
HAL Id: lirmm-00412876
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00412876

Submitted on 2 Sep 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Polynomial Pregroup Grammars parse Context Sensitive
Languages
Anne Preller

To cite this version:
Anne Preller. Polynomial Pregroup Grammars parse Context Sensitive Languages. RR-09024, 2009,
pp.1-26. �lirmm-00412876�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00412876
https://hal.archives-ouvertes.fr

Polynomial Pregroup Grammars parse Context

Sensitive Languages

Anne Preller∗

Lirmm, 161, rue Ada, Montpellier, France
preller@lirmm.fr

Abstract

Pregroup grammars with a possibly infinite number of lexical entries
are polynomial if the length of type assignments for sentences is a polyno-
mial in the number of words. Polynomial pregroup grammars are shown
to generate the standard mildly context sensitive formal languages as well
as some context sensitive natural language fragments of Dutch, Swiss-
German or Old Georgian. A polynomial recognition and parsing algo-
rithm handles the various grammars uniformly. It also computes a planar
graph for the semantic cross-serial dependencies in the case of natural
languages.

keywords: type logical grammar, pregroup grammar, proof graph, complement
control, cross-serial dependency, mildly context sensitive language, Dutch subor-
dinate clause, Swiss-German subordinate clause, Old Georgian noun phrase, in-
cremental dependency parsing algorithm.

1 Introduction

The Pregroup Calculus was introduced in (Lambek 199) [11] as a simplifica-
tion of the earlier Syntactic Calculus in (Lambek 1958) [10]. According to
(Buszkowski 2001)[3], a pregroup grammar consists of a finite set of basic types
and a dictionary (or lexicon) containing a finite number of words, each listed
with a finite number of types from the Pregroup Calculus. These finite gram-
mars are proved in [ibidem] to be weakly equivalent to context free grammars.

Both (Francez et al. 2007) [5] and (Stabler 2008) [24] extend pregroup
grammars to mildly context-sensitive formal languages by adding new rules
and/or constraints to the Pregroup Calculus. (Lambek 2008-1) [12] discusses
the Dutch subordinate clause and remarks that a law of commutativity would
solve the problem, but dismisses it as ‘not allowed’.

The approach taken here is based on the belief that the computational ef-
ficiency and the semantic expressivity of pregroup grammars is based on the
planar graphs representing derivations of the Pregroup Calculus. To keep them

∗I am thankful for financial support provided by TALN/LIRMM/CNRS.

1

intact, the definition of a lexicon is relaxed allowing an infinite number of types
per word. The only restriction is that some polynomial in l bounds the length
of the concatenated type T1 . . . Tl associated to w1 . . . wl for every type assign-
ment wi : Ti, 1 ≤ i ≤ l with a reduction to the sentence type. In the case of
context free languages or the standard formal mildly context sensitive languages
it is of degree 1, for Dutch or Swiss-German subordinate clauses it is of degree
2. The pregroup grammar generating (Michaelis, Kracht) [9]’s version of Old
Georgian noun phrases is polynomial of degree 2. The description of the same
noun phrases in (Bhatt and Joshi) [1] can be handled by a polynomial pregroup
grammar of degree 1.

The natural language dictionaries presented here have entries that are triples
formed by a word, a type and a meaning expression. The meaning of a sentence
is computed from the chosen meanings of the words by substitution. The dic-
tionaries are compositional in the sense of (Kracht 2007) [7]. Moreover, a linear
parsing and tagging algorithm generates the (cross-serial) semantic dependen-
cies.

Section 2 recalls the Pregroup Calculus and the geometrical structure of re-
ductions, followed by an example how to compute the meaning of a sentence
involving complement control in English. Section 3 introduces polynomial pre-
group grammars for formal and natural context sensitive languages. Finally,
Section 4 presents the parsing algorithm based on the geometrical structure of
reductions, illustrated by an example of Dutch subordinate clauses.

2 Pregroup Calculus, Proof Graphs and Meaning

2.1 Pregroup Calculus and Reductions

The set of pregroup types P (B) generated by a partially ordered set B = 〈B,≤〉
is the free monoid generated by the set of simple types

S(B) =
{

a(z) : a ∈ B, z ∈ Z
}

.

The notation a(z) designates the ordered pair formed by the element a of B and
the integer z . Elements T ∈ P (B) are called types. In an equality T = t1 . . . tn,
it is always understood that the lower case ti’s are simple types. In the case
where n = 0, the string t1 . . . tn is empty, denoted 1 . It is the unit for the binary
operation of concatenation in the free monoid. A basic type is a simple type of
the form a(0). With a convenient lack of precision, a and a(0) are identified and
the elements of B are referred to as basic types. The left adjoint and the right
adjoint of a simple type t = a(z) are defined as

t` = (a(z))` = (a(z−1)) left adjoint
tr = (a(z))r = (a(z+1)) right adjoint .

2

The binary derivability relation on types, denoted →, is the smallest transitive
relation containing 1 → 1 satisfying

(Induced step) Sa(z)T → Sb(z)T
(Generalized contraction) Sa(z)b(z+1)T → ST
(Generalized expansion) ST → Sa(z+1)b(z)T

(1)

where either z is even and a ≤ b or z is odd and b ≤ a .
Note that the derivability relation → coincides with the partial order ≤

on the set of basic types. It is a partial preorder on types, but not an order,
because it is not antisymmetric. Indeed, a → a(ara) by generalized expansion
and (aar)a → a by generalized contraction, see (Buszkowski 2001) [4].

Definition 1 (Dictionaries). Let Σ be a non-empty set. A pregroup dictionary
for Σ based on B is a map D defined on Σ with values in the set of subsets
of P(B). A type assignment of w1 . . . wn is a sequence of types T1, . . . , Tn for
which Ti ∈ D(wi), 1 ≤ i ≤ n . A lexical entry w : T of D is an ordered pair
w ∈ Σ and T ∈ D(w) . A dictionary is discrete if it is based on a discrete set,
i.e. a set ordered by equality.

A pregroup grammar G = 〈D, s〉 for Σ based on B consists of a pregroup
dictionary D based on B and a distinguished basic type s ∈ B. The language of
G is the following subset of Σ∗

LG = {w1 . . . wn ∈ Σ∗ : T1 . . . Tn → s for some Ti ∈ D(wi), 1 ≤ i ≤ n} .

By definition, T → T ′ if and only if there is a sequence of types T1, . . . , Tn

such that T1 = T , Tn = T ′ and Ti → Ti+1 is 1 → 1 or an instance of the
pairs in (1) for 1 ≤ i < n. The derivations of the Pregroup Calculus can be
characterized geometrically by proof graphs that have underlinks, overlinks and
vertical links, see (Preller, Lambek) [17]. Underlinks are edges between simple
types in the upper line (the antecedent) and stand for generalized contractions.
Overlinks are edges between simple types in the lower line (the conclusion) and
represent generalized expansions. Vertical links are edges between a simple type
in the upper line and a simple type in the lower line. They code induced steps.

"""""""""

§§§§§§§§§§§

¶¶¶¶¶¶¶¶¶¶

a`a a` a a`a ar as

cr c a`a br b s c c`

(2)

To check grammaticality of a string of words, only derivations without in-
stances of Generalized Expansion are to be considered, see (Lambek 1999) [11].
The corresponding proof graphs are called reductions. If the set of basic types
is discretely ordered the lower line and the vertical links can be omitted, as
both are determined by the unlinked simple types in the upper line. Moreover,
for a fixed type T , a reduction is determined by the position numbers of the

3

links. This representation of a reduction as a set of unordered pairs of position
numbers assures an easy formulation of the parsing algorithm in Section 4.

s

a` a a`a ar a s
1 2 3 4 5 6 7

{1, 6} {2, 5} {3, 4}
s

a`a a` aar a s
1 2 3 4 5 6 7

{1, 2} {3, 6} {4, 5}

(3)
Note that there may be more than one reduction between two given types. The
next subsection gives an example how a reduction to the sentence type assembles
the meaning of the words into a meaning of the sentence.

Definition 2 (Reduction). Let 1 ≤ i1 < · · · < ik ≤ n, T = t1 . . . tn and
T ′ = ti1 . . . tik

be given. A reduction R from T to T ′, in symbols R : T ⇒ T ′,
is a non-directed graph R = 〈{1, . . . , n} , R〉 such that

1) for every i ∈ {1, . . . , n} − {i1, . . . , ik} there is exactly one j ∈ {1, . . . , n}
such that {i, j} ∈ R

2) if {i, j} ∈ R then i 6= j, i 6∈ {i1, . . . , ik} , j 6∈ {i1, . . . , ik}
3) if {i, j} ∈ R and i < l < j then {l, m} ∈ R for some m with i < m < j
4) titj → 1 for i < j and {i, j} ∈ R

The vertices in {1, . . . , n} are called positions and the edges in R underlinks.

Follow a few properties that intervene repeatedly in the proofs of Section 3.

Definition 3 (Simple type occurrence). An arbitrary type T is said to be in
D if w : T is a lexical entry for some word w . A simple type t occurs in
T = t1 . . . tn if t = ti for some i ≤ n. It occurs in D, if it occurs in the type of
some lexical entry of D.

For example, a` and s occur in sa`, but not the basic type a .

Definition 4 (Modest type). A type is modest, if all simple types occurring in
it are basic, or right or left adjoints of basic types, but no basic type occurs with
both its right and left adjoint. A dictionary is modest if it is based on a discrete
set and every type obtained by concatenating types in the dictionary is modest.

A type T = t1 . . . tn is irreducible if titi+1 6→ 1 for 1 ≤ i < n . A type T ′ is
an irreducible form of T if T ′ is irreducible and T → T ′ .

For example, if a and b are basic then aa`brb is modest and irreducible.
Every simple type is irreducible. The type constituting the top line of (3) is not
modest.

The proofs of lemmas 2 - 6 below are straight forward. Lemma 1 is a special
case of Lemma 4.5 in (Preller 2007-2) [19].

Lemma 1 (Uniqueness). Every modest type has a unique irreducible form and
a unique reduction to its irreducible form.

4

The property does not hold in general. Indeed, ba`aara has the two irre-
ducible forms b and bara, whereas (3) gives a type with two distinct reductions
to the same irreducible form.

Lemma 2. Let T ′ be the irreducible form of a modest type T = t1 . . . tm and
suppose that ti . . . tj → 1 for some 1 ≤ i < j ≤ m. Then t1 . . . ti−1tj+1 . . . tm →
T ′.

Again, the property above does not hold in general. For example, ba`aara →
b, a`a → 1, but bara 6→ b. However, the next lemma, a sort of converse of
Lemma 2, holds for arbitrary types.

Lemma 3. Let t1 . . . tm → T ′, s1 . . . sn → 1. Then t1 . . . tis1 . . . snti+1 . . . tm →
T ′.

The next two lemmas state sufficient conditions for a simple type to remain
present in every irreducible form of the original type. We say that titj is a block
of T = t1 . . . tm if i < j and ti is immediately followed by tj in every irreducible
form of T .

Lemma 4. Let t1 . . . tm = T be modest and i < j positions satisfying

1) titj 6→ 1 and ti+1 . . . tj−1 → 1
2) for all k < i, tk is not a left adjoint of ti
3) for all l > j, tl is not a right adjoint of tj .

Then titj is a block of T . In particular, T does not reduce to a single simple
type nor the empty type.

Lemma 5. Suppose T → T ′ and t occurs at k distinct positions in T but neither
the right nor the left adjoint of t occurs in T . Then t has k occurrences in T ′.

Lemma 6. Assume that T = t1 . . . tn is modest and that T → t. Then there is
a unique position i such that t = ti.

Moreover, ti+1 . . . tn → 1. In addition, ti+1 . . . ti+k → 1 implies ti+k+1 . . . tn →
1, for all 1 < k ≤ n− i. Similarly, t1 . . . ti−1 → 1 . In addition, ti−k . . . ti−1 → 1
implies t1 . . . ti−k−1 → 1, for all 1 < k ≤ i− 1.

2.2 Semantic Pregroup Grammars

In a semantic pregroup grammar, see (Preller 2007-1) [18], each lexical entry
w : T is enriched by a (string of) logical expression(s) E, yielding a triple
w : T :: E, in analogy with the triples word : Type :: Term of CCG’s by (Steed-
man 1996) [25]. The interpretation of a sentence is a variable-free expression,
computed from the chosen interpretation of the words. The result of the compu-
tation depends on the chosen reduction to the sentence type. Semantic pregroup
grammars are compositional in the sense of (Kracht 2007) [7]. This is best ex-
plained by replacing the (string of) logical expression(s) associated to an entry

5

by the corresponding 2-cell of compact 2 -categories, a proof that is beyond the
scope of this paper. Consider instead the following example sentences

Eva promised Jan to come (Subject Control)
Eva asked Jan to come (Object Control) .

(4)

The implicit agent of the infinitive is either the subject of promised or the object
of asked. In the first sentence it is Eva who is supposed to come, in the second
it is Jan. Consider the following semantical dictionary

Eva : NP :: eva
promised : NP rsδī`NP ` :: promise(x1, x2, x3) id(x1)
asked : NP rsδī`NP ` :: ask(x1, x2, x3) id(x3)
Jan : NP :: jan
to : īi` :: to(y)
come : iδr :: come(z)

The basic types NP , i and ī stand for noun phrase, infinitive and infinitival
phrase. Finally, δ is a basic type that plays the role of a marker similar to an
index in HPS Grammars of (Pollard, Sag) [16].

Models interpret all logical expressions as functions, including 0-ary func-
tions like eva and jan . Some functions take their values in a ‘set of truth values
Ω’ like promise, ask, come. Classical models interpret Ω as the two-element
Boolean algebra and distributed models as a subset of real numbers.

Functional symbols correspond to basic types in the order in which they
occur. Variables correspond to occurrences of non-basic types, indexed in the
order of the occurrences of the types. For example,

NP r s δ ī` NP `

x1 ask id x2 x3
.

The variables on which a logical expression depends render the intuitive meaning
of semantical dependency. The translations of promised : NP rsδī`NP ` and
asked : NP rsδī`NP ` differ by the variable on which the translation id of the
basic type δ depends, namely on x1 in the case of promise and on x3 in the case
of ask .

The links of a reduction to the sentence type indicate how the variables are
to be replaced. For computing the logical expression corresponding to

Eva promised Jan to come

(NP) (NP r s δ ī` NP `) (NP)(ī i`)(i δr)

do the following
- write the corresponding logical symbols above the simple types1

eva x1 promise idx2 x3 jan to y come z

NP (NP r s δ ī` NP `) NP (ī i`) (i δr)

1Recall: a basic type b is identified with the simple type b(0)

6

- omit the types and put the links under the corresponding logical symbols

eva x1 promise id x2 x3 jan to y come z

- define the substitutions according to the links

x1 7→ eva x2 7→ to(y) x3 7→ jan y 7→ come(z) z 7→ id(x1) (5)

Substituting in promise(x1, x2, x3), one obtains the logical expression that trans-
lates the sentence

promise(eva, to(come(id(eva))), jan)

The meaning of id is determined by the logic, i.e. it is interpreted in every
model as the identity function. This is guaranteed by the axiom

id(x) = x

Finally, the translation is equivalent to the variable-free expression

promise(eva, to(come(eva)), jan) (6)

Note that eva is the agent of come.
The procedure applied to the second sentence

Eva asked Jan to come

(NP) (NP r s δ ī` NP `) (NP)(ī i`)(i δr) ,

yields the same substitutions as in (5) except for the last which is replaced by

z 7→ id(x3) .

The resulting interpretation of the sentence is now equivalent to

ask(eva, to(come(jan)), jan) (7)

Now, jan is the agent of come in opposition to (6).
The semantical dependency, expressed above as embedding of subexpressions

corresponds to the embedding of boxes in the DR-structures in (Kamp, Reyle
1993) [?].

3 Polynomial Pregroup Grammars

Polynomial pregroup grammars generalize the notion of finite pregroup gram-
mars in (Buszkowski 2001) [1]

Definition 5. A pregroup grammar is polynomial of degree n if the length of
T1 . . . Tl is O(ln) for every every type assignment w1 : T1, . . . , wl : Tl for which
T1 . . . Tl → s .

7

If the length of types occurring in the dictionary does not exceed a constant
α, then the corresponding grammar is linear polynomial, i.e. of degree 1. In-
deed, for every string of words w1 . . . wl the length of the assigned type T1 . . . Tl

is bounded by the αl. A fortiori, finite pregroup grammars are polynomial of
degree 1. Hence all context free languages are generated by polynomial pre-
group grammars of degree 1 . The grammars for the semilinear mildly context
sensitive formal languages below are also linear polynomial. The context sensi-
tive natural language fragments considered in subsection 3.2 are generated by a
square polynomial. In fact, the latter is the polynomial used in [9] for proving
non semilinearity of languages.

3.1 Mildly Context Sensitive Formal Languages

Consider the three standard mildly context sensitive formal languages, namely

L1 = {vv : v ∈ Σ+}
L2 = {anbncn : n ≥ 1, a, b, c ∈ Σ, a 6= b, b 6= c}
L3 = {ambncmdn : m ≥ 1, n ≥ 1, a, b, c, d ∈ Σ, a 6= b, b 6= c, c 6= d}

.

3.1.1 Duplication

L1 =
{
vv : v ∈ Σ+

}

The set of basic types is constructed from Σ by adding a new symbol s called
sentence type and a ‘copy’ ā for every a ∈ Σ . The elements of {s}∪{ā : a ∈ Σ}
are pairwise distinct symbols not in Σ. The set of basic types B1 = 〈B1, =〉 is
ordered by equality, where

B1 = {s} ∪ Σ ∪ {ā : a ∈ Σ} .

The dictionary D1 maps an element a ∈ Σ to the following infinite subset of
P(B1)

D1(a) = {a} ∪ {ār} ∪ {
br
1 . . . br

i a
rs b̄1 . . . b̄i : b1 . . . bi ∈ Σ∗

}
.

This dictionary is modest (recall Definition 4).

Lemma 7. The language LG1 of the pregroup grammar G1 = 〈D1, s〉 contains
L1 .

Proof. Assume that X = a1 . . . am ∈ L1 . Hence m = 2n and an+i = ai,
1 ≤ i ≤ n, for some n ≥ 1.

Case n = 1:
Choose T1 = a1 and T2 = ar

1s. From the assumption follows that T1, T2 is a
type assignment for a1a2. Clearly, T1T2 → s.

Case n ≥ 2:
Define

Tj =

aj for 1 ≤ j ≤ n

ar
n . . . ar

2a
r
js ān . . . ā2 for j = n + 1

ār
j for n + 1 < j ≤ 2n.

8

The assumption implies āj = ān+j and thus āj ā
r
n+j → 1, for 1 ≤ j ≤ n. Hence

T1 . . . Tm → s. Thus the language L1 is included in the language defined by
G1 .

The type assignment T1, . . . , Tm defined above is called the canonical type
assignment and the concatenated type T1 . . . Tm the canonical type. The unique
index k such that the sentence type occurs in Tk is called the key-index.

Lemma 8. Suppose Tj ∈ D1(aj), 1 ≤ j ≤ m, is a type assignment for X =
a1 . . . am ∈ Σ∗ such that T1 . . . Tm → s. Then X ∈ L1 and T1 . . . Tm is the
canonical type assignment for X.

Proof. Two things are to be proved: t m = 2n for some n ≥ 1 and that an+i =
ai for 1 ≤ i ≤ n. The assumption T = T1 . . . Tm → s implies that s has a
unique occurrence in T , by Lemma 6. Therefore there is a unique k such that
1 ≤ k ≤ m and s occurs in Tk. Hence

Tk = br
1 . . . br

i ak
r s b̄1 . . . b̄i

for some i ∈ N and some string b1 . . . bi ∈ Σ∗. Moreover, if j 6= k then
Tj = aj or Tj = ār

j . From Lemma 6 follows b̄1 . . . b̄iTk+1 . . . Tm → 1 and
T1 . . . Tk−1b

r
1 . . . br

i ak
r → 1.

Under the assumption that b̄1 . . . b̄iTk+1 . . . Tm → 1, use induction on i to
show that

Tk+j = ār
k+j for 1 ≤ j ≤ i

ak+j = bi−j+1 for 1 ≤ j ≤ i
i = m− k ≥ 0 .

(8)

Case i = 0:
Then Tk = ar

ks and Tk+1 . . . Tm → 1, by Lemma 6. Clearly, the empty string is
the only string of simple types in {a, ār : a ∈ Σ} that reduces to 1. Thus k = m.
Case i ≥ 1 :
Note that Tk+1 = ār

k+1, because the other possible choice for Tk+1 would be
ak+1. In this case b̄iak+1 would be in every irreducible form of T1 . . . Tm by
Lemma 4, contradicting the assumption. For the same reason, b̄iā

r
k+1 → 1,

i.e. b̄i = āk+1. The latter implies ak+1 = bi. Let T ′ = b̄1 . . . b̄i−1Tk+2 . . . Tm.
Then T ′ → 1 by Lemma 2. The induction hypothesis applies to T ′. Hence
Tk+1+j = ār

k+1+j , ak+1+j = bi−1−j+1 for 1 ≤ j ≤ i−1 and i−1 = m− (k +1) .
Similarly, under the assumption T1 . . . Tk−1b

r
1 . . . br

i ak
r → 1 show that

Tk−l = ak−l for 1 ≤ l ≤ i + 1
ak−l = bl for 1 ≤ l ≤ i
ak−i−1 = ak

1 = k − i− 1

(9)

by induction on i . In the case i = 0, note that k > 1, because if k = 1 then
ar

k → 1 , which is impossible. It follows that Tk−1 = ak−1 and ak−1 = ak. Hence
T1 . . . Tk−2 → 1 and therefore k − 1 = 1. The induction step is similar to that
given above.

9

From equations (9) and (8) follows that i = k−2 and m = k+i = k+k−2 =
2n, where n = k − 1. Moreover, if j varies between 1 and i in increasing
order then l = i − j + 1 varies between i and 1 in decreasing order. Hence
aj+1 = a2+j−1 = ak−i+j−1 = bi−j+1 = ak+j = an+j+1, for 1 ≤ j ≤ i = n − 1.
Finally, a1 = an+1 follows from ak−i−1 = ak.

The proof above shows that an arbitrary type assignment with a reduction
to the sentence type is equal to the canonical one and also constructs the unique
reduction to the sentence type, namely

a1 a2 . . . ak−1 ak ak+1 . . . am

a1 a2 . . . ak−1 (br
1 . . . br

i ar
k s b̄1 . . . b̄i) ār

k+1 . . . ār
m .

3.1.2 Multiple Agreement

L2 = {anbncn : n ≥ 1, a, b, c ∈ Σ, a 6= b, b 6= c}
In a formal language, it is customary to denote an ∈ Σ+ the string consisting

of n repetitions of the symbol a. This might lead to confusion because of the
notation a(m) for simple types. Therefore the n-fold repetition of t is denoted
[n]t below.

The set of basic types B2 is ordered by equality, where

B2 = {s} ∪ Σ ∪ {ā : a ∈ Σ}

The dictionary D2 maps an element c ∈ Σ to the following infinite subset of
P(B2)

D2(c) = {c} ∪ {c̄r} ∪ {
[n]ar [n]br s c̄`[n]c̄ : 1 ≤ n, a, b ∈ Σ, a 6= b, b 6= c

}
.

Note that D2 is modest. Moreover, G2 = 〈D2, s〉 generates L2.

Lemma 9. A string X = a1 . . . am ∈ Σ∗ has a type assignment ai : Ti ∈ D2,
1 ≤ i ≤ m, such that T1 . . . Tm → s if and only if X ∈ L2.

Proof. - Assume X = a1 . . . am ∈ L2. Then m = 3n for some integer n ≥ 1.
Define

Ti =

ai for 1 ≤ i ≤ 2n

[n]ar
n+1 [n]ar

1 s ā`
i [n]āi for i = 2n + 1

ār
i for 2n + 2 ≤ i ≤ m .

Clearly, this type assignment has a reduction to the sentence type. Call it the
canonical type assignment and m− n + 1 the key-index.

- Assume that Ti ∈ D2(ai), 1 ≤ i ≤ m, satisfies T1 . . . Tm → s. The
argument is similar to that of Lemma 8. Now the unique type with an occurrence
of the sentence type has the form

Tk = [n]br [n]ar s ā`
k[n]āk,

10

for some k ≤ m, n ≥ 1, a ∈ Σ, b ∈ Σ . Recalling that ā`
k[n]āk = ā`

kāk[n−1]āk →
[n− 1]āk show that

Ti = ār
i and ai = ak, for k + 1 ≤ i ≤ m, and n− 1 = m− k

Ti = ai = a, for k − n ≤ i ≤ k − 1,
Ti = ai = b, for 1 ≤ i ≤ k − n− 1 and k = 2n + 1.

From this conclude that m = k + n − 1 = 3n . Hence k = 2n + 1 and X =
anbnan

2n+1.

3.1.3 Crossing Dependencies

L3 = {ambncmdn : m ≥ 1, n ≥ 1, a, b, c, d ∈ Σ, a 6= b, b 6= c, c 6= d}
The set of basic types remains unchanged, i.e.

B3 = {s} ∪ Σ ∪ {ā : a ∈ Σ} .

The dictionary D3 maps an element d ∈ Σ to the following infinite subset of
P(B3)

D3(d) = {d} ∪ {
d̄r

}∪{
[m]cr [n]br [m]ars d̄`[n]d̄ : n,m ≥ 1 a, b, c ∈ Σ, a 6= b, b 6= c, c 6= d

}

Again, D3 is modest and G3 = 〈D3, s〉 generates L3.

Lemma 10. X = a1 . . . al ∈ Σ∗ has a type assignment Ti ∈ D3(ai), 1 ≤ i ≤ l,
such that T1 . . . Tl → s if and only if X ∈ L3.

Proof. Assume X = a1 . . . al = ambncmdn. This implies a1 = · · · = am =
a, am+1 = · · · = am+n = b, am+n+1 = · · · = a2m+n = c, a2m+n+1 = · · · = al =
d and l = 2m + 2n . The key-index is k = 2m + n + 1 and the canonical type
assignment satisfies

Ti =

{
ai for 1 ≤ i ≤ 2m + n

ār
i for 2m + n + 2 ≤ i ≤ l

Tk = [m]ar
m+n+1 [n]ar

m+1 [m]ar
1 s ā`

k[n]āk .

The converse is left to the reader.

Note the common features shared by the three grammars G1- G3. Sentences
w1 . . . wl have a canonical type assignment T1, . . . , Tl with a key-index k. More-
over, the length of the type Tk is proportional to l whereas the length of the
other types Ti, i 6= k, is bounded by a constant. Therefore, the length q of the
canonical type t1 . . . tq = T1 . . . Tl is O(l).

3.2 Natural Languages

Among the context sensitive natural language fragments are the Dutch and
Swiss-German subordinate clauses and the compound noun phrases of Old Geor-
gian.

11

Dutch Subordinate Clause

(Pullum, Gazdar) [20] presents a context free grammar that weakly generates
the Dutch subordinate clauses. According to Salvitch et al.) [?]sa, the context
free grammar generates the clauses as strings of symbols but produces parse
trees that violate the intuition of speakers about the phrase structure and the
semantical dependencies. On the other hand, (Bresnan et al.) [2] argues that
no context free grammar strongly generates the clauses.

The polynomial pregroup grammar below strongly generates the Dutch sub-
ordinate clauses. This means that the reductions to the sentence type give rise
to a semantic interpretation expressing the distant cross-dependencies. For ex-
ample, in the subordinate clause2 below Marie is the agent of zag and Jan the
agent of zwemmen. The dependency is represented by an arrow from the verb
to the agent.

yy yy
dat Marie Jan zag zwemmen

(that Mary saw Jan swim)
(10)

Using the entries

dat (that) : ss̄` :: dat(y)
Marie (mary) : NP :: marie
zag (saw) : NP rNP rs̄i`δ :: zien(x2, z) id(x1)
Jan (jan) : NP :: jan
zwemmen (swim) : δri :: zwemmen(x) ,

parse this clause

dat Marie Jan zag zwemmen
dat marie jan (x1 x2 zien z id) (x zwemmen)

s s̄` (NP) (NP) (NP r NP r s̄ ī` δ) (δr ī)
(11)

and compute its logical interpretation according to Section 2.2

dat(zien(marie, zwemmen(id(jan))) .

Applying the identity axiom id(jan) = jan , we see that the interpretation of
the clause is equivalent to

dat(zien(marie, zwemmen(jan))) . (12)

By convention, the first argument of a relation corresponds to the agent. Hence,
the subexpression relation in (12) expresses the semantical dependencies of sen-
tence (10).

2adapted from examples in (Bresnan et al.) [2]

12

The dependency arrows of (10) can also be obtained geometrically. It suffices
to represent the dependencies by curved overlinks. The vertical arrows indicate
the functional symbols, connected to their arguments by the dotted overlinks.

mmmmmmmmmmmmmmmmmm

rrrrrrrrrrrrrr

¿¿
¿¿
¿¿
¿

IIIIIIIIIIIII

ma rie jan x1 x2 zien z id x zwem men .

(13)

In (13), the path starting at x and ending at jan and the path from x2 to marie
constitute the dependency links of (10). The dependence of zien on x2 and z
is indicated by dotted overlinks.3

The number of noun phrases and causal verbs is not limited, for example

vv vv uu
(dat) Eva Piet Jan zag leren zwemmen

((that) Eva saw Pete teach Jan to swim)
(14)

Consider the entries Eva : NP :: eva, Piet : NP :: piet, Jan : NP :: jan and

zag (saw) : NP rNP rNP rs̄i`δδ :: zien(x3, z) id(x2) id(x1)
leren (teach) : δrδrii`δ :: leren(x′2, z

′) id(x′1)
zwemmen (swim) : δri :: zwemmen(x)

Compute the reduction of the assigned type to s̄

. . . Eva P iet Jan zag leren zwemmen

. . . (eva)(piet)(jan)(x1 x2 x3 zien z id id) (x′1 x′2leren z′ id)(x zwemmen)

. . . (NP) (NP) (NP) (NP r NP r NP r s̄ i` δ δ) (δr δr i i` δ) (δr i)

Replace the simple types by the corresponding logical symbols and represent
dependencies by curved overlinks

(eva)(piet)(jan)(x1 x2 x3 zien z id id) (x′1 x′2 ler en z′ id) (x zwem men)

(15)
The oriented paths starting at x3, x′2 and x and terminating at eva, piet
and jan respectively constitute the dependency arrows of (14). The logical
expression is

zien(eva, leren(piet, zwemmen(jan))) .

3This vindicates Claudia Casadio’s idea that overlinks intervene in grammatical depen-
dencies. The graph above the logical symbols in (13) represents the concatenation of the
meanings of the words. It ‘lives’ in symmetric compact 2 -categories, like the category of real
vector spaces. The overlinks correspond to expansions in the symmetric 2-category, but not
in the non-symmetric 2-category of derivations of the Pregroup Calculus. The meaning of the
sentence is obtained by composing the concatenated meanings with the reduction.

13

The graph (15) induces the labelled planar graph (16) belonging to a family of
graphs relevant for dependency parsing, see (Kuhlmann, Nivre) [8]. The labels
of the edges in (16) are defined by the overlinks ‘hidden’ inside of (the type of)
the words. Every path formed by the edges with a given label corresponds to a
dependency arrow of (14).

1
2

3 3
2

3

Eva Piet Jan z a g leren zwemmen
(16)

The last verb in the clause may be intransitive, transitive, ditransitive etc.
The arity of a verb w is the number of the argument places of the interpreting
relation. Hence intransitive verbs are of arity 1, transitive verbs are of arity 2
and so on. Note that the arity of a non-causal verb coincides with the number
of occurrences of non-basic types, for example

zwemmen (swim) : δri :: zwemmen(x) (intransitive)
schrijven (write) : δrδri :: schrijven(x2, x1) (transitive)
geven (give) : δrδrδri :: geven(x3, x2, x1) (ditransitive)

The arity of the causal verbs below also is 2. The surplus number of non-basic
types in an associated type Tp, p ≥ 2, provides the argument places for the
‘remembering’ functions id. For example,

zag (saw) : [p]NP rs̄i`[p− 1]δ :: zien(xp, z) id(xp−1) . . . id(x1), p ≥ 2
leren (teach): [p]δrii`[p− 1]δ :: leren(xp, z) id(xp−1) . . . id(x1), p ≥ 2

(17)
where x1 corresponds to the first occurrence of NP r, x2 to the second occurrence
of NP r and so on up to xp, whereas z corresponds to i`.

A string of words w1 . . . wl is a k-fold subordinate clause if its first word
w1 is dat, the words w2 up to and including w1+k are proper names, the next
word w1+k+1 is a causal verb in finite form, the so-called key-word, and after
the key-word the wi’s are infinitives, of which all are causal except the last one,
which is non-causal of arity m = 2k + 2− l .

A k-fold subordinate clause w1 . . . wl has a canonical type assignment Ti, 1 ≤
i ≤ l, namely

Ti =

s s̄` if i = 1
NP if 2 ≤ i ≤ k + 1
[k]NP rs̄ i`[k − 1]δ if i = k + 2
[2k − i + 2]δri i`[2k − i + 1]δ if k + 2 < i < l

[2k − l + 2]δri if i = l .

The proof that the canonical type assignment reduces to the clause type s
uses induction on k and follows from the next two lemmas.

A type T is said to be p-infinitival if either T = [p]δr i and p ≥ 1 or T =
[p]δr ii` [p − 1]δ and p ≥ 2. It is said to be causal if the latter holds and
non-causal in the former case.

14

Lemma 11. Let Tj be infinitival or equal to NP for 1 ≤ j ≤ n. Then
T1 . . . Tn 6→ 1

Proof. Assume on the contrary that T1 . . . Tn → 1. As δ` and NP ` do not occur
in T1 . . . Tn the latter does not end with δ nor with NP . Hence Tn = [pn]δri.
Therefore the number of occurrences of i in T1 . . . Tn exceeds that of i`, because
the latter always occurs together with the former. As i can only be linked to
i`, this contradicts T1 . . . Tn → 1.

Lemma 12. Let k ≥ 1, n ≥ 1, Z = i`[k]δ and Tj be pj-infinitival of length qj,
1 ≤ j ≤ n such that ZT1 . . . Tn → 1 holds. Then

i) Tn is non-causal
ii) Tj is causal, 1 ≤ j ≤ n− 1. Moreover, pj = k − j + 1, 1 ≤ j ≤ n
iii) n = k − pn + 1
iv) qj = 3 + 2(k − j), 1 ≤ j < n, qn = k − n + 2 .

Proof. From ZT1 . . . Tn → 1 follows that Tn = [pn]δr i by the same argument
as above. Hence i) holds.
Next show ii), iii) and iv) by induction on n.

Case n = 1. From i`[k]δ [p1]δri → 1 follows that k = p1

Case n ≥ 2. Recall that ZT1 . . . Tn = i` [k]δ [p1]δriXY → 1 where Y =
T2 . . . Tn and either X = 1 or X = i` [p1 − 1]δ . The latter alternative holds
if T1 is causal, the former if it is non-causal. Note that ir does not occur in
the string XY and therefore the leftmost occurrence of i in ZT1 . . . Tn → 1 is
linked to the unique i` on its left. It follows that [k]δ [p1]δr → 1 and XY → 1,
hence k = p1. If X = 1 then T2 . . . Tn = Y → 1, contradicting Lemma 11 and
the assumption n ≥ 2. Hence X = i` [p1 − 1]δ with p1 ≥ 2. Now apply the
induction hypothesis to X,T2, . . . , Tn.
Finally, iii) and iv) are immediate consequences of ii) and i).

Theorem 1. 1) For every subordinate clause there is a unique type assignment
with a reduction to the clause type s. 2) Every string of words from the dictio-
nary that has a type assignment with a reduction to s is a subordinate clause.

Proof. 1) The first assertion follows from the definitions by Lemmas 1 - 6.
2) To see the converse, let Tj ∈ D(wj) for 1 ≤ j ≤ l and T1 . . . Tl → s .

By Lemma 5, s occurs in exactly one type Ti and therefore Ti = ss̄` and
wi = dat. Then s̄ also has exactly one occurrence in the string. Indeed, each
of its occurrences is linked to some occurrence of s̄` and the latter occurs only
together with s . Let p be the unique index such that s̄ occurs in Tp. Therefore
Tj is either infinitival or the basic type NP for all j other than i and p . Note
that p > i, because s̄` and s̄ are linked. Moreover, Tp = [k]NP rs̄ i`[k − 1]δ for
some k ≥ 2 .

First note that i = 1, because T1 . . . Ti−1 → 1 by choice of i. This is only
possible if the string is empty by Lemma 11.

Next, T2 . . . Tp−1[k]NP r → 1, because s̄` is linked to s̄ . From this follows
that T2 = · · · = Tp−1 = NP and p = 1 + k + 1 by Lemma 4.

15

Finally, from the preceding follows that i`[k−1]δ Tp+1 . . . Tl → 1 . Note that
NP cannot occur in this string and conclude by Lemma 12.

Theorem 1 above implies that for every s-sentence w1 . . . wl there are unique
types Ti ∈ D(wi), 1 ≤ i ≤ l, and a unique type T = T1 . . . Tl such that T → s .
Call T the canonical type, Ti ∈ D(wi) the canonical type assignment and the
unique reduction of T to s the canonical reduction of w1 . . . wl.

The preceding theorem implies that the infinite grammar above is polyno-
mial, i.e. the length of any type assignment with a derivation to s is bounded
by a polynomial. The property also intervenes in the complexity estimate of
the parsing algorithm in Section 4.

Corollary 2. The length of the canonical type T1 . . . Tl of a k-fold Dutch sub-
ordinate clause is bounded by k2 + 3k + 1 . Moreover, k ≤ l/2 .

Proof. Let k be the number of noun phrases preceding the key-word wp, m the
arity of the last verb wl. The number n of words after wp satisfies n = k −m
by Lemma 12. The number of words before the key-word wp is k + 1. Hence
l = 2k −m + 2 and therefore k ≤ l/2 .

On the other hand, the length q of the type T1 . . . Tl is

q = 2 + k + q′ + m + 1 ,

where q′ is the length of the type TpTp+1 . . . Tl−1. Starting at Tl−1 and reading
backward from right to left, the length of the types increases by 2 from one to
the next. The length of the rightmost type Tl−1 is 2 + 2m + 1 . Therefore

q′ =
∑j=n

j=1 (2j + 2m + 1)
= n(2m + 1) + n(n + 1)
= k2 + 2k −m2 − 2m

Hence, q = k2 + 3k −m2 −m + 3 ≤ k2 + 3k + 1.

The canonical reduction defines the semantic dependencies as well. This
follows from the next lemma, where a path in the oriented graph G represents
the successive substitutions and instances of the identity axiom intervening in
the interpretation.

Lemma 13. Let k > n ≥ 0 and G = 〈V0 ∪ V1, E0 ∪ E1〉 be the oriented graph
defined as follows

V0 = {aij : 0 ≤ i ≤ n, 1 ≤ j ≤ k − i} (functional symbol)
V1 = {xlp : 1 ≤ l ≤ n + 1, 1 ≤ p ≤ k − l} (variable)

and

E0 = {〈aij , xi+1,j〉 : 0 ≤ i ≤ n, 1 ≤ j ≤ k − i} (substitution)
E1 = {〈xil, ai,l−1〉 : 1 ≤ i ≤ n, 2 ≤ l ≤ k − i} (identity axiom) .

Then for 1 ≤ j ≤ k there is a unique maximal path starting at a0j . Moreover,
xl,j+1−l and ai,j−i are on this path for all l such that 1 ≤ l ≤ n+1 and j− l ≥ 0
and all i satisfying j − i ≥ 1 and 0 ≤ i ≤ n .

16

Proof. Straightforward by induction on k. The graph looks like this for k =
4, n = 2, where the underlinks represent the edges in E0 and the overlinks the
edges in E1

(a01a02a03a04) (x14x13x12x11 a11a12a13) (x23x22x21 a21a22)(x32x31) .

Pregroup Grammar with Copying Rules

(Stabler 2004) [23] considers copying grammars when analysing crossing de-
pendencies in human languages. Following this lead, define the following finite
pregroup grammar enriched with two copying rules

dictionary entries copying rules
zag (saw) : NP rNP rs̄i`δ
leren (teach): δrδrii`δ

NP rTδ → NP rNP rTδδ
δrTδ → δrδrTδδ

.
(18)

The copying rules are not derivable in Pregroup Calculus. Therefore the graph-
ical representations of derivations is lost and with them the mathematical struc-
ture of the proofs. Moreover, the semantical interpretation of the control verbs
cannot be read off the type in the dictionary but must be constructed during
the proof by a semantic copying rule parallel to the grammatical copying rule.

It is easy to see that every clause recognized by the polynomial pregroup
grammar is also recognized by the finite grammar with copying rules. Indeed,
let T1, . . . , Tn be a type assignment for w1, . . . , wn from the infinite dictionary
with a reduction r to the clause type. The corresponding type assignment
T ′j , 1 ≤ j ≤ n from the finite dictionary has the following derivation to the
clause type. For every type Tj of the form [pj]NP rs̄i`[pj − 1]δ respectivley
[pj]δrii`[pj − 1]δ apply pj − 2 times the coppying rule to T ′j = NP rNP rs̄i`δ

respectivley to T ′j = δrδrii`δ . The resulting compound type is T1, . . . , Tn .
Then apply the contraction rule as indicated by the links of r.

The converse also holds. A string derivable in the copying grammar also has
a reduction in the polynomial grammar. First show that an arbitrary derivation
can be replaced by one where all copying rules are applied before the contraction
rule. Then use an argument similar to that establishing the second part of
Theorem 1.

Swiss German Subordinate Clause

According to the analysis of (Shieber) [22], the Swiss-German subordinate clause
has the same semantic cross-serial dependencies as Dutch, but they are also
expressed in the syntax by case marking. This can be captured by distinguishing
the types for noun phrases NP nom, NP dat, NP acc as well as the dummy types

17

δnom, δdat, δacc . The proofs are similar to the preceding ones. In particular,
correct semantical dependencies guarantee correct syntax.

Old Georgian Noun Phrase

The pregroup grammar below generates compound noun phrases of Old Geor-
gian according to the analysis of [9]. The dictionary lists an infinite number
of distinct words. Indeed, Old Georgian uses genitive suffixes for possessive
compound noun phrases. The genitive suffix is appended to noun(stem)s or
names. When the construction is repeated, the previous genitive suffixes are
also repeated.

govel-i igi sisxl-i saxl-isa-j m-is Saul-is-isa-j
all-Nom Art=Nom blood-Nom house-Gen-Nom Art-Gen Saul-Gen-Gen-Nom

‘all the blood of the house of Saul’

(19)

More generally, compound nominative noun phrases have the form

N1-Nom N2-Gen-Nom N3-Gen
2
-Nom . . . Nk-Gen

k−1
-Nom . (20)

Square brackets highlight semantic dependencies as follows

[N1-Nom [N2-Gen-Nom [N3-Gen
2-Nom . . . [Nk-Gen

k−1-Nom]NP k
. . .]NP 3]NP 2]NP 1 .

Assume the basic types NP nom, Nnom and G for nominative noun phrases, nom-
inative common nouns and genitive suffixes in that order. For each p ≥ 0,
the word Name-Genp-Nom respectively Noun-Genp-Nom has two entries in the
dictionary, namely

Name-Genp-Nom :

{
NP nom [p]G
NP nom [p]G [p + 1]G` NP `

nom

Noun-Genp-Nom :

{
Nnom [p]G
Nnom [p]G [p + 1]G`NP `

nom .

(21)

Common nouns are preceded4 by a determiner to form noun phrases like

Art = Nom Noun-Nom
Art-Gen Noun-Genp-Nom .

(22)

Adding the following entries to the dictionary

Art = Nom : NP nom N `
nom

Art-Gen : NP nomGG`N `
nom ,

(23)

each of the noun phrases (22) has two possible types, each of which reduces to
the type of a noun phrase. For p ≥ 1, the types for Art-Gen Noun-Genp-Nom
are

(NP nomGG`N `
nom) (Nnom [p]G) → NP nom[p]G ,

(NP nomGG`N `
nom) (Nnom [p]G [p + 1]G` NP `

nom) → NP nom [p]G [p + 1]G` NP `
nom .

4The determiner may also follow its noun. This is ignored here.

18

The length of the type at the left of → exceeds that of the reduced type by 4.
It follows that every string of words of the form (20) has a unique type

assignment with a reduction to the noun phrase type NP and vice versa. The
length of the assigned type can be expressed as a square polynomial in the
length of the string.

4 Tagging and Parsing Algorithm

Ambiguity enters parsing by pregroup grammars in two ways. There may be
different type assignments with a reduction to the sentence type or a fixed type
assignment of length q may have (up to 2q) distinct reductions to the sentence
type. Testing every type assignment for an eventual reduction to the sentence
type is highly inefficient even if the dictionary is finite. The usual cubic-time
polynomial recognition algorithms do not construct reductions and rely on the
fact that the dictionary is finite or at least that there is a constant bounding
the number of types per word in the dictionary. Some authors use ‘parsing’ in
the weak sense that the algorithm constructs a reduction to the sentence type
for a given type assignment, whereas the choice of a type assignment is called
‘tagging’. ‘Parsing’ is used here in the following stronger sense.

Definition 6. A recognition algorithm decides whether or not a string of words
w1 . . . wl ∈ Σ∗ has a type assignment T1, . . . , Tl such that the concatenated type
T1 . . . Tl has a reduction to the sentence type. A parsing algorithm is an algo-
rithm that decides whether or not a string of words is a sentence and, if the
answer is yes, computes a type assignment and a reduction to the sentence type.

Recognition is sufficient for formal languages, but parsing is indispensable for
natural languages, because the semantic interpretation of a sentence is defined
via the derivation to the sentence type.

The algorithm below is a variant of the algorithm in (Preller 2007-2) [19].
It processes the string of words from left to right and chooses a type for each
word. The choice relies on a tagging strategy motivated by properties specific
to the languages Li of the preceding section. The strategy avoids ‘losing’ type-
assignments as soon as possible. That is to say it avoids a type assignment
T1, . . . , Ti that cannot be extended to a type assignment T1, . . . , Ti, Ti+1, . . . , Tl

with a reduction to the sentence type.

4.1 The Algorithm

A stack of non-negative integers is defined inductively. The empty symbol ∅
is a stack, called the empty stack. If S′ is a stack and i a non-negative integer
then 〈S′, i〉 is a stack. The functions top and pop send a stack 〈S′, i〉 to its top
i and to its tail S′ respectively. They are undefined for the empty stack.

When processing the string w1 . . . wl ∈ Σ∗, the algorithm moves through a

19

subset of the following set of stages

Sw1...wl
= {(i;T1, . . . , Ti; p) : 1 ≤ i ≤ l, 1 ≤ p ≤ qi, Tj ∈ D(wj), 1 ≤ j ≤ i}

∪ {(i;T1, . . . , Ti−1, 1; 0) : 1 ≤ i ≤ l + 1, Tj ∈ D(wj), 1 ≤ j ≤ i− 1}
∪ {sin} ,

where qi is the length of the type Ti and sin is a new symbol denoting the initial
stage.

A partial order is defined on the set of stages as follows

sin ≤ s for all s
(i;T1, . . . , Ti; p) ≤ (i′; T ′1, . . . , T

′
i′ ; p

′) ⇔ i < i′, Tj = T ′j for 1 ≤ j ≤ i
or
i = i′, p = 0, Tj = T ′j for 1 ≤ j < i
or
i = i′, 1 ≤ p ≤ p′, Tj = T ′j , 1 ≤ j ≤ i .

This partial order induces a total order on the set of all stages less or equal to a
given stage. Moreover, all stages of the form (l+1; T1, . . . , Tl, 1; 0) are maximal.

Every non-initial stage s has a unique predecessor s− 1, given by

(i; T1, . . . , Ti; p)− 1 =

(i; T1, . . . , Ti; p− 1), if p ≥ 2
(i; T1, . . . Ti−1, 1; 0) if p = 1
(i− 1; T1, . . . , Ti−1; qi−1) if p = 0 and i > 1
sin if p = 0 and i = 1 .

A non-initial stage is tagging if its last integer p = 0 and testing otherwise.
Every testing stage s has a unique successor s + 1, namely

(i;T1, . . . , Ti; p) + 1 =

{
(i; T1, . . . , Ti; p + 1) if p < qi

(i + 1; T1, . . . , Ti, 1; 0) if p = qi and i ≤ l .

The algorithm executes two subroutines, tagging and testing, for each word
wi . When at tagging stage (i; T1, . . . , Ti−1, 1; 0), i ≤ l, the algorithm has fin-
ished processing the type T1 . . . Ti−1. The tagging routine tagD either chooses
a type Tag ∈ D(wi) or decides to stop and updates the constant output. The
computation of Tag involves a constant key that depends on the language whose
sentences are to be parsed. The routine tagD is defined in the next subsection.
At a maximal stage (l + 1; T1, . . . , Tl; 0), the output is updated to the result
computed so far.

Recall that the types Tj at stage s = (i;T1, . . . , Ti; p) are strings of simple
types Tj = tj1 . . . tjqj . Each testing stage s = (i; T1, . . . , Ti; p) defines a working
position p(s) = q1 + · · · + qi + p, the simple type read tp(s) = tip and the
type processed T (s) = t1 . . . tp(s) = t11 . . . t1q1 . . . ti1 . . . tip . To keep notation
uniform, define p(sin) = 0 and t0 = 1. Note that for every testing stage s
and positive integer i′ ≤ p(s), there is a unique testing stage s′ ≤ s such that
i′ = p(s′).

20

When in testing stage s, the algorithm checks if tp(s) contracts with the
last not yet contracted simple type and updates the stack of positions S(s) and
the reduction R(s). The latter contains the links computed so far. The former
contains the unlinked positions in increasing order such that the top of the stack
is the position of the last unlinked simple type.

Finally, the irreducible substring I(s) of T (s) consisting of the unlinked
simple types in the order given by the stack S(s) is defined by

I(sin) = 1, I(〈S′, j〉) = I(S′)tj .

Definition 7. Tagger-Parser
H At the initial stage s = sin, key, output, S and R are initialized to

key = undefined, output = undefined, S(sin) = 〈∅, 0〉 , R(sin) = ∅ .

Then the process goes to the first tagging stage

s = (1; 1; 0)

H At tagging stage s = (i;T1, . . . , Ti−1, 1; 0), the stack and reduction remain
unchanged

S(s) = S(s− 1), R(s) = R(s− 1) .

If i = l + 1 the process is in a maximal stage and updates output

output = 〈R(s− 1), T (s− 1), I(s− 1)〉
If i ≤ l, the next type Ti is chosen

tagD(i)
Ti = Tag

and the process goes to the next stage unless tagD(i) updates output to fail

if output 6= fail then s = (i; T1 . . . , Ti−1, Ti; 1)

H At testing stage s = (i; T1, . . . , Ti; p), p ≥ 1,

S(s) =

{
pop(S(s− 1)) if ttop(S(s−1))tp(s) → 1
〈S(s− 1), p(s)〉 else

R(s) =

{
R(s− 1) ∪ {{top(S(s− 1)), p(s)}} if ttop(S(s−1))tp(s) → 1
R(s− 1) else

Then the process goes to the next stage

s = s + 1 .

The proof of the next lemma is given in (Preller 2007-2) [19].

Lemma 14. For every stage s = (i;T1, . . . , Ti; p) , the string of simple types
I(s) associated to the stack S(s) is an irreducible substring of T (s) and R(s) is
a reduction from T (s) to I(s).

21

4.2 Tagging Strategy

The strategy is based on the fact that a sentence has a unique derivation to the
sentence type. The strategy chooses the type a word must have if the whole
string is a sentence. Testing validates or invalidates that choice.

In the case of the formal language L1, the key index for w1 . . . wl is l/2 + 1.
If the latter is not an integer, the string is not a sentence. At the first tagging
stage (1; 1; 0), processing is stopped if the length l of the string is odd.

tagD1
(i)

if i = 1
if l/2 6= dl/2e let output=fail
else key = l/2 + 1

if i < key let Tag = wi

if i = key let Tag = wr
i−1 . . . wr

2w
r
i s w̄i−1 . . . w̄2

if i > key let Tag = w̄r
i

In the case of L3, the routine tagD3
tests whether the length is even. If

this not the case the string w1 . . . wl is not a sentence. Otherwise, it computes
the number m of repetitions of the first word w1 . If w1 . . . wl is a sentence the
number n of repetitions of wm+1 satisfies n = l/2 − m and the key satisfies
key = 2m + n + 1 .

tagD3
(i)

if i = 1
if l/2 6= dl/2e let output=fail
else let Tag = wi

if i > 1 and key = undefined
let Tag = wi

if wi 6= wi−1 let key = l/2 + i , m = i− 1, n = l/2− (i− 1)
if i < key let Tag = wi

if i = key let Tag = [m]wr
m+n+1[n]wr

m+1[m]wr
1s w̄`

i [n]w̄i

if i > key let Tag = w̄r
i

The case of L2 is similar with the appropriate adaptations .
Finally, in the case of the Dutch dictionary D4, the types are chosen accord-

ing to the following properties of a subordinate clause
- the key-index key must be the first p for which wp is a causal verb in finite

form
- the non-causal words have a unique type in the dictionary
- every word after the key-word except the last is a causal infinitive. The

last is a non-causal infinitive.
tagD4

(i)
if key = undefined
if wi is an infinitive let output=fail
else
if wi is not a causal verb in finite from let Tag ∈ D(wi)

22

Tag S R

sin undefined 〈∅, 0〉 ∅
(1; 1; 0) T1 = NP 〈∅, 0〉 ∅
(1; T1; 1) NP 〈〈∅, 0〉, 1〉 ∅
(2; T1, 1; 0) T2 = NP 〈〈∅, 0〉, 1〉 ∅
(2; T1, T2; 1) NP 〈〈〈∅, 0〉, 1〉, 2〉 ∅

(3; T1, T2, 1; 0)
T3 =
NP rNP rs̄i`δ

〈〈〈∅, 0〉, 1〉, 2〉 ∅

(3; T1, T2, T3; 1) NP rNP rs̄i`δ 〈〈∅, 0〉, 1〉 {2, 3}
(3; T1, T2, T3; 2) NP rNP rs̄i`δ 〈∅, 0〉 {{2, 3} , {1, 4}}
(3; T1, T2, T3; 3) NP rNP rs̄i`δ 〈〈∅, 0〉, 5〉 {{2, 3} , {1, 4}}
(3; T1, T2, T3; 4) NP rNP rs̄i`δ 〈〈〈∅, 0〉, 5〉, 6〉 {{2, 3} , {1, 4}}
(3; T1, T2, T3; 5) NP rNP rs̄i`δ 〈〈〈〈∅, 0〉, 5〉, 6〉, 7〉 {{2, 3} , {1, 4}}
(4; T1, T2, T3, 1; 0) T4 = δri 〈〈〈〈∅, 0〉, 5〉, 6〉, 7〉 {{2, 3} , {1, 4}}
(4; T1, . . . , T4; 1) δri 〈〈〈∅, 0〉, 5〉, 6〉 {{2, 3} , {1, 4}}∪

{{7, 8}}
(4; T1, . . . , T4; 2) δri 〈〈∅, 0〉, 5〉 {{2, 3} , {1, 4}}∪

{{7, 8} , {6, 9}}

Table 1: Processing Marie Jan zag zwemmen.

if wi is a causal verb in finite form and i > 1 let key = i, k = i − 1 and
Tag = [k]NP r s̄ i`[k − 1]δ else let output=fail

if i > key
if wi is an infinitive
of a causal verb let p = k − (i− key) and Tag = [p]δr i i`[p− 1]δ
of a non-causal verb let Tag ∈ D(wi)

else output=fail
When fed the string of words Marie Jan zag zwemmen the parser goes

through the following stages and values. The constant key remains undefined
until a causal verb in finite form wi is encountered. There the value is updated
to i and remains unchanged afterwards. The values of the other constants are
listed in Table 1 below. At the maximal stage sfin = (5; T1, . . . , T4, 1; 0) , the
output is updated to

R(sfin) = {{2, 3} , {1, 4} , {7, 8} , {6, 9}}
T (sfin) = NPNPNP rNP rs̄i`δδri
I(sfin) = s̄

One could argue following (Lambek 2008-2) [13] that simple types represent
bits of information to be stored in the short-term memory (limited to 7±2 bits)
when processing a string of words. The present algorithm seems to confirm this
claim. Theoretically, a Dutch speaker can form subordinate clauses of arbitrary

23

length. In practice, three to four noun phrases between dat and the causal verb
in finite form are rarely exceeded. For two noun phrases, the stack contains at
most four bits. With three noun phrases, it goes up to five, with four to six.
Accepting that the types represent the patterns in which a word can appear, one
also accepts that they are learned in childhood and ‘hard-wired’. This includes
the pattern of causal verbs represented by [p]NP rsi`[p − 1]δ, where p is 2 or
more. They are downloaded to the ‘working’ memory where the subconscious
processing goes on and only the result ends up in the short-term memory.

Theorem 3. The string of words w1 . . . wl is a sentence if and only if the
tagging-parsing algorithm reaches a maximal stage such that output = 〈R, T, s〉 .
If this is the case, R is a reduction of T to s . Moreover, the algorithm is linear
for the formal languages and square polynomial for the natural languages.

Proof. The first assertion follows from Lemma 14 and Lemma 1. Moreover, the
number of basic steps executed at a testing stage is bounded by a constant.
It is proportional to the length of the chosen type at a non-maximal tagging
stage. Finally, updating the output at a maximal stage sfin is proportional to
the length of T (sfin).

5 Conclusion

It may be worth-while to investigate whether the degree of the polynomial of a
pregroup grammar can serve as a classification for (natural) languages. Indeed,
proof-search in the Pregroup Calculus is bounded by a cubic polynomial in
the length of types. Therefore in general, the search for a derivation is cubic
polynomial in the length of the type even after type assignment. This is in
opposition to categorial grammars based on Syntactic Calculus where proof-
search is NP-complete, (Pentus 2003) [15]. Hence, the ratio of the length of
the concatenated type over the number of words is essential when designing a
pregroup grammar with an efficient algorithm.

The parsing complexity for the languages considered here is lower than the
general cubic polynomial limit because proof-search is linear for the sets of
types occurring in the dictionaries and because the algorithm constructs a single
derivation while processing from left to right. Proof-search remains linear for
larger classes of types than those mentioned here. This gives rise to grammars for
language fragments involving relative pronouns and coordination, subject and
object control, agreement of features among others. In fact, these grammars
have been designed for a complete linear deterministic parsing algorithm with
occasional backtracks producing a planar dependency graph. Empirical studies
based on large scale treebanks in (Nivre) [14] show that such algorithms are
highly accurate for other formalisms in general where no proof of completeness
exists.

Acknowledegement

The author is grateful to an anonymous reader for many helpful remarks.

24

References

[1] Bhatt Rajesh, Joshi Aravind (2004). Semilinearity is a syntactic invariant:
A reply to Michaelis and Kracht 1997. Linguistic Inquiry: 35, pp. 683-692

[2] Bresnan Joan, Ronald M. Kaplan, Stanley Peters and Annie Zaenen (1987),
Cross-Serial Dependencies in Dutch, in: The Formal Complexity of Natural
Language, Walter Salvitch, ed., Reidel Publishing Company, pp. 286-319

[3] Buszkowski Wojciech (2001), Lambek Grammars based on pregroups, in:
P. de Groote et al., editors, Logical Aspects of Computational Linguistics,
LNAI 2099, Springer LIRMM N 03O24, 2003

[4] Buszkowski Wojciech (2002), Cut elimination for the Lambek calculus of
adjoints, in: Abrusci et al., (eds), Papers in formal linguistics and logic,
Bulzoni, Bologna

[5] Francez Nissim, Michael Kaminski (2007), Commutation Augmented
Pregroup Grammars and Mildly Context Sensitive Languages, in: W.
Buszkowski and A. Preller, editors, Studia Logica, Vol.87, issue 2:3, pp.
295-321, Springer
doi:10.1007/s11225-007-9088-z

[6] Kamp Hans, Uwe Reyle (1993), From Discourse to Logic, Introduction to
Modeltheoretic Semantics of Natural Language, Kluwer Academic Publish-
ers

[7] Kracht Marcus (2007), Compositionality:“The Very Idea, Research in Lan-
guage and Computation”, 5:287-308

[8] Kuhlmann Marco, Joakim Nivre(2006), Midly Non-Projective Dependency
Structure, Proceedings of the COLING/ACL on Main conference poster
sessions, pp. 507- 514

[9] Michaelis Jens, Marcus Kracht (1997), Semilinearity as a syntactic invari-
ant,in: Ch. Retoré, editors, Logical Aspects of Computational Linguistics,
Springer Lecture Notes in Computer Science, 1328, pp. 329-345

[10] Lambek Joachim (1958), The mathematics of sentence structure, American
Mathematical Monthly 65, pp.154-170, 1958

[11] Lambek Joachim (1999), Type Grammar revisited, in: Alain Lecomte et
al., editors, Logical Aspects of Computational Linguistics, Springer LNAI
1582, pp.1-27

[12] Lambek Joachim (2008), From word to sentence, Polimetrica, Milano, Italy
2008, ISBN 978-88-7699-117-2

[13] Lambek Joachim (2008), Reflections on English Pronouns, in: Casadio,
Claudia and Joachim Lambek (eds.), Computational and Algebraic Ap-
proaches to Natural Language, pp. 233-253 , Polimetrica, Milano, Italy

25

[14] Nivre Joakim (2008), Algorithms for deterministic incremental dependency
parsing, Computational Linguistics, Volume 34, Issue 4, 513-553

[15] Pentus Mati (2003), Lambek calculus is NP-complete, CUNY ph.D. Pro-
gram in Computer Science Technical Report TR-2003005, CUNY Graduate
Center, New York
http://www.cs.gc.cuny.edu/tr/techreport.php?id=79

[16] Pollard Carl and Ivan A. Sag, Head-driven phrase structure grammar, The
University of Chicago Press, 1994

[17] Preller Anne, Joachim Lambek (2007), Free compact 2-183-226, 1987 cat-
egories, Mathematical Structures for Computer Sciences, 17(1), 1-32

[18] Preller Anne (2007), Toward Discourse Representation Via Pregroup Gram-
mars, JoLLI, Vol.16, pp. 173-194
doi:10.1007/s10849-006-9033-y

[19] Preller Anne (2007), Linear Processing with Pregroup Grammars, in: W.
Buszkowski et al., editors, Studia Logica, vol. 87, issue 2:3, pp. 171 - 197
doi:10.1007/s11225-007-9087-0

[20] Pullum Geoffrey, Gerald Gazdar (1987), Natural Languages and Context
Free Languages, in: The Formal Complexity of Natural Language, Walter
Salvitch, ed., Reidel Publishing Company, pp. 138-182

[21] Salvitch Walter, Emmon Bach, William Marsh and Gila Safran-Naveh
(1987), Introduction to Part III, in: The Formal Complexity of Natural
Language, Walter Salvitch et al., ed., Reidel Publishing Company, pp. 283-
285

[22] Shieber Stuart M. (1987), Evidence Against the Context-Freeness of Nat-
ural Language, in: The Formal Complexity of Natural Language, Walter
Salvitch, ed., Reidel Publishing Company, pp. 320-334

[23] Stabler Edward (2004), Varieties of crossing dependencies: Structure de-
pendence and mild context sensitivity, Cognitive Science 28(5), pp. 669-720

[24] Stabler Edward (2008), Tupled Pregroup Grammars, in Claudia Casadio,
Joachim Lambek (eds.),Computational and Algebraic Approaches to Natu-
ral Language, Polimetrica, Milano, Italy

[25] Steedman Mark (1996), Surface Structure and Interpretation, Cambridge
Mass.: MIT Press, Linguistic Inquiry Monograph, 30

26

