M. A. Marsan, G. Balbo, G. Conte, S. Donatelli, and G. Franceschinis, Modelling with Generalized Stochastic Petri Nets, ACM SIGMETRICS Performance Evaluation Review, vol.26, issue.2, 1995.
DOI : 10.1145/288197.581193

X. Boyen and D. Koller, Tractable inference for complex stochastic processes, Proceedings UAI 1988, pp.33-42, 1998.

J. Bechta-dugan, S. J. Bavuso, and M. A. Boyd, Dynamic fault-tree models for fault-tolerant computer systems, IEEE Transactions on Reliability, vol.41, issue.3, pp.363-377, 1992.
DOI : 10.1109/24.159800

T. El-hay, N. Friedman, and R. Kupferman, Gibbs sampling in factorized continuous time Markov processes, Proc. 24rd UAI'08, 2008.

Y. Fan and C. Shelton, Sampling for approximate inference in continuous time Bayesian networks, Proc. 10th Int. Symp. on AI and Mathematics, 2008.

K. Gopalratnam, H. Kautz, and D. S. Weld, Extending continuous time Bayesian networks, Proc. AAAI'05, pp.981-986, 2005.

U. Kjaerulff, dHugin: a computational system for dynamic time-sliced Bayesian networks, International Journal of Forecasting, vol.11, issue.1, pp.89-101, 1995.
DOI : 10.1016/0169-2070(94)02003-8

A. S. Miner, Decision diagrams for the exact solution of Markov models, Proceedings in Applied Mathematics and Mechanics (PAMM), 2007.
DOI : 10.1002/pamm.200700091

A. S. Miner and D. Parker, Symbolic Representations and Analysis of Large Probabilistic Systems, Validation of Stochastic Systems, pp.296-338
DOI : 10.1007/978-3-540-24611-4_9

K. Murphy and U. Berkley, Dynamic Bayesian Networks: Representation , Inference and Learning, 2002.

U. Nodelman, C. R. Shelton, and D. Koller, Continuous Time Bayesian Networks, Proc. 18th UAI'02, pp.378-387, 2002.

U. Nodelman, C. R. Shelton, and D. Koller, Expectation propagation for continuous time Bayesian networks, Proc. 21st UAI'05, pp.431-440, 2005.

L. Portinale and D. Codetta-raiteri, A GSPN semantics for continuous time Bayesian networks with immediate nodes, 2009.

S. Saria, U. Nodelman, and D. Koller, Reasoning at the right time granularity, Proc. 23rd UAI'07, pp.421-430, 2007.

W. G. Schneeweiss, The Fault Tree Method, 1999.

D. Maxwell, C. , and C. Meek, Finding optimal bayesian networks, UAI, pp.94-102, 2002.

P. Domingos and M. Richardson, Markov logic: A unifying framework for statistical relational learning, Introduction to Statistical Relational Learning

L. Getoor and C. P. Diehl, Link mining, ACM SIGKDD Explorations Newsletter, vol.7, issue.2, pp.3-12, 2005.
DOI : 10.1145/1117454.1117456

L. Getoor and B. Taskar, Introduction, Getoor and Taskar, pp.1-8

L. Getoor, B. Taskar, and D. Koller, Selectivity estimation using probabilistic models, ACM SIGMOD Record, vol.30, issue.2, pp.461-472, 2001.
DOI : 10.1145/376284.375727

L. Getoor and B. Tasker, Introduction to statistical relational learning, 2007.

K. Kersting and L. De-raedt, Bayesian logic programming: Theory and tool, Introduction to Statistical Relational Learning

M. Tom and . Mitchell, Machine Learning, 1997.

J. Pearl, Probabilistic Reasoning in Intelligent Systems, 1988.

O. Schulte, H. Khosravi, F. Moser, and M. Ester, Join bayes nets: A new type of bayes net for relational data. CS-Learning Preprint Archive, 2008.

J. D. Ullman, Principles of database systems, 1982.

A. Aho, . Garey, and J. Ullman, The Transitive Reduction of a Directed Graph, SIAM Journal on Computing, vol.1, issue.2, pp.131-137, 1972.
DOI : 10.1137/0201008

M. Ashburner, . Ball, and J. Blake, Gene Ontology: tool for the unification of biology, Nature Genetics, vol.9, issue.1, pp.25-29, 2000.
DOI : 10.1038/75556

A. Butanitsky and G. Hirst, Evaluating WordNet-based Measures of Lexical Semantic Relatedness, Computational Linguistics, vol.17, issue.1, pp.13-47, 2006.
DOI : 10.1016/S0022-5371(79)90604-2

A. Clauset, M. Moore, and . Newman, Structural Inference of Hierarchies in Networks, Proc. 23rd Int. Conf. on Machine Learning, 2006.
DOI : 10.1007/978-3-540-73133-7_1

A. Clauset, M. Moore, and . Newman, Hierarchical structure and the prediction of missing links in networks, Nature, vol.104, issue.7191, pp.98-10110, 1038.
DOI : 10.1038/nature06830

T. Cormen, R. Ce-leiserson, and . Rivest, Introduction to Algorithms, 1990.

B. Davey and H. Priestly, Introduction to Lattices and Order, 1990.
DOI : 10.1017/CBO9780511809088

C. Fellbaum, Wordnet: An Electronic Lexical Database Formal Concept Analysis: Foundations and Applications, 1998.

B. Ganter and R. Wille, Formal Concept Analysis, 1999.

C. ]. Joslyn, . Ca-joslyn, . Baddeley, C. Blake, . Bult et al., Poset Ontologies and Concept Lattices as Semantic Hierarchies Automated Annotation-Based Bio-Ontology Alignment with Structural Validation, Conceptual Structures at Work Proc. Int. Conf. on Biomedical Ontology, pp.3127-287, 2004.

C. Joslyn, P. Donaldson, and . Paulson, Evaluating the Structural Quality of Semantic Hierarchy Alignments, 2008.

C. ;. Joslyn, . Mniszewski, . Susan, A. Fulmer, and H. , The Gene Ontology Categorizer, Bioinformatics, vol.20, issue.Suppl 1, pp.1-169, 2004.
DOI : 10.1093/bioinformatics/bth921

C. Joslyn, . Mniszewski, . Smith, and . Weber, SpindleViz: A Three Dimensional, Order Theoretical Visualization Environment for the Gene Ontology, Joint BioLINK and 9th Bio- Ontologies Meeting (JBB 06), 2006.

C. Joslyn, K. Paulson, C. Verspoor, . Joslyn, S. Pogel et al., Exploiting Term Relations for Semantic Hierarchy Construction Ordered Set Interval Rank for Knowledge Systems Analysis and Visualization Jena: A Semantic Web Toolkit, Proc. Int. Conf. Semantic Computing (ICSC 08), pp.42-49, 2002.

B. Monjardet, Metrics on partially ordered sets???A survey, Discrete Mathematics, vol.35, issue.1-3, pp.173-184, 1981.
DOI : 10.1016/0012-365X(81)90206-5

E. Nuutila and E. Soesalon, On finding the strongly connected components in a directed graph, Information Processing Letters, vol.49, issue.1, pp.49-58, 1994.
DOI : 10.1016/0020-0190(94)90047-7

C. Orum, J. Verspoor, . Km-;-cohn, . Mniszewski, and C. Joslyn, Valuations and Metrics on Partially Ordered Sets A Categorization Approach to Automated Ontological Function Annotation, Discrete Mathematics, pp.15-1544, 2006.

R. John and . Anderson, The Adaptive Character of Thought, References, 1990.

. Domingos, Unifying Logical and Statistical AI, Proceedings of the 31st Annual ACM/IEEE Symposium on Logic in Computer Science, LICS '16, pp.2-7, 2006.
DOI : 10.1145/2933575.2935321

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

B. Robert and . Doorenbos, Matching 100,000 Learned Rules, Proceedings of the 11 th National Conference on Artificial Intelligence, pp.290-296, 1993.

L. Charles and . Forgy, Rete: A Fast Algorithm for the Many Pattern/Many Object Pattern Match Problem, Artificial Intelligence, vol.19, issue.1, pp.17-37, 1982.

. Kschischang, Factor graphs and the sum-product algorithm, IEEE Transactions on Information Theory, vol.47, issue.2, pp.498-519, 2001.
DOI : 10.1109/18.910572

E. John and . Laird, Extending the Soar cognitive architecture, Proceedings of the First AGI Conference, 2008.

N. Laird, E. Laird, and A. Newell, A Universal Weak Method: Summary of Results, Proceedings of the Eighth International Joint Conference on Artificial Intelligence, pp.771-773, 1983.

R. Laird, E. John, P. S. Laird, and . Rosenbloom, The evolution of the Soar cognitive architecture, Mind Matters: A Tribute to Allen Newell, pp.1-50, 1996.

. Laird, Chunking in Soar: The anatomy of a general learning mechanism, Machine Learning, pp.11-46, 1986.
DOI : 10.1007/BF00116249

C. Langley, D. Langley, and . Choi, A unified cognitive architecture for physical systems, Proceedings of the Twenty-First National Conference on Artificial Intelligence, 2006.

. Mccallum, FACTORIE: Efficient probabilistic programming via imperative declarations of structure, inference and learning, Proceedings of the NIPS workshop on Probabilistic Programming, 2008.

. Milch, BLOG: Probabilistic models with unknown objects, Introduction to Statistical Relational Learning, pp.373-398, 2007.

]. Newell, Unified Theories of Cognition, 1990.

. Poon, A general method for reducing the complexity of relational inference and its application to MCMC, Proceedings of the 23 rd AAAI Conference on Artificial Intelligence, pp.1075-1080, 2008.

S. Paul and . Rosenbloom, A cognitive odyssey: From the power law of practice to a general learning mechanism and beyond, Tutorials in Quantitative Methods for Psychology, pp.43-51, 2006.

C. Boutilier and H. Holger, Bidding languages for combinatorial auctions, Proceedings of the 18th International Joint Conference on Artificial Intelligence (IJCAI), pp.1211-1217, 2001.

R. Cavallo, D. Parkes, A. Juda, A. Kirsch, A. Kulesza et al., Tbbl: A treebased bidding language for iterative combinatorial exchanges, International Joint Conferences on A.I.: Workshop on Advances in Preference Handling, 2005.

J. Cerquides, U. Endriss, A. Giovannucci, and J. Rodriguez-aguilar, Bidding languages and winner determination for mixed multi-unit combinatorial auctions, International Joint Conferences on A.I, pp.1221-1226, 2007.

M. Croitoru, P. Lewis, and C. Croitoru, Bidflow: a new graphbased bidding language for combinatorial auctions, Proceedings of the 18th European Conference on Artificial Intelligence, 2008.

R. Day, Expressing Preferences with Price-Vector Agents in Combinatorial Auctions, 2004.

Y. Fujisima, K. Leyton-brown, and Y. Shoham, Taming the computational complexity of combinatorial auctions, Proceedings of the Sixteenth International Joint Conference on Artificial Intelligence, pp.548-553, 1999.

A. Giovannucci, J. Rodriguez-aguilar, J. Cerquides, and U. Endriss, Winner determination for mixed multi-unit combinatorial auctions via petri nets, Proceedings of the 6th international joint conference on Autonomous agents and multiagent systems , AAMAS '07, 2007.
DOI : 10.1145/1329125.1329253

N. Nisan, Bidding and allocation in combinatorial auctions, Proceedings of the 2nd ACM conference on Electronic commerce , EC '00, 2000.
DOI : 10.1145/352871.352872

M. Rothkopf, A. Pekec, and R. Harstad, Computationally Manageable Combinational Auctions, Management Science, vol.44, issue.8, pp.1131-1147, 1998.
DOI : 10.1287/mnsc.44.8.1131

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

]. G. References-[-cooper, R. Cooper, R. Dechter, . Mateescu-]-r, and . Dechter, A method for using belief networks as influence diagrams AND/OR search spaces for graphical models A new perspective on algorithms for optimizing policies under uncertainty, UAIDechter and Mateescu AIPS, pp.55-6373, 1988.

M. A. Howard, J. E. Howard, and . Matheson, Influence diagrams. The principles and applications of Decision analyis, 1984.

. Jensen, From influence diagrams to junction trees Representing and solving decision problems with limited information, Mateescu and Dechter, 2005] R. Mateescu and R. Dechter. AND/OR cutset conditioning IJCAI, 2005. [Pearl, 1988] J. Pearl. Probabilistic Reasoning in Intelligent Systems Pralet, G. Verfaillie, and T. Schiex. An algebraic graphical model for decision with uncertainties , feasibilities, and utilities. JAIR, pp.12351251421-489, 1988.

P. Qi, D. Qi, . Poole-]-p, . A. Shenoy-]-j, R. D. Tatman et al., A new method for influence diagram evaluation Valuation-based systems for Bayesian decision analysis Dynamic programming and influence diagrams, Comp. Intell. OR IEEE Systems, vol.11, issue.403, pp.463-484, 1990.

]. T. Walsh, SAT vs CSP, CP, 2000.
DOI : 10.1007/3-540-45349-0_32

. References and . Buchanan, Heuristic dendral: A program for generating explanatory processes in organic chemistry, Machine Intelligence, vol.4, 1969.

L. Davis, D. Davis, and . Lenat, AM: Discovery in Mathematics as Heuristic Search in Knowledge System in Artificial Intelligence, Part one, 1982.

. De-chalendar, Conceptual graphs generalization An attempt to rebuild c. bernard's scientific steps Distances sémantiques dans des applications de gestion d'information utilisant le web sémantique, RFIA 2000. 12ème Congrés Francophone AFRIT-AFIA, Paris, 2000. [Ganascia and Habib The Tenth International Conference on Discovery Science Semantic similarity workshop, 2000.

G. Habib, J. Habib, . H. Ganascia-]-g, J. Harman, S. Josephson et al., Using ai to reconstruct claude bernard's empirical investigations The inference to the best explanation Abductive inference: computation, philosophy, technology The processes of scientific discovery: The strategy of experimentation, The 2008 International Conference on Artificial Intelligence (ICAI'08) Scientific discovery: Computational explorations of the creative processes, pp.496-501, 1965.

G. Laudy, J. Laudy, and . Ganascialaudy, Information fusion in a tv program recommendation system High-level fusion based on conceptual graphs, 11th International Conference on Information Fusion 10th International Conference on Information Fusion I. Levenshtein. Binary codes capable of correcting deletions, insertions, and reversals, pp.1455-1462, 1966.

S. S. Michalski, R. E. Michalski, and . Steppsorlin, Learning from observation: Conceptual clustering Mesurer la similarité de graphesétiquetésgraphes´graphesétiquetés, 9` emes Journées Nationales sur la résolution pratique de probì emes NP-CompletsSowa, 1984] J. F. Sowa. Conceptual Structures. Information Processing in Mind and Machine, pp.331-363, 1981.