PSYCHOVISUAL ROTATION-BASED DPTC WATERMARKING SCHEME

Author : Marc CHAUMONT (LIRMM)

Speaker : Dalila GOUDIA (PhD Student - LIRMM)

The 17th European Signal Processing Conference (EUSIPCO’2009), August 24-28, 2009, Glasgow, Scotland.
OUTLINE

- Few words about high rate watermarking schemes
- The Rotation-Based Dirty Paper Trellis Code Algorithm: RB-DPTC
- How to add a psycho-visual space?
- Experimental evaluations
- Conclusion
FEW WORDS ABOUT HIGH RATE WATERMARKING SCHEMES
HIGH RATE WATERMARKING SCHEMES

- Quantized-based:
 - DC-QIM, SCS, RDM, Perceptual-QIM...

- Trellis-based:
 - DPTC

- Mix of Quantized-based and Trellis-based:
 - T-TCQ

⇒ payload ≈ 1 bit embedded for 64 pixels
 (image 256×256 ⇒ 1024 bits embedded)
The Rotation-Based Dirty Paper Trellis Code Algorithm: RB-DPTC
RB-DPTC WATERMARKING SCHEME [1] - EMBEDDING SPACE -

- x : host signal
- w : watermark signal
- y : watermarked signal
- $\{u_i\}_{i=1}^{N_{sec}}$: carriers (normalized bipolar pseudorandom sequences)
- v_x : host vector = secret space
- v_w : watermark vector = (watermark in the secret space)

Author: M. CHAUMONT, Speaker: D. GOUDIA
HOW TO ADD A PSYCHO-VISUAL SPACE?
RB-DPTC
WATERMARKING SCHEME [1]

Author: M. CHAUMONT, Speaker: D. GOUDIA
PSYCHOVISUAL RB-DPTC WATERMARKING SCHEME
PSYCHOVISUAL RB-DPTC WATERMARKING SCHEME

- x_{psy}: psychovisual space
- **Shaping of the watermark:**
 \[\forall i \in [1,N_{wlt}], w[i] = w_{psy}[i] \times \alpha[i] \]
EXAMPLE OF PSYCHOVISUAL MASKS

Rudimentary

Construction:
1. high pass filtering ($I_{filtered}$)
2. DWT and filling of vector β
3. $\alpha =$ absolute coefficients from β scaled between $[1, \alpha_{\text{max}}]$

Pixel-Wise Mask (PW-M)

PW-M [3]:

$$\alpha_l^\theta (i, j) = \Theta(l, \theta).\Lambda(l, i, j).\Xi(l, i, j)^{0.2}$$

- (i,j): position in subband
- l: resolution level
- $\theta \in \{a,h,v,d\}$: orientation

- $\Theta(l, \theta)$: noise sensitivity
- $\Lambda(l, i, j)$: local brightness
- $\Xi(l, i, j)$: local texture activity
- α scaled between $[1, \alpha_{\text{max}}]$

Barbara crop to 512×512

Wavelet decomposition

Rudimentary mask

Xie and Shen mask
CORRECTING CODE

- Add of a convolution correcting code
 2-memory, 1/2-rate
 - Encoding with the state machine
 - Decoding with Viterbi algorithm

The message is encoded before embedding

The use of a psychovisual mask may lead to a less robust scheme
Evaluation Protocol

- 100 images 256×256

- Payload = 1 bit (message) for 64 pixels
 - 1024 bits embedded for RB-DPTC.
 - 2048 bits embedded for new algorithms.

- Trellis: 128 states, 128 arcs by state

- Outputs arc labels: Gaussian distribution
 - number of labels by output arc: 12 (RB-DPTC) or 10.
ALGORITHMS

3 Algorithms are competing (fix SSIM = 98%):

- RB-DPTC (no psychovisual mask, no correcting code)
- PR-RB-DPTC (rudimentary mask + correcting code)
- PXS-RB-DPTC (Xie and Shen mask + correcting code)

4 attacks:
- Gaussian noise,
- Gaussian filtering,
- Valumetric scaling,
- Jpeg attack.
ATTACKS (1) – FIXED SSIM = 98%

Gaussian noise attack

Gaussian Filtering attack

Author: M. CHAUMONT, Speaker: D. GOUDIA
ATTACKS (2) – FIXED SSIM = 98%

Valumetric scaling attack

Jpeg attack
CONCLUSION & DISCUSSION
CONCLUSION & DISCUSSION

- Integration of a psychovisual mask inside RB-DPTC
- 10% BER saving (filtering & volumetric attack) for low power attacks

OPEN ISSUES:
- Sensitivity to Jpeg attack
- Relation between SSIM and penetration angle
- Construction of a robust psychovisual mask

PSYCHOVISUAL ROTATION-BASED DPTC WATERMARKING SCHEME

Author : Marc CHAUMONT (LIRMM)
Speaker : Dalila GOUĐIA (PhD Student - LIRMM)
RB-DPTC WATERMARKING SCHEME
- EMBEDDING SPACE -

Author: M. CHAUMONT, Speaker: D. GOUDIA
RB-DPTC WATERMARKING SCHEME
- INFORMED CODING & EMBEDDING -
RB-DPTC WATERMARKING SCHEME - INFORMED CODING & EMBEDDING -

- **Informed coding:**
 - identical to [2] (Trellis + Viterbi)
 - Input = \((v_x \text{ and message})\), Output = codeword \(c^*\)

- **Informed embedding:**
 - rotate \(v_x\) in the “Miller Cox Bloom plane”
 - and penetrate inside the Voronoï region
 - \(v_w = v_y - v_x\)