shachter, 1990; Shenoy, 1992; Jensenet
al., 1994; Dechter, 2000]. These methods adapted classi-
cal variable eliminationtechniques, which compute a type
of marginalization over a combination of local functions, in
order to handle the multiple types of information (probabili-
ties and utilities), marginalizations (sum and max) and com-
binations (× for probabilities,+ for utilities) involved in in-
fluence diagrams. Variable elimination based techniques are
known to exploit the conditional independencies encoded by
the influence diagram, however, they require time and space
exponential in theconstrained induced-widthof the diagram.

An alternative approach for evaluating influence diagrams
is based onconditioning(or search). These methods unfold
the influence diagram into adecision graph(or tree) in such

a way that an optimal solution graph corresponds to an opti-
mal policy of the influence diagram. In this case, the problem
of computing an optimal policy is reduced tosearchingfor
an optimal solution of the decision graph[Howard and Math-
eson, 1984; Pearl, 1988; Qi and Poole, 1995]. In contrast
with variable elimination, search algorithms are not sensitive
to the problem structure and do not accommodate informative
performance guarantees.

This situation has changed in the past few years with the
introduction of AND/OR search spaces for graphical models
as a paradigm for search algorithms that exploit the problem
structure[Dechter and Mateescu, 2007]. In this paper, we
extend the AND/OR search space to influence diagrams and
develop a depth-first search algorithm that explores a context-
minimal AND/OR graph for computing the optimal policy
that maximizes the expected utility. Traversing the AND/OR
graph allows search algorithms to achieve the same worst
case time and space performance guarantees as variable elim-
ination. It also allows a better exploitation of the determinis-
tic information encoded by the influence diagram, thus avoid-
ing redundant computations for impossible decision choices,
as well as a better trade-off between time and space. Our ex-
periments show that the new AND/OR search approach im-
proves significantly over state-of-the-art algorithms, insome
cases by two orders of magnitude of improved performance.

Following background on influence diagrams (Section 2),
Section 3 presents the AND/OR search space for influence
diagrams. In Section 4 we describe the AND/OR search al-
gorithm for computing the optimal policy. Section 5 is dedi-
cated to our empirical evaluation, while Section 6 concludes.

2 Background

2.1 Influence Diagrams
An influence diagram(ID) [Howard and Matheson, 1984] is
defined byM = 〈X,D,P,R〉, whereX = {X1, ...,Xn}
is a set ofchancevariables on multi-valued domains and
D = {D1, ...,Dm} (indices represent the order in which
decisions are made) is a set ofdecisionvariables. The dis-
crete domain of a decision variable denotes its possible setof
actions. Every chance variableXi ∈ X is associated with
a conditional probability table (CPT),Pi = P (Xi|pa(Xi)),
pa(Xi) ⊆ X ∪ D − {Xi}. Each decision variableDi ∈ D
has a parent setpa(Di) ⊆ X ∪ D − {Di} denoting the set

Figure 1: A simple influence diagram.

of variables that will be observed before decisionDi is made.
Thereward(or utility) functionsR = {r1, ..., rj} are defined
over subsets of variablesQ = {Q1, ..., Qj}, Qi ⊆ X ∪ D,
calledscopes. The directed acyclic graph of an ID contains
nodes for the chance variables (depicted as circles) and deci-
sion variables (depicted as squares) as well as for the reward
components (depicted as diamonds). For each chance or de-
cision node there is an arc directed from each of its parent
variables to it, and there is an arc directed from each variable
in the scope of a reward component towards its reward node.

Given a temporal order of the decisions, an influence di-
agram induces a partial order≺ on its variables. The set of
chance variables observed before the first decision is denoted
I0, the set of chance variables observed between decisions
Dk andDk+1 is denotedIk, and the set of chance variables
unobserved before the last decision is denotedIm. The partial
order≺ is: I0 ≺ D1 ≺ I1 ≺ ... ≺ Dm ≺ Im.

A decision rulefor a decision variableDi ∈ D is a map-
ping: δi : Ωpa(Di) → ΩDi

, whereΩS is the cross product of
the individual domains of the variables inS ⊆ X∪D. A pol-
icy is a list of decision rules∆ = (δ1, ..., δm) consisting of
one rule for each decision variable. Toevaluatean influence
diagram is to find anoptimal policymaximizing the expected
utility. As shown in[Jensenet al., 1994], this is equivalent to
computing optimal decision rules for the quantity:

∑

I0

max
D1

...
∑

Im−1

max
Dm

∑

Im

((
∏

Pi∈P

Pi) × (
∑

ri∈R

ri)) (1)

With every ID instance we can associate aprimal graph
which is obtained from the ID graph as follows. All the
parents of chance variables are connected, all the parents
of reward components are connected, and all the arrows are
dropped. Reward nodes and their incident arcs are deleted.

In addition, influence diagrams must be non forgetting in
the sense that a decision node and its parents be parents to
all subsequent decision nodes. The rational behind the no-
forgetting constraint is that information available now should
be available later if the decision-maker does not forget. In
this paper we do not enforce this restriction.

Example 1 Figure 1 shows an influence diagram with two
decisions and five chance variables. The utility function
is the sum of three local utilities defined on single vari-
ables (B, E and G, respectively). The partial order≺
is {A,C,D,B,E, F,G}. Evaluating the influence dia-
gram is to find the two optimal decision rulesδ∗A and
δ∗D for: maxA

∑
C maxD

∑
B,E,F,G P (B|A) · P (C|A,F) ·

P (E|D,F) · P (F) · P (G|D,F) · (r(B) + r(E) + r(G)).

2.2 Variable Elimination for Influence Diagrams
Variable elimination algorithms are characteristic of infer-
ence methods for evaluating influence diagrams. This ap-
proach reformulates Equation 1 using so-calledpotentials
[Jensenet al., 1994], in order to use one combination and one
marginalization operator. A potential on a set of variablesS is
a pairΨS = (λS , θS) of real-valued functions onΩS , where
λS is non-negative. The initial conditional probability tables
Pi ∈ P and utility functionsri ∈ R are transformed into po-
tentials(Pi, 0) and(1, ri), respectively. Acombinationoper-
ator⊗ and amarginalization(or elimination) operator↓ are
defined on these potentials, as follows: (a) thecombination
of ΨS1

= (λS1
, θS1

) andΨS2
= (λS2

, θS2
) is the potential

on S1 ∪ S2 given byΨS1
⊗ ΨS2

= (λS1
· λS2

, θS1
+ θS2

);
(b) themarginalization of ΨS = (λS , θS) ontoS1 ∈ X is

Ψ↓S1

S = (
∑

S−S1
λS ,

P

S−S1
λS ·θS

P

S−S1
λS

) (assuming that0/0 =

0), whereasΨ↓S1

S = (λS ,maxS1
θS) for S1 ∈ D.

Evaluating an influence diagram is then equivalent to
computingQ = ((...((Ψ↓Im

X∪D)↓Dm)↓Im−1 ...)↓D1)↓I0 , where
ΨX∪D = (⊗Pi∈P(Pi, 0)) ⊗ (⊗ri∈R(1, ri)) is the combi-
nation of the initial potentials, which can be done using
usual variable elimination algorithms[Jensenet al., 1994;
Dechter, 2000]. Since the alternation ofsum and max
marginalizations does not commute in general, it prevents
from eliminating variables in any order. Therefore, the com-
putation ofQ must be performed alongvalid elimination or-
deringsthat respect≺, namely the reverse of the elimination
order is some extension of≺ to a total order[Jensenet al.,
1994]. The performance of variable elimination algorithms
can be bounded as a function of the induced-width of the
induced graph[Dechter, 2000] that reflects the algorithm’s
execution. Given an ID with primal graphG, variable elim-
ination is time and spaceO(N · kw∗(o)), wherew∗(o) is the
induced-width obtained along a valid elimination orderingo
of G (i.e., constrained induced-width), k bounds the domain
size andN is the number of variables[Dechter, 2000].

3 AND/OR Search Spaces for IDs
In this section we specialize the AND/OR search space for
general graphical models to influence diagrams. AND/OR
search spaces accommodate advanced algorithmic schemes
for graphical models which can exploit the structure of the
model[Dechter and Mateescu, 2007]. Given an ID with pri-
mal graphG, its AND/OR search space is based on apseudo
treearrangement ofG.

DEFINITION 1 (pseudo tree)Let G = (V,E) be the primal
graph of an influence diagramM. A directed rooted tree
T = (V,E′) is apseudo treeif: (i) any arc ofG which is not
included inE′ is a back-arc, namely it connects a node to an
ancestor inT ; (ii) the ordering obtained from a depth-first
traversal ofT is an extension of≺ to a total order.

3.1 AND/OR Search Tree
Given an influence diagramM = 〈X,D,P,R〉, its primal
graphG and a pseudo treeT of G, the associated AND/OR
search tree, denotedST (M), has alternating levels of OR and

Figure 2: AND/OR search tree.

AND nodes. The OR nodes are labeledXi (resp.Di) and cor-
respond to the variables. The AND nodes are labeled〈Xi, xi〉
(resp. 〈Di, di〉) and correspond to the values in the domains
of the variables. The structure of the AND/OR search tree is
based on the underlying pseudo treeT . The root ofST (M)
is an OR node labeled with the root ofT . The children of
an OR nodeXi (resp. Di) are AND nodes labeled with as-
signments〈Xi, xi〉 (resp.〈Di, di〉). The children of an AND
node〈Xi, xi〉 (resp.〈Di, di〉) are OR nodes labeled with the
children of variableXi (resp. Di) in the pseudo treeT . A
noden ∈ ST (M) is called achance nodeif it is labeled by
Xi or 〈Xi, xi〉. If n is labeledDi or 〈Di, di〉, then it is called
adecision node.

Example 2 Consider again the influence diagram from Fig-
ure 1. Figure 2(a) shows a pseudo tree of its primal graph,
together with the back-arcs (dotted lines). Figure 2(b) shows
a portion the AND/OR search tree based on the pseudo tree.

3.2 AND/OR Search Graph
Often different nodes in the AND/OR search tree root iden-
tical subtrees, and correspond to identical subproblems. Any
two such nodes can be merged, reducing the size of the search
space and converting it into a graph. Some of these mergeable
nodes can be identified based oncontexts[Dechter and Ma-
teescu, 2007]. Given a pseudo treeT , the context of an OR
node labeledYi, whereYi ∈ X∪D, is defined as the set of an-
cestors ofYi (in T), ordered descendingly, that are connected
(in the induced graph) toYi or to descendants ofYi (in T).
It is easy to verify thatcontext(Yi) separates in the primal
graph (and also in the induced graph) the ancestors (inT) of
Yi, from Yi and its descendants (inT). Thecontext-minimal
AND/OR graph, CT (M), is obtained from the AND/OR tree
by merging all context mergeable OR nodes. Based on earlier
work [Dechter and Mateescu, 2007], it can be shown that the
size ofCT (M) relative to a pseudo treeT is O(N ·kw∗

T
(G)),

wherew∗T (G) is the induced-width ofG over a depth-first
traversal ofT (i.e., constrained induced-width).

Example 3 Figure 3 shows the context-minimal AND/OR
graph relative to the pseudo tree from Figure 2(a). The OR
contexts of the variables are indicated in square brackets next
to each node in the pseudo tree.

3.3 Arc Labeling
The arcs fromYi to 〈Yi, yi〉, whereYi ∈ X ∪ D, are la-
beled with the appropriate combined values of the functions

Figure 3: Context-minimal AND/OR search graph.

in P∪R that containYi and have their scopes fully assigned.
It is convenient to group the functions of the influence dia-
gram intobucketsrelative to its pseudo tree, as follows. The
bucketBT (Xi) of a chance variableXi ∈ X is the set of
probability and reward functions (ifXi has no decision vari-
ables as descendants inT) whose scopes containXi and
are included in the path from root toXi in T . The bucket
BT (Di) of a decision variableDi ∈ D is the set of probabil-
ity functions whose scopes containDi and are included in the
path from root toDi in T . If Di is the deepest decision vari-
able inT , thenBT (Di) contains also the set of all remaining
reward functions. In each bucket,Bλ

T (Yi) andBθ
T (Yi) denote

probabilistic and reward components, respectively.

DEFINITION 2 (weights) Given an AND/OR search graph
CT (M) of an influence diagramM, the weight of the arc
(n,m), whereYi labels n and 〈Yi, yi〉 labels m, is a pair
(wλ, wθ) wherewλ (or wλ(n,m)) is theproductof all the
probability functions inBλ

T (Yi) andwθ (or wθ(n,m)) is the
sumof all the utility functions inBθ

T (Yi). Formally, wλ =∏
λ∈Bλ

T
(Yi)

λ(asgn(πm)) andwλ = 1 if Bλ
T (Yi) = ∅, while

wθ =
∑

θ∈Bθ

T
(Yi)

θ(asgn(πm)) andwθ = 0 if Bθ
T (Yi) = ∅,

whereasgn(πm) denotes the assignment along the pathπm

from the root ofCT (M) to the AND nodem.

Example 4 Consider again the influence diagram from Fig-
ure 1 with partial order(A,C,D,BE,F,G). In this case
for example, the bucket ofE contains the probability function
P (E|D,F) and the reward functionr(E) and, therefore, the
weight(wλ, wθ) on the arcs from the OR nodeE to any of its
AND value assignments include only the instantiated func-
tions P (E|D,F) and r(E). Notice also that the buckets of
A, C and D do not contain any functions and therefore the
weights associated with the respective arcs are(1, 0).

3.4 Value Functions
With each noden in the weighted AND/OR graphCT (M),
we associate aprobability valueλ(n) and autility valueθ(n)
defined on the subspaces they root.

DEFINITION 3 (values of a chance node)The valuesλ(n)
and θ(n) of a chance noden ∈ CT (M) are defined recur-
sively as follows: (i) ifn labeled〈Xi, xi〉 is a terminal AND
node, thenλ(n) = 1 andθ(n) = 0; (ii) if n labeled〈Xi, xi〉
is an internal AND node, thenλ(n) =

∏
m∈succ(n) λ(m) and

θ(n) =
∑

m∈succ(n)
θ(m)
λ(m) ; (iii) if n labeledXi is an inter-

nal OR node thenλ(n) =
∑

m∈succ(n) wλ(n,m) · λ(m) and
θ(n) =

∑
m∈succ(n) wλ(n,m)·λ(n,m)·(wθ(n,m)+θ(m)),

wheresucc(n) are the children ofn in CT (M).

DEFINITION 4 (values of a decision node)The valuesλ(n)
and θ(n) of a decision noden are defined recursively, as
follows: (i) if n labeled〈Di, di〉 is a terminal AND node,
thenλ(n) = 1 and θ(n) = 0; (ii) if n labeled〈Di, di〉 is
an internal AND node, thenλ(n) =

∏
m∈succ(n) λ(m) and

θ(n) =
∑

m∈succ(n)
θ(m)
λ(m) ; (iii) if n labeledDi is an inter-

nal OR node, thenλ(n) = maxm∈succ(n)wλ(n,m) · λ(m)
andθ(n) = maxm∈succ(n)wλ(n,m) ·λ(n,m) · (wθ(n,m)+
θ(m)), wheresucc(n) are the children ofn in CT (M).

Clearly, theλ andθ-values of each node can be computed
recursively, from leaves to root. Ifn is the root node of
CT (M), thenθ(n) is the maximum expected utility of the
initial problem. Alternatively, the valueθ(n) can also be in-
terpreted as the expected utility (for chance nodes) or maxi-
mum expected utility (for decision nodes) of the conditioned
subproblem rooted atn.

3.5 Policy Graphs and Decision Rules
The context-minimal AND/OR graphCT (M) of an influ-
ence diagramM contains the set of all policies forM. A pol-
icy ∆ is represented inCT (M) by apolicy graph, which is an
AND/OR subgraph, denoted byG∆(M), such that: (a) it con-
tains the roots of CT (M); (b) if a non-terminalchanceOR
noden is inG∆(M) then all of its children are inG∆(M); (c)
if a non-terminaldecisionOR node is inG∆(M) then exactly
one of its children is inG∆(M); (d) if a non-terminal AND
node is inG∆(M) then all its children are inG∆(M). Given
a policy graphG∆(M) with appropriate weights on its arcs,
the valueθ(s) of the root nodes is the expected utility of the
policy ∆. Therefore, the optimal policy forM corresponds
to the policy graph with maximum expected utility.

Moreover, it is easy to see that for any decision variable
Di ∈ D its context(Di) contains the set of variables that
may affect directly the decision and therefore it defines the
scope of the decision ruleδi associated withDi. For illustra-
tion, consider the policy graph highlighted in Figure 3. The
two decision rulesδA andδD can be read from the graph, as
follows: δA: A = 0, δD: D = 1 if (A = 0, C = 0) and
D = 0 if (A = 0, C = 1), respectively.

Search algorithms that traverse the AND/OR graph can be
used to compute the optimal policy graph yielding the answer
to the problem as we will describe in the next section.

4 Depth-First AND/OR Graph Search
A depth-first search algorithm, called AO-ID, that traverses
the context-minimal AND/OR graph and computes the values
of each node in the search space is described in Algorithm 1.
The following notation is used:M is the problem with which
the procedure is called andT is the pseudo tree that drives the
AND/OR search graph. The algorithm assumes that variables
are selected according to the pseudo tree arrangement. IfM
is empty, then the result is trivially computed (line 1). Else,
AO-ID selects a variableYi (i.e., expands the OR noden la-
beledYi) and iterates over its values (line 10) to compute the

Algorithm 1 : AO-ID(M): Depth-first AND/OR search.
if M = ∅ then return (1, 0);1
else2

choosea variableYi ∈ Y;3
let n be an OR node labeledYi;4
{λ(n), θ(n)} ← ReadCache(Yi, context(Yi));5
if {λ(n), θ(n)} 6= NULL then return {λ(n), θ(n)};6
else7

if Yi is a decision nodethen {λ(n), θ(n)} ← (−∞,−∞);8
else ifYi is a chance nodethen {λ(n), θ(n)} ← (1, 0);9
foreachyi ∈ Domain(Yi) do10

let m be an AND node labeled〈Yi, yi〉;11
{λ(m), θ(m)} ← (1, 0);12
foreachk = 1..q do13
{λ, θ} ← AO-ID (Mk);14
λ(m)← λ(m) · λ;15
θ(m)← θ(m) + θ

λ
;16

if Yi is a decision nodethen17
λ(n)← max(λ(n), wλ(n, m) · λ(m));18
θ(n)← max(θ(n), wλ(n, m) · λ(m) · (wθ(n, m) + θ(m)));19

else ifYi is a chance nodethen20
λ(n)+ = wλ(n, m) · λ(m);21
θ(n)+ = wλ(n, m) · λ(m) · (wθ(n, m) + θ(m));22

WriteCache(Yi, context(Yi), {λ(n), θ(n)});23
return {λ(n), θ(n)}24

OR values{λ(n), θ(n)}. The algorithm first attempts to re-
trieve the results cached at the OR nodes (line 5). If a valid
cache entry is found for the current OR noden then the OR
values{λ(n), θ(n)} are updated (line 6) and the search con-
tinues with the next variable. The context-based caching uses
table representation. For each variableYi, acache tableis re-
served in memory for each possible assignment to its context.
During search, each table entry records theλ andθ-values be-
low the corresponding OR node (for decision nodes, the table
entry also records the argmax of the correspondingθ-value).

When AO-ID expands the AND nodem labeled〈Yi, yi〉
the problem is decomposed into a set ofq independent sub-
problems (Mk), one for each childYk of Yi in T . These
subproblems are solved sequentially (lines 13-16) and the so-
lutions accumulated by the AND values{λ(m), θ(m)} (lines
15-16). After trying all feasible values ofYi, the solution to
the subproblem belowYi remains in{λ(n), θ(n)} which are
first saved in cache (line 23) and then returned (line 24).

Extracting the Optimal Decision Rules Once AO-ID ter-
minates and returns the maximum expected utilityE , the op-
timal policy ∆∗ = (δ∗1 , ..., δ∗m) corresponding toE is ob-
tained by processing the decision variables from first to last,
as follows. LetDi be the current decision variable. Its opti-
mal decision rule,δ∗i , is a function defined oncontext(Di)
and maps every instantiation ofcontext(Di) that is con-
sistent with the previously computed optimal decision rules
(δ∗1 , ..., δ∗i−1), to the corresponding cache entry recorded by
AO-ID for Di (i.e., the optimal decisiondi for Di).

Exploiting Determinism Often the functions of an influ-
ence diagram may encode deterministic relationships (i.e.,
hard constraints). Some of these constraints are represented
by the zero-probability entries of the probability tables.In
this case, it is beneficial to exploit the computational power of
the constraints explicitly, via constraint propagation[Dechter
and Mateescu, 2007]. The approach we take for handling the

determinism is based on the known technique ofunit resolu-
tion for Boolean satisfiability (SAT) over a knowledge base
(KB) in the form of propositional clauses (CNF) representing
the constraints. One way for encoding constraints as a CNF
formula is thedirect encoding[Walsh, 2000].

The changes needed in Algorithm 1 are then as follows.
Upon expanding an AND node, its corresponding SAT in-
stantiation is asserted. If unit resolution leads to a contra-
diction, then the current AND node is marked as dead-end
and the search continues by expanding the next node on the
search stack. Whenever AO-ID backtracks to the previous
level, it also retracts any SAT instantiation recorded by unit
resolution. Notice that the algorithm is capable of pruningthe
domains of future variables in the current subproblem due to
conflicts detected during unit propagation. In summary,

THEOREM 1 (complexity) Given an ID with primal graphG
and a pseudo treeT of G, algorithm AO-ID guided byT is
sound and complete. Its time and space complexity isO(N ·
kw∗

T
(G)), wherew∗T (G) is the constrained induced-width.

5 Experiments

In this section, we compare empirically the AND/OR search
approach against state-of-the-art algorithms for exact evalua-
tion of influence diagrams. We consider two AND/OR search
algorithms that explore the context minimal AND/OR graph
and exploit the determinism that may be present in the influ-
ence diagram using constraint propagation. They are denoted
by AO-ID+SAT and AO-ID+BCP, respectively. AO-ID+BCP
is conservative and applies only unit resolution over the CNF
that encodes the determinism, at each node in the search
graph, whereas AO-ID+SAT is more aggressive and detects
inconsistency by running a full SAT solver. We used themin-
isat solver (http://minisat.se/) for both unit resolution as well
as full satisfiability. For reference, we also ran the AND/OR
graph search algorithm without constraint propagation, de-
noted by AO-ID. In all our experiments, the pseudo trees that
guided the AND/OR search algorithms were generated using
themin-fill heuristic[Dechter and Mateescu, 2007].

The competing approaches are: (i) the bucket elimination
(BE) algorithm[Dechter, 2000] and (ii) the policy evalua-
tion algorithm[Cooper, 1988] available from the Genie/Smile
system (http://genie.sis.pitt.edu). The latter converts the in-
fluence diagram into a Bayesian network and finds the ex-
pected utilities of each of the decision alternatives by per-
forming repeated exact inference in this network. We also
note that the variable elimination algorithm by[Jensenet
al., 1994] which is available in the commercial Hugin shell
(www.hugin.com) is equivalent with BE[Dechter, 2000].

Random Influence DiagramsWe generated a set of 150 ran-
dom influence diagrams based on the total number of nodes
(N) and the number of decision nodes (d). The configura-
tions chosen are shown in the first column of Table 1. We
have from 40 to 160 nodes, 10 decision nodes and 5 util-
ity functions (u), respectively. Each of the chance and de-
cision variables had two parents chosen randomly, ensuring
that the ID graph had no cycles and the decision nodes were
connected by a directed path in the graph. The fraction of

Random influence diagrams, deterministic ratio 0.50, 10 instances for each entry
size (N,d,u,k) (w*, h) BE Smile AO-ID AO-ID+SAT AO-ID+BCP
(40,10,5,2) (16, 26) 1.12(10) 24.32 (10) 12.65 (10) 30.47 (10) 7.88 (10)
(60,10,5,2) (22, 34) 57.68(10) 86.35 (6) 542.09 (10) 250.53 (10) 182.64 (10)
(80,10,5,2) (26, 43) 431.62 (5) 1295.51 (3) 3156.99 (6) 2294.49 (6) 1312.71(6)
(100,10,5,2) (31, 48) - 7196.51(1) - - -

Random influence diagrams, deterministic ratio 0.75, 10 instances for each entry
size (N,d,u,k) (w*, h) BE Smile AO-ID AO-ID+SAT AO-ID+BCP
(40,10,5,2) (16, 26) 0.61(10) 1.89 (10) 2.08 (10) 1.19 (10) 0.87 (10)
(60,10,5,2) (22, 34) 66.53 (10) 82.16 (8) 392.37 (10) 50.51 (10) 23.66(10)
(80,10,5,2) (26, 43) 358.85 (5) 74.52 (4) 2448.75 (10) 129.00(10) 164.06 (10)
(100,10,5,2) (31, 48) - 88.57 (2) - 1024.18 (10) 675.09(10)

Random influence diagrams, deterministic ratio 0.90, 10 instances for each entry
size (N,d,u,k) (w*, h) BE Smile AO-ID AO-ID+SAT AO-ID+BCP
(40,10,5,2) (17, 27) 0.65 (10) 1.67 (10) 1.11 (10) 0.10 (10) 0.03(10)
(60,10,5,2) (23, 34) 52.86 (10) 30.65 (9) 101.48 (10) 1.09 (10) 0.37(10)
(80,10,5,2) (27, 42) 480.99 (4) 73.46 (6) 1711.81 (10) 3.06 (10) 0.88(10)
(100,10,5,2) (31, 46) 516.59 (1) 26.03 (2) - 9.12 (10) 3.07(10)
(120,10,5,2) (36, 55) - - - 23.92 (10) 7.85(10)
(140,10,5,2) (39, 58) - 30.98 (1) - 97.46 (10) 30.64(10)
(160,10,5,2) (43, 66) - - - 140.26 (10) 62.68(10)

Table 1: Median CPU times in seconds on 10 examples of
random influence diagrams at each size. Time limit 2 hours
and 2GB of RAM. ’-’ stands for time-out or out-of-memory.

chance nodes that are assigned deterministic CPTs is a pa-
rameter, called thedeterministic ratio. The CPTs for these
nodes were randomly filled with 0 and 1; in the remaining
nodes, the CPTs were randomly filled using a uniform dis-
tribution. Each utility function was defined over 3 randomly
chosen variables (out ofN), and its corresponding table was
filled with integers drawn uniformly at random between 1 and
100, respectively. The domain size (k) of each variable is 2.

Each row in Table 1 contains the median CPU time in sec-
onds, as well as the median induced width (w∗) and depth of
the pseudo tree (h) obtained for 10 randomly generated dia-
grams with that configuration. A number in parenthesis (next
to the CPU time) indicates only that many instances out of 10
were solved within the time or memory limit. Also, the table
is organized into three horizontal blocks, each corresponding
to a specific value of the deterministic ratio. Not surprisingly,
BE and AO-ID were able to solve only the smallest instances
and they ran out of memory due to higher induced widths on
larger problems. On the other hand, AO-ID+SAT and AO-
ID+BCP, which exploit efficiently the determinism present in
the diagrams, offer the overall best performance on this do-
main. Both methods scaled to much larger problem instances
than their competitors, especially for the 0.90 deterministic
ratio. For example, on the(100, 10, 5, 2) configuration with
0.90 deterministic ratio, BE solved one instance (in 516.59
sec), while Smile solved 2 out of 10 instances (in 26.03 sec).
AO-ID+SAT and AO-ID+BCP solved all 10 instances of this
problem class using 9.12 and 3.07 seconds, respectively. We
also see that AO-ID+BCP was consistently faster than AO-
ID+SAT. This was due to lightweight constraint propagation
scheme used by the former. Notice that Smile is competi-
tive with AO-ID+BCP, however it solved about half as many
problem instances as AO-ID+BCP (72 versus 136).

Real-World Benchmarks These influence diagrams are
based on ground instances of real-world Bayesian networks
from the UCI Graphical Models repository (available at:
http://graphmod.ics.uci.edu/group/Repository). For our pur-
pose, we converted each of these networks into an influence
diagram by choosing at randomd out of N variables to act

Influence diagrams derived from real-world Bayesian networks, 10 instances for each entry, 2 hour time limit and 2GB of RAM
network (N, d, u, k) (w*, h) (literals, clauses) BE Smile AO-ID AO-ID+SAT AO-ID+BCP
90-10-1 (90, 10, 5, 2) (25, 48) (200, 482) 346.43 (8) 34.81 (10) 2262.48 (8) 20.75 (10) 6.47(10)
90-14-1 (186, 10, 5, 2) (32, 73) (392, 1032) - 35.38 (7) - 353.39 (10) 100.84(10)
90-16-1 (246, 10, 5, 2) (32, 95) (512, 1336) - 1292.21(5) - 3568.53 (5) 674.89(9)
blockmap05 01 (690, 10, 5, 2) (26, 89) (1400, 3591) 526.17 (10) 1223.95 (10) 2981.95 (4) 5.01 (10) 0.69(10)
blockmap05 02 (845, 10, 5, 2) (27, 85) (1710, 4448) 902.13 (2) 5111.03 (3) - 20.93 (10) 2.30(10)
blockmap05 03 (995, 10, 5, 2) (28, 120) (2010, 5272) 892.21 (1) 4027.92 (2) - 45.40 (10) 3.35(10)
hailfinder (51, 5, 5, 11) (10, 19) (223, 874) 1.15(10) 37.29 (10) 13.35 (10) 69.64 (8) 15.17 (10)
insurance (22, 5, 5, 5) (9, 17) (89, 367) 0.45(10) 6.56 (10) 9.68 (10) 32.09 (10) 8.51 (10)
mastermind03 08 03 (1205, 15, 10, 2) (25, 111) (2440, 6506) 440.22 (6) 6125.32 (1) 5233.73 (1) 967.17 (10) 40.96(10)
mastermind04 08 03 (1408, 15, 10, 2) (31, 124) (2836, 7628) - - - 3833.30 (3) 391.45(8)
pathfinder (106, 3, 5, 63) (6, 15) (448, 44656) 0.14(10) 1.72 (10) 1.60 (10) 1750.01 (10) 2.28 (10)
s386 (162, 10, 5, 2) (21, 44) (344, 1200) 34.70 (10) 4.27 (10) 21.02 (10) 26.82 (10) 3.38(10)
water (29, 3, 5, 4) (13, 22) (116, 3649) 123.36 (9) 26.36 (10) 99.50 (10) 43.08 (10) 11.13(10)

Table 2: Median CPU times in seconds on influence diagrams derived from real-world Bayesian networks.

as decisions and addingu ternary reward functions as in the
case of random influence diagrams. Table 2 displays the
results obtained on this dataset, where each row shows the
median CPU time over 10 instances that were generated for
each network by randomizing the choice of decision nodes.
In addition to the induced-width (w∗) and depth (h) of the
pseudo trees, we also record the median size of the CNF en-
coding of the zero-probability CPT entries (column 4). As
before, the numbers in parenthesis (next to the CPU time) in-
dicate how many instances out of 10 were solved. We see
that AO-ID+BCP is overall the best performing algorithm on
this dataset, winning on 10 out of the 13 benchmarks tested
and, in some cases, outperforming its competitors by almost
two orders of magnitude (e.g., blockmap). For example, on
the blockmap05 02 benchmark, BE solved 2 out of 10 in-
stances (in 902.13 sec), Smile solved 3 out of 10 instances (in
5111.03 sec), while AO-ID+SAT and AO-ID+BCP solved all
10 instances in 20.93 and 2.30 seconds, respectively. Notice
again that BE and Smile are competitive with AO-ID+BCP
only on the smallest problem instances (e.g., pathfinder). The
relatively worse performance of AO-ID+SAT/AO-ID+BCP
can be explained by the computational overhead of constraint
propagation which did not pay off in this case.

6 Conclusion
In this paper we extended the AND/OR search space for
graphical models to influence diagrams and presented a
depth-first AND/OR graph search algorithm for computing
the optimal policy of an influence diagram. We also aug-
mented the algorithm with constraint propagation in order to
exploit the determinism that may be present in the diagram.
The efficiency of our approach was demonstrated empirically
on various benchmarks for influence diagrams containing a
significant amount of determinism. Future work includes the
extension of the AND/OR search algorithm into a Branch-
and-Bound scheme in order to use domain-specific heuris-
tic information. We also plan to apply the AND/OR search
approach to Limited Memory Influence Diagrams (LIMIDs)
[Lauritzen and Nilsson, 2001] as well as to the more gen-
eral Plausibility-Feasibility-Utility (PFU) framework[Pralet
et al., 2007]. Finally, we can incorporate an adaptive caching
mechanism as suggested in[Mateescu and Dechter, 2005].
Related work: Our approach is closely related to the de-
cision graph search algorithms from[Qi and Poole, 1995].
Unlike Qi and Poole’s method, our approach requires the

influence diagram to respect the regularity constraint only,
does not require additional information wrt the decision al-
ternatives (i.e., framing functions), does not impose any re-
strictions on the utility functions and the arc weights of the
AND/OR graph do not involve complex computation (i.e.,
Bayesian inference) as they are derived solely from the ID’s
input functions via simple arithmetic computations.

References
[Cooper, 1988] G.F. Cooper. A method for using belief net-

works as influence diagrams. InUAI, pages 55–63, 1988.

[Dechter and Mateescu, 2007] R. Dechter and R. Mateescu.
AND/OR search spaces for graphical models.Artificial
Intelligence, 171(2-3):73–106, 2007.

[Dechter, 2000] R. Dechter. A new perspective on algo-
rithms for optimizing policies under uncertainty. InAIPS,
pages 72–81, 2000.

[Howard and Matheson, 1984] R. A. Howard and J. E. Math-
eson.Influence diagrams. The principles and applications
of Decision analyis. Menlo Park, CA, USA, 1984.

[Jensenet al., 1994] F. Jensen, F.V. Jensen, and S.L. Dittmer.
From influence diagrams to junction trees. InUAI, 1994.

[Lauritzen and Nilsson, 2001] S. Lauritzen and D. Nilsson.
Representing and solving decision problems with limited
information.Mngmnt. Science, 47(9):12351251, 2001.

[Mateescu and Dechter, 2005] R. Mateescu and R. Dechter.
AND/OR cutset conditioning. InIJCAI, 2005.

[Pearl, 1988] J. Pearl.Probabilistic Reasoning in Intelligent
Systems. Morgan Kaufmann, 1988.

[Praletet al., 2007] C. Pralet, G. Verfaillie, and T. Schiex.
An algebraic graphical model for decision with uncertain-
ties, feasibilities, and utilities.JAIR, 29(1):421–489, 2007.

[Qi and Poole, 1995] R. Qi and D. Poole. A new method for
influence diagram evaluation.Comp. Intell., 11(1), 1995.

[Shenoy, 1992] P. Shenoy. Valuation-based systems for
Bayesian decision analysis.OR, 40(3):463–484, 1992.

[Tatman and Shachter, 1990] J.A. Tatman and R.D.
Shachter. Dynamic programming and influence dia-
grams.IEEE Systems, Man, and Cybernetics, 1990.

[Walsh, 2000] T. Walsh. SAT vs CSP. InCP, 2000.

Using Fusion to Fill in the Gaps in Old Scientific Discoveries’ Notebooks

Bassel HABIB
LIP6, University of Paris 6

Paris, France
bassel.habib@lip6.fr

Claire LAUDY
THALES Research & Technology

Palaiseau, France
claire.laudy@thalesgroup.com

Jean-Gabriel GANASCIA
LIP6, University of Paris 6

Paris, France
jean-gabriel.ganascia@lip6.fr

Abstract
We are interested in using a fusion process to com-
plete information prior to the reasoning process
about scientific discoveries. In particular, using fu-
sion to complete the set of experiments used as the
source of information of the process that led Claude
Bernard to his discovery about the effects of cu-
rare. Our reconstruction of the discovery process
is based on his experiments as they are illustrated
in his notebooks. Our main problem is the lack of
some important information in his notebooks con-
taining descriptions of his set of experiments. In
order to fill in the gaps in his set of experiments, we
propose to use fusion between experiments. Prior
to fusion, we must ensure that the experiments are
compatible according to some similarity measures
and depending on the objectives of the fusion. The
paper presents our domain-independent approach
for similarity checking and fusion, including sim-
ilarity and fusion strategies.

1 Introduction
In previous papers, we studied the process of scientific dis-
covery [Ganascia and Habib, 2007] and [Habib and Ganascia,
2008]. The aim of our study is to construct computer pro-
grams that simulate, at a grosser or finer level of approxima-
tion, the path that have been followed by Claude Bernard on
his road to important discoveries including his discovery on
the effects of curare. Many works from Cognitive Science
and AI focus on modeling scientific reasoning. For instance,
the work on DENDRAL and Meta-DENDRAL [Buchanan et
al., 1969], on AM [Davis and Lenat, 1982], on MOLGEN
[Stefik, 1981], on BACON and related programs [Langley et
al., 1987] and on KEKADA [Kulkarni and Simon, 1988].

The focus of our research is to study discoveries that oc-
cur in experimental sciences. Since the research leading to
such discoveries sometimes spans months or years, it is not
practical to gather continuous protocols of the process. Thus,
we must seek other sources for insights into the processes:
for example, scientists’ recollections, published papers on the
discovery, and accounts from diaries and laboratory notes.

Our reconstruction of the process that led Claude Bernard
to the discovery of the effects of curare is based on his note-

books. In most experimental sciences it is customary for sci-
entists to record the details of their experimental activity on a
daily basis in a laboratory notebook or log. That is why logs
may contain reasons for carrying out an experiment, observa-
tions, hypotheses and conclusions drawn from the data.

The abduction [Harman, 1965] plays a crucial role in
Claude Bernard’s investigations by keeping or changing his
initial hypotheses according to the consequences observed
through his empirical experiments. We aim at the abduc-
tive reasoning about his scientific approach [Josephson and
Josephson, 1996] by constructing a causal network that links
observations obtained after an experiment with inferred hy-
potheses. Therefore, descriptions about experiments must be
complete and more precise. The main problem, with using
notebooks as the source of insight into the discovery process,
is the gaps in these notebooks. In the case of Bernard’s note-
books, gaps are due to the lack of information about hypothe-
ses inferred from observations. Generally, gaps may be filled
in by other sources such as: retrospective recollections of the
discoverer during his lifetime or even by his published papers.
But in the case of Claude Bernard and as we are interested in
detailed experiments as they are illustrated in his notebooks,
other sources are not of great use.

That is the reason we propose another way to fill in these
gaps by fusing experiments’ descriptions. To do so, we use
a generic domain-independent approach that we presented in
[Laudy and Ganascia, 2008]. The aim is to take two partial
experiments and build from them a more precise and more
complete experiment. But before being able to fuse two ex-
periments, we have to make sure that they are compatible
according to some similarity measures and regarding some
precise objectives. If so, the result of their fusion should
complete one of the experiment’s description with informa-
tion provided by the other one. Therefore, we will be able
to complete the set of Bernard’s experiments prior to our rea-
soning.

The paper is organized as follows. In Section 2, we provide
an overview of formal representation of Claude Bernard’s ex-
periments. In Section 3, we explain how we process the sim-
ilarity of two experiments and in Section 4, we emphasize on
the fusion aspects. Section 5 describes our results showing
the fusion of two selected experiments. Finally, the conclu-
sion summarizes our approach and describes our future direc-
tions.

2 Knowledge Representation
2.1 Epistemological studies on Claude Bernard’s

manuscripts
As previously introduced, the focus of our work is on Claude
Bernard’s discovery about the effects of curare. Our work is
based on data gathered from his notebooks and manuscripts
between 1845 and 1875. Since Claude Bernard’s manuscripts
contain descriptions of experiments in natural language, it
was necessary to abstract from these descriptions a number
of attributes (experimental criteria), which are rich enough to
reflect the complexity of the original descriptions, and suf-
ficiently representative of their variability. An attribute is
created if this potential attribute intervenes in a significant
proposition of available experiments.

Claude Bernard’s manuscripts have been, in a previous
study, the subject of an epistemological study, which consists
of several steps:

• The transcription of these manuscripts using a text edi-
tor. These manuscripts contain experiments using curare
or strychnine as a toxic substance;

• The sorting of this work in a chronological order;

• The formalization of an table in which Claude Bernard’s
experiments are annotated according to several experi-
mental criteria (attributes) such as : weight, age, dose,
animal, preparation/manipulation, point of insertion,
date, ideas of experiments, observations, hypotheses and
references.

2.2 Lack of important information in descriptions
of experiments

The identification of the main attributes allowed us to formal-
ize Bernard’s experiments. This is a preliminary step to the
simulation of these experiments in a virtual laboratory previ-
ously built [Habib and Ganascia, 2008]. Prior to the simula-
tion, Claude Bernard’s experiments are classified into several
sets of experiments. The classification of experiments is done
according to one precise criterion; for instance, the set of ex-
periments using dogs as experimental animals, or even the set
of experiments including some nerve manipulations, etc. This
classification is a methodological problem, because it consti-
tutes an important step in the process of empirical discovery
that concerns us, but it is not systematic, and even less, auto-
matic.

Since Claude Bernard does not write down all the details
about preparation, observations or even less about the inferred
hypotheses, some experiments are not complete comparing
to others in the same set of experiments. Hence comes the
idea to complete experiments’ descriptions by fusing them
with descriptions about other experiments from the same set,
which are compatible.

Fusion allows us, on the one hand, to reduce the number
of experiments within a set of experiments and thus, to re-
duce the number of possible simulations in a particular set
of experiments since each experiment may be the object of a
simulation. On the other hand, fusion allows to complete de-
scriptions about some experiments with information of a great

Figure 1: Type hierarchy for Bernard’s experiments

interest in our reasoning process. After the fusion step, in-
formation includes not only the complete set of observations
resulting from experiment but also the hypotheses inferred by
Claude Bernard.

2.3 Using conceptual graphs to represent
experiments

The Conceptual Graphs model was developed by JF Sowa
in [Sowa, 1984]. The model encompasses a formalism for
knowledge representation and integrates linguistical, psycho-
logical and philosophical aspects. It was conceived in order
to develop a logical system, able to represent natural language
in a simple manner and allowing deductions and inferences.

The conceptual graphs model is essentially composed of
an ontology (called support) and the graphs themselves. The
ontology defines the different types of concepts and relations
which are used in the conceptual graphs. To describe Claude
Bernard’s experiments using conceptual graphs, we first had
to define the support on which the description will be based.
Therefore, we used the ontology that Claude Bernard himself
defined during his work (see [Habib and Ganascia, 2008] for
more details). The support defines a set of type labels as well
as a partial order over the type labels and the support defines
the lattice of the conceptual types. The conceptual types are,
for instance, Experiment, Poison, Muscle, etc. Figure 1 de-
picts a subset of the support that we formalized in order to
represent Claude Bernard’s experiments.

Figure 2 depicts an example of an experiment description,
stored as a conceptual graph. The concepts are reprensented
in boxes whereas the relationships that exist between the dif-
ferent concepts and objects of the real world are represented
by the nodes in ovals. For instance, an Experiment has an
Animal (here the Dog named dog1), as patient.

3 Discrimination between the Experiments
Before to fuse two experiments, one has to determine whether
they are compatible or not. The compatibility of two experi-
ments depends on the objectives that we have when we want
to fuse them. For instance, sometimes Claude Bernard does
not write down all the observations of an experiment because
some of them were already observed during an earlier exper-
iment. In such cases, we aim at fusing experiments that have
almost similar preparation phases in order to complete the
observations. Then the similarity of experiments will be pro-
cessed regarding the preparation phase. For instance, we will
emphasize on similar animals and similar poison. On the con-
trary, if our aim was to aggregate all the different effects of

Figure 2: Example of a first experiment

curare, we would process similarity only regarding the poison
with no restriction on the animal, point of insertion, observa-
tions, etc.

Regarding the whole process of grouping similar exper-
iments and fusing them, the discrimination phase can be
viewed as a classification. It also reminds of the issue of
conceptual clustering. Conceptual clustering was defined by
Michalki and Stepp in [Michalski and Stepp, 1983]. Given
a set of objects associated with their descriptions, conceptual
clustering allows to define a set of classes that group these
objects together.

To determine whether two experiments are sufficiently
similar to be fused, we use a similarity measure. Several sim-
ilarity measures between conceptual graphs have been pro-
posed. Some, as [Sorlin et al., 2003] rely on the similarity of
the structure and values of the two graphs taken as a whole.
Other works (e.g. [Gandon et al., 2008]) concern the seman-
tic distance between conceptual types. Studies were also per-
formed regarding the issues of classifying a set of conceptual
graphs ([de Chalendar et al., 2000] for instance). This is also
a way to find the conceptual graphs which are, more or less,
similar.

Our approach relies on combining these different ap-
proaches. Relying on [de Chalendar et al., 2000] and [Gan-
don et al., 2008], we define a similarity measure of two con-
cept nodes that depends on the distance between their concep-
tual types, the distance between their individual values and
the similarity of their immediate neighborhood. The similar-
ity between two graphs is then computed, regarding the best
matching of their nodes, as [Sorlin et al., 2003] does it.

One of our goals is to compare two experiments using only
local comparisons that are “weak” in terms of processing
time. Therefore, we propose to compare the different pairs
of concepts of the two graphs. The global graph structure of
the experiments’ descriptions will be handle during the fusion
process.

In the next sections, we use the following notations:

• C denotes the set of concepts with conceptual types de-
fined on a support S;

• c1 ∈ C and c2 ∈ C are two concept nodes;

• c1 = [T1 : v1] and c2 = [T2 : v2] with T1 ∈ S, T2 ∈ S,
the two conceptual types of c1 and c2.

3.1 Similarity between two concepts
To measure the similarity between two concepts, we propose
to compare their conceptual types, their individual markers as

well as their neighborhood. The study of the neighborhood
gives clue about the context in which a concept is used.

The similarity measure sim : E×E → [0, 1] is expressed
as follows:
sim(c1, c2) = p1(T1, T2)simType(T1, T2) ∗(

p2(T1,T2)simRef (v1,v2)+p3simrel(c1,c2)−p4dissRel(c1,c2)
p2+p3

)
• p1, p2, p3 and p4 are weights that allow to give more

importance to some elements with regard to the others;
• simType, simRef , simRelComm and dissRel are lo-

cal similarity/dissimilarity measures that we detail here-
after.

Similarity between conceptual types: simType

The similarity measure, between two conceptual types, de-
pends on their distance in the lattice of concepts. Among the
different studies that exist, concerning this problem, we are
particularly interested in the distance between types proposed
by [Gandon et al., 2008].

Our objective is to fuse the different experiments in order
to make them more precise. Therefore, unlike most of the ex-
isting measures that use the nearest common parent of the two
types to be compared as key feature, we will use the nearest
common subtype as key type in our measure.

The distance between two types is defined as follows:
∀(t1, t2) ∈ S × S

dist(t1, t2) = min{t≤t1,t≤t2}

(
lS(t1, t) + lS(t2, t)

)
with ∀(t, t′) ∈ S × S, t ≤ t′

lS(t, t′) =
∑

ti∈〈t,t′〉,ti 6=t

[
1

2prof(ti)

]
where 〈t, t′〉 is the shortest path between t and t′ and prof(t)
is the depth of t in the support.

Given this distance, the similarity between t1 and t2 is
given by 1− dist(t1, t2).

Similarity between two referents: simRef

The similarity between the values of two concepts depends
on the conceptual types of the concepts and the application
domain.

A lot of distances exist on different types of data and are
specific to different application domains. The similarity mea-
sure between two referents can be based on any of them.

Similarity regarding neighborhoods: simRel

In order to compare the context in which the two concepts
are expressed, we propose to compare their immediate neigh-
borhood. Intuitively, the similarity measure of two concepts
given the common neighboring relations is processed by mea-
suring the proportion of relations linked to the concepts and
that have the same conceptual type:

simRelComm(c1, c2) =
2 ∗ nbRelComm(c1, c2)
nbRel(c1) + nbRel(c2)

with nbRelComm(c1, c2): the number of relations shared by
c1 and c2, regarding their conceptual types;
and nbRel(c): the total number of relations linked to the con-
cept c.

Dissimilarity regarding neighborhoods: dissRel

As for common neighboring relations, we compare the neigh-
boring relations of two concepts that are different:

dissRel(c1, c2) =
nbRelDiff (c1, c2)

nbRel(c1) + nbRel(c2)
nbRelDiff (c1, c2): the number of relations that are not

shared between c1 and c2;
nbRel(c): the total number of relations linked to the con-

cept c.

3.2 Similarity between two experiments
The similarity of two experiments depends on the different
matchings that exist between the concepts of the two graphs.
It is processed given the similarity of the matching concepts.

Given a matching of the concepts of the two graphs G1

and G2, the similarity between G1 and G2 is computed as
follows:

simmatch(G1, G2) =

∑
(c1,c2)∈app simconcept(c1, c2)

min(|C1|, |C2|)
• C1 (resp. C2) is the set of concepts of G1 (resp. G2) and
|C1| (resp. |C2|) is the number of concepts in the graph
G1 (resp. G2);
• c1 ∈ C1 (resp. c2 ∈ C2) is a concept of G1 (resp. G2).

The global similarity measure between two graphs G1 and
G2 is then computed by maximizing the similarity of the dif-
ferent possible matchings:

sim(G1, G2) = max
∀match⊆V1,V2

simmatch(G1, G2)

4 Fusion of Claude Bernard’s Experiments
As a second step of the conceptual clustering, the naming al-
lows to define a description of each class. The fusion phase
can be viewed as a particular type of naming where the fused
experiment description describes the cluster of experiments.

4.1 Maximal join as fusion operator
In [Laudy et al., 2007], we presented a framework for high-
level information fusion based on the use of the conceptual
graphs formalism. Our approach is generic. In [Laudy and
Ganascia, 2008], We used conceptual graphs to represent TV
program descriptions. The descriptions were coming from
different sources of information and were related to the same
TV program. In this work, we represent Claude Bernard’s
experiment descriptions. The descriptions that we want to
fuse relate to quite similar but different experiments. Further-
more, they are all coming from the same source of informa-
tion: Claude Bernard’s notebooks.

The fusion process relies on the conceptual graphs model.
We use the maximal join operation defined by Sowa in order
to fuse information. The maximal join operation allows to
fuse two compatible sub graphs of two conceptual graphs.

The maximal join operation copies all the information that
is present in the initial graphs in the new one. Intuitively,
when one wants to join two graphs maximally, the first step is

to look for two compatible sub graphs in the two initial ones.
The initial graphs are then joined, according to the compatible
sub graphs. Furthermore, two concepts are compatible if:
• their conceptual types share a common sub-type differ-

ent from ⊥;
• their referents conform their most general subtype; and
• either one of their referent is undefined, or their referents

are identical.
The maximal join keeps the most specific elements of two

compatible sub graphs and complete one graph according to
the information contained in the other one. Furthermore, it
gives several results, which depict the different ways of com-
bining the information, that is to say, the different fusion hy-
potheses. An example is given in section 5.

4.2 Using fusion strategies to handle noisy data
The maximal join is a fusion operator. However, as stated in
[Laudy and Ganascia, 2008], using only the maximal join is
not sufficient in order to fuse information coming from real
systems. Real data is noisy and knowledge about the domain
is often needed in order to fuse two different but compati-
ble values into a single one. Observations such as a person
named ”J. Smith” and a one named ”Mr. John Smith” are not
equals, but our background knowledge let us believe that the
two observations rely to the same person.

It is necessary to extend the notion of compatibility be-
tween different concepts in the maximal join operation by in-
troducing domain knowledge. The notion of compatibility
between concepts is extended from compatibility of concep-
tual types only to compatibility of individual markers as well.
We introduced the notion of fusion strategies. They are rules
encoding domain knowledge and fusion heuristics. The def-
inition of the fusion strategies is divided into two parts: the
definition of the compatibility conditions between two con-
cepts and the process of the fused value of two concepts.

Let S be a lattice of conceptual types and l be a set of
individual markers. E is the set of concept nodes defined on
S × l, G1 and G2 are two conceptual graphs defined on S
and c1 and c2 are concepts defined on E such that c1 ∈ G1

and c2 ∈ G2. A fusion strategy strategyfusion is defined as
follows:

strategyfusion = if fcomp(c1, c2)
then ffusion(c1, c2)
else {c1, c2}

where fcomp : E × E → {true, false} is a function testing
the compatibility of two concept nodes,
and ffusion : E × E → E is a fusion function upon the
concepts nodes of the graphs.

The fusion strategies applied on two concept nodes result
either in a fused concept node if the initial nodes are compati-
ble, or in the initial nodes themselves if they are incompatible.

5 Case Study
5.1 Context
Within the context of understanding the process of scientific
discovery followed by Claude Bernard, the goal here, as said

Figure 3: Example of a second experiment

before, is to reduce the number of experiments and, therefore,
to reduce the number of simulations of his experiments.

Therefore, our first step consisted of the classification of
the experiments into several classes (sets of experiments).

We will take here the example of the class of experiments
that Claude Bernard achieved on dogs, using curare as the
toxic substance. This set of experiments includes ten experi-
ments. The selection of this set of experiments on dogs, using
curare, can be processed semi-automatically using our simi-
larity measure combined with a set of weights that allows to
have high scores of similarity only in case two experiments
share Dog as the same sub-type of Animal and the same Poi-
son name. After that, one has only to check the poison used
in each class of experiments.

Once the selection of the set of experiments is done, we use
our similarity measures and process the similarity between
the experiments. In our example, the similarity measures in-
clude the given animal (a dog), manipulations (introduction
of a toxic substance), the poison used (the curare) and the
observations (whether the curare affects the animal or not).
Including the observations in the similarity measure allows
to ensure that we will aggregate the hypotheses that relate to
experiments that have the same conclusions or observations.
As a result of the similarity step, we could devide our set of
experiments into two subsets, the first one set1 (see Table 1)
contains the experiments for which the curare affects the ex-
perimental animal (six experiments including experiments 2
and 4 for which we will show the result of the fusion). The
second subset set2 (see Table 1) is the one for which the cu-
rare has no effect (four experiments).

The last step is to apply fusion strategies on the experiment
descriptions within the same subset of experiments. The fu-
sion will allow, as said before, to aggregate all the hypotheses
given by Claude Bernard, regarding a same subset of exper-
iments. Therefore, after the fusion of the experiments, only
one simulation will be sufficient to validate or invalidate sev-
eral hypotheses.

5.2 From natural language descriptions to
conceptual graphs

As said before, the preliminary step of the process when we
want to simulate Bernard’s reasoning is to formalize his ex-
periments. This is part of the work realized by the epistemo-
logical study and that we completed in order to transform the
table into a set of conceptual graphs. In the following sec-
tions, we illustrate our approach on a concrete example that
uses two of Bernard’s experiments on curare as follows:

Figure 4: Fusion of two experiment’s descriptions

“Experiment 2 : Small dog, 12 days-old. Arrow of curare
lodged in the tissue of the thigh. 3 minutes later, death
without screams or convulsions. Immediately after death,
reflex movements are abolished. The heart beats a few more
moments. At the autopsy, nothing can explain the death.”

“Experiment 4 : Small dog, 12 days-old. Dissolution of
five centigrams of curare in water and injected by the anus in
the stomach. 5 minutes later, death with the same symptoms
as in the experiment 2. Immediately after death, we can not
produce any reflex movement. The nerves in the legs being
naked, cut or pinched do not give any contraction in the
muscles. At the autopsy, nothing can explain the death.”

The corresponding conceptual graphs are shown in Figures
2 and 3. For a matter of readability the figures only depict a
subset of the experiment descriptions.

5.3 Similarity between experiments
The aim is to complete the observations and/or the details of
the preparation of the animal for the experiments. Therefore,
we will emphasize on the similarity of the preparation phase,
and particularly on the type of animal, the poison used and
the manipulation that is done. We use a set of weights for
p1, p2, p3 and p4 found experimentally by analysing a subset
of the experiment descrptions. Intuitively, experiments that
share the same Observation are very close and add up a high
score of similarity. Experiments that shre the same Animal,
Manipulation, Poison ... add up a medium score of similar-
ity. Furthermore, as we aim at completing the experiment
descriptions, we decided not to take into account the neigh-
bourhood of each concept.

The similarity between 2 concepts referents is processed
aaccording to the Leventshtein edit distance [Levenshtein,
1966] if the referents are strings and according to a normal-
ized distance between numerical values otherwise.

We compared the experiments belonging to the different
sets. Table 1 shows the results of the similarity rate between
the experiment 2 and the other experiments from the same set
of experiments using dogs.

5.4 Completing descriptions of experiments
Figures 2 and 3 show the description of two experiments that
are very similar regarding our similarity measure. We used
our fusion platform to fuse them. Figure 4 shows the result
of the fusion process. The experiment descriptions have been
completed regarding the observations that were made during
the second experiment.

On the one hand, our process allows to fuse experiments
regarding the observations. Thanks to that, the implicit obser-
vations that Claude Bernard didn’t rewrite from one experi-
ment to an other one are used in the simulation. On the other
hand, we can also fuse the experiment descriptions regard-
ing the hypothesis. Then, one simulation will be sufficient to
validate or invalidate several hypothesis. As the simulation
phase is very time consuming, it saves a considerable amount
of time within the global study of scientific discovery.

Table 1: The similarity rate of the experiment exp2.
set1 exp2 exp4 exp7 exp9 exp20 exp21
exp2 1 0.82 0.83 0.91 0.97 0.895
set2 exp5 exp6 exp8 exp22
exp2 0.62 0.62 0.65 0.62

6 Conclusion & Perspectives
In this paper, we showed how we used similarity and fusion
strategies to fill in the gaps in Claude Bernard’s notebooks.
Since he doesn’t always write down every detail of prepara-
tion, observations or even inferred hypotheses, the fusing of
his experiments helps us to complete them, which is of great
interest for the reasoning on his discovery process.

However, to simulate the reasoning about Bernard’s scien-
tific approach, especially, in his reasoning about the process
of the discovery of the effects of curare, we would like to
add a generalization feature among the different experiments.
From several almost similar experiments, Claude Bernard
was able to generalize some aspects such as the properties of
curare. For instance, from two experiments where the mode
of introduction of curare is different, but where the observa-
tions are similar, one would like to automatically deduce that
the introduction mode doesn’t affect the curare properties.

The studies performed by [de Chalendar et al., 2000] for
instance, aim at classifying conceptual graphs. After con-
structing classes of conceptual graphs, one of the goals is to
find a single conceptual graph to represent each set of clas-
sified graphs. This graph is more general than each graph in
the class it describes. We will rely on these works in order
to propose a method for generalizing knowledge from a set
of experiments. We aim at mixing generalization and fusion
processes. In do so, we will not only deduce general knowl-
edge from a set of different related experiments, but also take
advantage of fusion to complete the generalization of several
partial experiment descriptions.

References
[Buchanan et al., 1969] B. G. Buchanan, E. A. Sutherland,

and E. A. Feigenbaum. Heuristic dendral: A program
for generating explanatory processes in organic chemistry.
Machine Intelligence 4, 1969.

[Davis and Lenat, 1982] R. Davis and D. Lenat. AM: Dis-
covery in Mathematics as Heuristic Search in Knowledge
System in Artificial Intelligence, Part one. McGraw-Hill,
New-York, 1982.

[de Chalendar et al., 2000] G. de Chalendar, B. Grau, and
O. Ferret. Conceptual graphs generalization. In RFIA
2000. 12ème Congrés Francophone AFRIT-AFIA, Paris,
2000.

[Ganascia and Habib, 2007] J-G. Ganascia and B. Habib. An
attempt to rebuild c. bernard’s scientific steps. The Tenth
International Conference on Discovery Science, 2007.

[Gandon et al., 2008] F. Gandon, O. Corby, I. Diop, and
M. Lo. Distances sémantiques dans des applications de
gestion d’information utilisant le web sémantique. In Se-
mantic similarity workshop, EGC 2008, Sophia Antipolis,
France, 2008.

[Habib and Ganascia, 2008] B. Habib and J-G. Ganascia.
Using ai to reconstruct claude bernard’s empirical inves-
tigations. In The 2008 International Conference on Arti-
ficial Intelligence (ICAI’08), pages 496–501, Las Vegas,
USA, July 2008.

[Harman, 1965] G. H. Harman. The inference to the best ex-
planation. pages 88–95, 1965. The Philosophical Review.

[Josephson and Josephson, 1996] J. Josephson and
S. Josephson. Abductive inference: computation,
philosophy, technology. 1996. Cambridge University
Press.

[Kulkarni and Simon, 1988] D. Kulkarni and H. A. Simon.
The processes of scientific discovery: The strategy of ex-
perimentation. Cognitive Science, 12:139–175, 1988.

[Langley et al., 1987] P. Langley, H. A. Simon, G. L. Brad-
shaw, and J. M. Zytkow. Scientific discovery: Compu-
tational explorations of the creative processes. The MIT
Press, 1987.

[Laudy and Ganascia, 2008] C. Laudy and J-G. Ganascia.
Information fusion in a tv program recommendation sys-
tem. In 11th International Conference on Information Fu-
sion, pages 1455–1462, Cologne, Germany, July 2008.

[Laudy et al., 2007] C. Laudy, J-G. Ganascia, and C. Se-
dogbo. High-level fusion based on conceptual graphs.
In 10th International Conference on Information Fusion,
Québec, Canada, July 2007.

[Levenshtein, 1966] Vladimir I. Levenshtein. Binary codes
capable of correcting deletions, insertions, and reversals.
Technical Report 8, 1966.

[Michalski and Stepp, 1983] R. S. Michalski and R. E.
Stepp. Learning from observation: Conceptual clustering.
Machine Learning: An Artificial Intelligence Approach,
pages 331–363, 1983.

[Sorlin et al., 2003] S. Sorlin, P-A Champin, and C. Sol-
non. Mesurer la similarité de graphes étiquetés. In
9èmes Journées Nationales sur la résolution pratique de
problèmes NP-Complets, pages 325–339, 2003.

[Sowa, 1984] J. F. Sowa. Conceptual Structures. Informa-
tion Processing in Mind and Machine. Addison-Wesley,
Reading, MA, 1984.

[Stefik, 1981] M. Stefik. Planning with constraints (molgen
part 1). Artificial Intelligence, 16:2:111–140, 1981.

	cover.pdf
	second.pdf
	third.pdf
	b1.pdf
	GKR2009-laudy.pdf
	b2.pdf
	GKR_portinale.pdf
	b3.pdf
	gkrijcai2009_schultze.pdf
	b4.pdf
	gkr-joslyn.pdf
	b5.pdf
	gkr-rosenbloom.pdf
	b6.pdf
	ijcai09-croitoru.pdf
	Introduction
	Motivation
	Semantics
	Syntax
	Discussion

	b7.pdf
	ijcai09-gkr-marinescu.pdf
	b8.pdf
	IJCAI2009-habib.pdf

