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Abstract

We consider the deduction problem in the fragment of firsteologic
(FOL) composed of existentially closed conjunctions @fréis (without func-
tions), denoted FO{3, A, =, }. This problem can be recast as several funda-
mental problems in artificial intelligence and databasesely query con-
tainment for conjunctive queries with negation, clauseément for clauses
without functions and query answering with incomplete mfation for boolean
conjunctive queries with negation over a fact base. Dedndti FOL{3, A, -, }
is I}’ -complete, whereas it is only NP-complete when the formatagain
no negation. We investigate the role of specific literalshis tomplexity
increase. These literals have the property of being “exgbahle”, with this
notion taking the structure of the formulas into account. fdous on the
structure of formulas, we see them as labeled graphs. Gi@plimorphism,
which provides a sound and complete proof procedure fottigegormulas,
is at the core of this study. Let Deductjphe the following family of prob-
lems: given two formulag andh in FOL{3, A, =, }, such thay has at most
k pairs of exchangeabile literals, cafe deduced from? The main results
are that Deductiopis NP-complete it: < 1, and inPN" for any value ofk;
moreover, it is both NP-difficult and co-NP-difficult fér > 3. As a corol-
lary of our proofs, we are able to classify exactly previoushtems when
g is decomposable into a tree. Finally, several complemgm&sults and
extensions are provided.

Keywords: Complexity, first-order logic, deduction, negation, grapihomo-
morphism, query containment, clause implication, coneapgraphs.

Remark: A shorter version has been submitted for publication to arjall This
shorter version does not integrate the alternative prodfew results based on a
logical approach (Sect. 5) nor the extension to a preordethanset of predicates
(Sect. 6).
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1 Introduction

In this paper, we study the complexity of deduction checkimghe fragment of
first-order logic (FOL), composed of existentially closamhjtinctions of literals.
Literals may contain constants but no other function symbBOL{3, A, -} de-
notes this fragment, and FQE, A} is the subfragment with positive literals only.
The DEDUCTION problem in a given fragment takes two formukaandh of this
fragment as input, and asksgiftan be deduced fror.

Equivalent problems. FOL{3, A, —,}-DEDUCTION can be seen as a representa-
tive of several fundamental problems in artificial intedligce and databases. It can
be immediately recast asquery containmenthecking problem, which is one of
the fundamental problems in databases. This problem tak@egueriesy; andg.

as input, and asks if; is contained inys, i.e. if the set of answers tg is included



in the set of answers tg, for all databases (e.g. [AHV95]). Algorithms based
on query containment can be used to solve various problemh, & query eval-
uation and optimization [CM77, ASU79], rewriting queriesing views [Hal01],
detecting independance of queries from database updag&33JLetc. The so-
called (positive)conjunctive queriesorm a class of natural and frequently used
gueries and are considered as the basic database querié&’ [@QN89]. Their
expressive power is equivalent to the select-join-projretries of relational alge-
bra and to non-recursive Datalog rules. Conjunctive gsesigh negation extend
this class with negation on atoms. Query containment chgcfdar conjunctive
gueries with negation (resp. positive conjunctive quegrieessentially the same
problem as FO{3, A, -, }-DEDUCTION (resp. FOL{ 3, A}-DEDUCTION), in the
sense that there are natural polynomial reductions fronmt@a@other, which pre-
serve the structure of the objects. Another related proliteantificial intelligence

is theclause entailmenproblem, a basic problem in inductive logic programming
[MR94]: given two clauses’; andCy, doesC, entail Cy? If we consider first-
order clauses, i.e. universally closed disjunctions efdils, without function sym-
bols, by contraposition, we obtain an instance of ROLA, -, }-DEDUCTION. Let

us now look at this from a knowledge representation pergmech key problem is
qguery answeringwhich, generally speaking, takes a knowledge base andrg que
as input and asks for the set of answers to the query that ceetrimyved from the
knowledge base. When the query is a boolean query, i.e. wybsfno answer,
the problem can be recast as checking whether the query cdedoeed from the
knowledge base. In the case where the knowledge base is/siorpposed of a set
of positive and negative facts, i.e. existentially closedjanctions of literals, and
the query is a boolean conjunctive query with negation, waiold=OL{3, A, =, }-
DEDUCTION. Finally, even if this aspect is out of the scope of the prepaper,
let us mention that a partial order on predicates, or moregdy a preorder, can
be taken into account without increasing complexity. THieves to represent a
knowledge base with a light ontology and a set of facts builthds ontology. We
then obtain FOK3, A, =, }-DEDUCTION extended to preordered predicates, which
is exactly the deduction problem in a fragment of concepguaphs, callegbolar-
ized conceptual grapH&er01][MLO7].

Complexity and “exchangeable” literals. Whereas FOE3, A}-DEDUCTIONis

“only” NP-complete, FO{3, A, =, }-DEDUCTION is T}’ -completé (see Section
7). Some specific cases where FQLA, —,}-DEDUCTION has a lower com-
plexity are known but they enforce strong restrictions oa finoblem instances:

1T is (co-NP)NT.
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Figure 1: A polarized graph

briefly said, ifg does not contain any pair of opposite and unifiable litératsen
FOL{3, A, -, }-DEDUCTION becomes NP-complete (see Section 7). The aim of
this paper is to investigate the complexity gap between clémiu checking in
FOL{3,A} and FOL{3, A, —,}. For that, we study the role of specific pairs of
literals in the complexity increase. These literals haweploperty of being “ex-
changeable”, with this notion being relative not only to literals themselves, but
also to the structure of both formulas. We show that thesealg are indeed respon-
sible for the complexity increase, in the sense that if thelmer of exchangeable
literals ing is boundedthen the complexity falls into lower classes of the polyno-
mial hierarchy. The complexity results proven in this pageneralize the results
obtained in the various variants of the problem (for inseatite query inclusion
problem or the clause implication problem).

Graph Tools. We shall see formulas as labeled graphs to focus on theatsteu
and rely on graph notions like paths, connectivity or cyttic These graphs are
called polarized graphs (PGs) (name borrowed to [KerOlhadontext of con-
ceptual graphs). More specifically, a FQL A, —,} formula is represented as a
bipartite graph with two kinds of nodes: relation nodes arthtnodes. Each term
of the formula becomes a term node, labeladit is a variable, otherwise by the
constant itself. A positive (resp. negative) literal witle@icate symbol becomes
a relation node labeledr (resp. —r) and it is linked to the nodes assigned to its
terms. The numbers on edges correspond to the position bftean in the literal.
See Figure 1 for an example. In the sequel of this sectiomutas are denoted
by small letters 4 and h) and the associated graphs by the corresponding capital
letters (G and H).

Homomorphism is a core notion in this study. Basically, a bomrphism

%i.e. in the formp(u) and—p(v), wherep(u) andp(v) are unifiable.



from one algebraic structure to another maps the elemerttsedirst structure to
elements of the second structure while preserving theioakbetween elements.
A homomorphismr from a graphG to a graphH is a mapping from nodes @F

to nodes offH, which preserves edges, i.e.aif is an edge of+ thenr(x)w(y) is
an edge offf. Since polarized graphs are labeled, there are additianaditons
on labels: a relation node is mapped to a node with the sane& lalterm node
can be mapped to any term node if it is labeledtherwise it is mapped to a node
with the same constant. Numbers on edges are preserved.slptint out that,
given two formulasgy and/ in FOL{3, A, —,}, one can identify the notions of a
substitutiono for variables ing, s.t. the literals ot (g) are contained irk, and

a PG homomorphism frortr to H. FOL{3, A}-DEDUCTION can be solved by a
substitution check, or equivalently by a homomorphism &lmtthe PGs assigned
to the formulas. This homomorphism check still provides angbprocedure for
deduction in FOK3, A, .}, i.e. the existence of a homomorphism fraghto
H implies thatg can be deduced frorh, but of course it is no longer complete,
i.e. g may be deducible fronk even if there is no homomorphism frod to
H. FOL{3, A, —,}-DEDUCTION can be recast as a problem on PGs involving a
number of homomorphism checks exponential in the sizH of

Contributions of the paper. The results achieved in this paper can be summa-
rized as follows. We first point out thatgfhasno pair of exchangeable literals, then
FOL{3, A, —,}-DEDUCTION has the same complexity as in the positive fragment
(indeed it can be computed by a homomorphism check, thus-isddiplete). It is
then proven that the problem remains NP-completeliisonepair of exchange-
able literals. A natural question that arises is whetherctiraplexity of deduction
checking decreases whgnhas aboundednumber of exchangeable literals. Let
DEDUCTION; be the following family of problems: given two formulgsandh in
FOL{3, A, .}, such thaty has at mosk pairs of exchangeable literals, carbe
deduced fromh? It is proven that, for ang, DEDUCTION; is in PVP ie. AP

A complementary result is thatEDUCTION, is co-NP-difficult fork = 3. When

g represents a query arida base of facts, criteria that decrease the complexity
and depend op rather tham are relevant, because the query can be considered as
small with respect to the fact base, and has generally a sistplcture (while one
cannot expect the fact base to have a special structure)articydar, whery has

a structure decomposable into a tree (we will precise thistpater), then homo-
morphism checking is polynomial; in this case, we point tait FOL{3, A, -, }-
DEDUCTION is co-NP-complete; moreover, a corollary of previous ressydroofs

is that in general BDUCTION; remains co-NP-complete for aty> 3 and is in

P if £ < 1. Table 1 summarizes these results. The recognition prollesoci-



number of exchangeable|  arbitrary g g decomposable
pairsin g into a tree
not bounded 17’ -complete (*) | co-NP-complete
0 NP-complete P

1(**) NP-complete P
bounded byk > 3 NP-difficult co-NP-complete

co-NP-difficult
andpPNF

(*) already known result
(**) or with an unbounded number of exchangeable pairs aridgespositive (resp. neg-
ative) exchangeable literal

Table 1: Main complexity results

ated with DEDUCTIONg, i.e. whethely possesses at madsipairs of exchangeable
literals, is co-NP-complete. Note however that all resstifi hold if we apply
weaker criteria that bound the number of potentially excfeatble literals and can
be checked in polynomial time.

Several complementary results and extensions are pravié@dt, we point
out that a FOK3, A, -, } formula can be partitioned into subsets of literals called
pieceg(this notion is actually defined on PGs as it correspond t@plydecompo-
sition notion), such that the bound on the number of pairsxohangeable literals
can be made relative to each piecegahstead of the entirg, i.e. in all results,
condition “g has at mosk pairs of exchangeable literals” can be relaxed into “each
piece ofg has at most pairs of exchangeable literals”. Secondly, we provide
alternative proofs of our results based on a logical apprpas a side result, we
clarify the relationships between logical and graph natiowolved in this study.
Finally, previous results are extended in two ways: we shwat & preorder on the
set of predicates can be considered without complexityeasing, which allows
us to take a light ontology into account; we also refine sévertions related to
exchangeabile literals, which allows to further decreas# ttumber.

Paper organization. Section 2 introduces the graph framework and known re-
sults. Section 3 studies properties of exchangeable Iste&ection 4 contains our
main complexity results. Section 5 and Section 6 are resdetdevoted to
the logical approach and to extensions. Section 7 synéesedated works and
concludes on open problems.



2 Preliminaries

Without loss of generality, we assume that logical formwdas in prenex form,
i.e. all quantifiers are at the beginning of the formula. Hity& not considered
but all results are easily extended to it (see in particuld(6], which shows
how to include equality and inequality in the framework ofgrzed conceptual
graphs). Since we do not consider function symbols other toastants, &gical
languageis a pair(R,Z), whereR is the set of predicates arilis the set of
constants. Théermson (R,Z) are thus constants ifi or variables. Anatom

on (R,Z) is of form p(ty,...,t;), wherep € R and, for allj in 1.k, t; is a
term on(R,Z). A literal is an atom (positive literal) or the negation of an atom
(negative literal). A FOK3, A, —,} formula on(R,Z) is a closed formula in the
form 3z, ... xz,(li A... Alp), where, for alli in 1..p, [; is a literal whose variables
are in{zy,...,z,}. Without loss of generality, we will sometimes view such a
formula as the set of its literals. A FQE, A} formula has only positive literals.
The set ofatoms of a formulas the set of atoms occurring positively or negatively
in its literals.

As explained in the introduction, it is convenient to see A F@Q A, —,} for-
mula as a bipartite labeled graph, that we call a polarizegly(PG). The follow-
ing definitions and results about polarized graphs are maased on [LM0O7] and
[MLO7].

Definition 1 (polarized graph) Let us consider a vocabulary = (R,Z) where

R is a finite set of relation names of any arity afida set of individual nhames,
or constants. Apolarized grapi{PG) is a finite undirected bipartite labeled multi-
graphG = (R, T, E, l) whereR andT are the (disjoint) sets of nodes, respec-
tively called set ofrelationnodes and set ofermnodes,F is the family of edges
(there may be several edges with the same extremities, tiiatlyspeaking, a PG

is a multigraph and not a graph) arids the label mapping. Far € R, l(x) = +r

(« is called a positive relation node) é¢(z) = —r (x is called a negative relation
node) where: € R; the degree of: (i.e. the number of edges incident to it) must
be equal to the arity of; furthermore, the edges incident foare totally ordered,
which is represented by labeling edges from 1 to the degree Ah edge labeled
between a relation nodeand a term node is denoted z, i, t). Fort € T, either
I(t) = = (¢ is called a variable node) adi(t) € Z (t is called a constant node).

A PG is said to benormalif each constant of appears at most once init. In
the following, a PG is assumed to be normal unless othervpigeified. Moreover,
we assume that PGs do not have redundant relation nodewithehe same label
and the saméh neighbors).



A FOL{3, A, .} formula g on a logical languagéR,Z), is translated into a
PG G on a vocabularyy = (R,Z), with the following natural bijections: from
variables ing to variable nodes iz, from constants iry to constant nodes it
(s.t. a constant yields a node with labet), from positive (resp. negative) literals
in g to positive (resp. negative) relation nodegir(s.t. the predicate and polarity
of a literal yield the label of the relation node). For eachuementt; of a literal
[, there is an edgér, i, t), wherez is the relation node assigneditandt is the
term node assigned tQ. There is thus a bijection from the set of FOL A, —,}
formulas on a logical languagér, 7Z) to the set of normal PGs without isolated
term node$ on a vocabulary’ = (R, Z). This bijection is within an isomorphism
for graphs and within a variable renaming for formulas. le tbllowing, since we
work on the graph representation of formulas, we will coasiB@Gs as the basic
constructs, and see formulas as their logical meaning. Tagping from PGs
without isolated term nodes to formulas is calted

Notations. Let +r(t1,...,tx) (resp. —r(t1,...,t;)) denote the subgraph in-
duced by a positive (resp. negative) relation node withllabe (resp. —r) and
its list of neighborg, ..., ;. By analogy with its logical translation(t1, . . . , tx)
(resp. —r(t1,...,tx)), in which ¢; denotes the term assigned to the term ngde
we also call it diteral. ~r denotes a label with relation namgwhere~ can be+
or —. Given a literal (resp. a relation labél)! denotes theomplementaryiteral
(resp. relation label) df, i.e. it is obtained frond by reversing its sign. Letters, v
andw are used to denote a tuga, . . ., t;) of terms (or term nodes). Thusr(u)
denotes a literal of arbitrary sign and arity. The notatibas~r(u) andl are also
used for a logical literal equal tor(u) or —r(u).

If 7 is a mapping from a set of terms (or term nodes) to a set of t¢éans
term nodes), then fox = (¢1,...,1), 7(u) denotes the tuplér(t1),...,m(tx)).
A substitutionof variables maps every variable to a term (variable or comt¥t
and every constant to itself. Removing a literal from a graprans removing its
relation node, so some term nodes of the removed literal reagrbe isolated. If
L is a set of literals of7 thenG \ L is the subgraph of7 obtained fromG by
removing the literals irL. In a similar way, ifG’ is a subgraph off thenG \ G’ is
the subgraph of7 obtained fromG by removing the literals i6’.

Definition 2 (PG homomorphism) A PG homomorphism fromG = (R¢g, Tq, Eq, lg)
to H = (Ry, Tu, Eu, L), both built on a vocabulary = (R, Z), is a mapping
from Rg U T to Ry U Ty, such that:

1. forallr € Rg, n(r) € Ry ;forall t € T, w(t) € Ty
(m preserves bipartition

%A PG may have isolated term nodes, which cannot be obtainédebgrevious translation of a
formula, but may arise for a subgraph of a PG.



2. for all edge(r, i, t) in G, (n(r), i, w(t))isin H
(m preserves edges and their ordejing

3. forallr € Rg, lg(w(r)) = la(r)
(m preserves relation labéls

4. forallt € Tq, if lg(t) € Z thenly(w(t)) = la(t), otherwise there is no
condition onlg (7 (t))
(m may “instantiate” variablés

If there is a homomorphism from G to H, we say that7 (or a subgraph of7)
is mappedo H by 7. G is called thesourcegraph andH thetargetgraph. Given
a literall composed of a relation nodec R, with label~p, and list of neighbors
u, 7(1) denotes the literal composed of the relation nee with list of neighbors
m(u), i.e., sincer preserves relation labels(!) is the literal~p(m(u)) in H.

Definition 3 (inconsistent PG/set of literals) A PG (or set of literals) is said to be
inconsistentf it contains two complementary literatsr(«) and—r(u). Otherwise
it is said to beconsistent

It can be immediately checked that inconsistent PGs casrebspo unsatisfi-
able formulas. Positive PGs are translated into positivenfdas; for this positive
fragment it has been proven that PG homomorphism is sound¢@mglete w.r.t.
logical deduction, provided that the target graph is nor¢basically [CM92], con-
sidering that positive PGs are a particular case of simpheeptual graphs).

Gp) P
l@J @ﬂ@

Figure 2: Non-completeness of PG homomorphism

Property 1 (Substitution / PG Homomorphism Equivalence) Let G and H be
two PGs without isolated term nodes. There is a homomorpframG to H if
and only if there is a substitutiom of variables in®(G) into terms in®(H) such
that for each literal~p(u) in ®(G), ~p(c(u)) is aliteral in ®(H ).

For general PGs, homomorphism is still sound:
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Figure 3: When the law of the excluded-middle intervenes

Property 2 Given two PGS~ and H, if there is a homomorphism frod to H
then®(G) can be deduced from(H).

But homomorphism is no longer complete, as illustrated ukg 2. In this
figure, the formulas assigneddbandH by ® are respectivel$ (G) = JxTJy(p(x)A
—p(y) Ar(z, y)) and®(H) = p(a) A r(a,b) Ar(b,c) A —p(c). ®(G) can be de-
duced from®(H) using the tautology(b) vV —p(b) (indeed, every model cb(H)
satisfies eithep(b) or —p(b); if it satisfiesp(b), thenz andy are interpreted ab
andc; in the opposite case, andy are interpreted as andb; thus every model of
®(H) is a model of®(G)). However, there is no homomorphism fraghto H.

More generally, negation introduces disguised disjuedtiformation that can-
not be taken into account by homomorphism. This disjundtifermation is re-
lated to the law of the excluded-middle which holds in cleaislogic: given a
propositionP, either P is true, or—P is true. This leads to reasoning by cases: if
a property or relation is not asserted, either it is true ®nggation is true. We thus
have to consider all ways @ompletingthe knowledge asserted by a PG. Let us
look again at the example in Figure 2 does not say whetherholds forb. We
thus have to consider two cases: either a relation node alitbl #p or a relation
node with label-p can be attached to Let H; and H> be the graphs respectively
obtained fromH (see Figure 3). There is a homomorphism fr6hto H; and there
is a homomorphism fronds to H>. We conclude that; can be deduced frorf .

Definition 4 (Completion) A consistent PG defined on a vocabuldy= (Ry,Zy)
is completew.r.t. a set of relation nameR C Ry, if for eachr € R with arity
k, for eachk-tuple of not necessarily distinct term nodgs, . . . , ¢ ), it contains

10



+r(t1,...,tx) or —r(ty,...,tx). If such a PGH¢ is obtained by adding relation
nodes to a P&, it is called acompletionof H (w.r.t. R).

If a relation node~r(u) with » € R is added to a complete PG, either this rela-
tion node is redundant or it makes the PG inconsistent. A ¢et@PG is obtained
from a consistent P@ by repeatedly adding positive and negative relation nodes
as long as a relation node bringing new information and nelding an inconsis-
tency can be added. Since a PG is a finite graph defined oveteadetiof relation
names, the number of different complete PGs that can benatotdiom it is finite.

We can now define the deduction problem on PGs in terms of cztiopl

Definition 5 (PG-DEDUCTION) PG-DEDUCTION takes two PG€; and H defined
on avocabularyy = (Ry,Zy) as input, withH being consistent, and asks whether
G can be PG-deduced froifd, i.e. whethelG can be mapped to each completion
of H w.r.t. Ry.

The following theorem expresses thRat-DEDUCTION is sound and complete
with respect to the deduction in FOL.

Theorem 1 [MLO7] Let G and H be two PGs without isolated term nodes, whiih
being consistent. The# can be PG-deduced frofd if and only if®(H) E ®(G).

In the rest of the paper, we will thus not distinguish betwlegical deduction
in the FOY3, A, —,} fragment and PG-deduction, and use the expresgiois*
deducible fromH”.

Let us outline a brute-force algorithm scheme k@-DEDUCTION: all com-
pletions of H w.r.t. relation names occurring i@ are generated froni/, and for
each of them it is checked wheth@rcan be mapped to it. A complete graph to
which G cannot be mapped can be seen as a counter-example to theoadbeit
G is deducible fromH . Actually, not all relation names occurring @# need to be
considered for completing/:

Property 3 [LMO7] The relation names that do not have both positive aadaa
tive occurrences itz and in H, are not needed in the completionsif(i.e. G is
deducible fromH if and only if G can be mapped to each completionféfw.r.t.
the set of relation names that have both positive and negateurrences i and
in H).

From now on, completions aff are implicitly defined w.r.t. the set of relation
names that have both positive and negative occurrencés amd in H, unless
otherwise specified. This set of relation names will be reféto as theompletion
vocabularyw.r.t. (G, H).

11



3 Exchangeable literals and related properties

This section defines exchangeable literals and relatedmmtiand provides the
basic theorems underlying the complexity results in Secfio

Two literals are said to beppositeif they have the same predicate and opposite
polarities. Let us identify specific opposite literalsdh which likely play a role
in the problem complexity, in the sense that they may leadsthe law of the
excluded-middle. We say that two opposite literalg:adre “exchangeable” if their
arguments can have the same images by homomorphismsGramnecessarily
distinct) completions off. More precisely:

Definition 6 (Exchangeable pair/literal w.r.t. (G, H)) Apair{+p(u), —p(v)} of
opposite literals inG? is exchangeablev.r.t. (G, H) if there are two completions of
H, sayH, and H,, and two homomorphisms and,, respectively fronds to H;
and fromG to Hy, such thatr; (u) = ma(v). A literal in G is exchangeablev.r.t.
(G, H) if it belongs to an exchangeable pair w.(t7, H).

In the following, exchangeable pairs and exchangeablel#eare implicitly
defined “w.r.t.(G, H)” if not otherwise specifiet!

See for instancé in Figure 2. Let us consider the pdi-p(z), —p(y)} of op-
posite literals inGG. This pair is exchangeable, as can be seen in Figure 3: thare i
homomorphismr; from GG to a completion; of H and there is a homomorphism
7o from G to another completiort/s of H, such thatr(z) = m2(y) (and is the
node inH with labelb).

If a pair of literals{l1, l5} is exchangeable thén andi, can be unified (after a
renaming of their common variables), but the reverse is raegally true because
the notion of exchangeable pair takes both structurés ahd H into account. See
for instance Figure 4, wheilg andi, are unifiable, as well a andis. {l;,1>} is
an exchangeable pair, which can be seen with the followirmgdempletions ofif
(note that the completion vocabulary is restrictegh)oin one completion, sayi,
—p(b) is added (and a homomorphism fraghto H; mapsls to —p(b); in another
completion, sayHs, +p(b) and—p(d) are added (and a homomorphism fréito
Hj, mapsl; to +p(b). It can be checked thdt;, I3} is not an exchangeable pair:
there are no two completions such that their argument candpped to the same
node®.

“Note that “w.r.t. H” would not be sufficient. Indeed, a subgragh of G may contain literals
that are exchangeable w.(tz’, H) but not w.r.t.(G, H). In particular, the property “being without
exchangeable pair of literals” is not inherited by the salpds.

5The restriction to relation names of the completion vocatyu(see Property 3) in completions
of H is important; in the previous examplél,, 3} would be an exchangeable pair if the relation
namer was considered in completions Af.
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Figure 4. Exchangeable versus unifiable literals

We will now consider the subgraphs 6f that do not contain any exchange-
able pair w.r.t.(G, H). A subgraph ofz without exchangeable pair w.rt{G, H)
is a subgraph of7 containing at most one literal of each exchangeable pait. w.r
(G, H). A particular case is theocleof G (w.r.t. H) which contains no exchange-
able literal w.r.t.(G, H) at all.

Definition 7 (SocleGG,) Given two PG$+ and H, thesocleof G w.r.t. H, denoted
G, is the subgraph ofr obtained fromG' by removing all exchangeable literals.

We recall that removing a literal means removing its relatimde. Thus the
socle ofGG contains all term nodes ifi. See Figure 2G has one exchangeable pair
{+p(x), —p(y)}. The subgraphs a¥ without exchangeable pair are the subgraphs
of G not containing+p(z) or not containing—p(y). G, is the subgraph otz
obtained by removing both relation nodes.

The following theorem is a key technical result, which utidsrthe main forth-
coming results:

Theorem 2 Let GG and H be two PGs, withd being consistent. 7 is deducible
from H, then, foreachcompletionH ¢ of H, there is a homomorphism fro to
He¢ that mapsG, to H.

Proof: Assuming that is deducible fromH, let H¢ be a completion off. Let
R be the set of literal$ in H¢\ H such that there is a homomorphism fra#to
H*¢ mapping a literal of7, to [. R is consistent since it is a set of literals .
Let H¢' be the completion of obtained fromH¢ by replacing every literal of?
by its complementary literal, and letbe a homomorphism frort to H<' (such

13



a homomorphism exists sineeé is deducible fromH). Let us show thatr is a
homomorphism frontz to H¢ that map<, to H. No literal of G can be mapped
by 7 to the complementary literal of a literal @t (otherwise this literal would be
exchangeable with a literal @F, which contradicts the definition @f;). Thussw
is a homomorphism frond to H¢. Therefore, by definition oRz, every literal of
G is mapped byr to eitherH or R. However, asr is a homomorphism frond-
to H¢, which contains no literal oR, no literal of G, can be mapped t&, thust
mapsG, to H. O

Let H°t (resp.H“™) be the positive (resp. negative) completionfbbbtained
by adding only positive (resp. negative) literals. As a tlarg of the previous
theorem, we obtain:

Property 4 Let G and H be two PGs, withH being consistent. Letr~ (resp.
G™) be the subgraph of’ defined by adding t6 all negative (resp. positive)
exchangeable literals id7. If GG is deducible fromH, then there is a homomor-
phism fromG to H°*, the positive completion dff (resp. toH°~, the negative
completion offf), that mapsG~ (resp.G ™) to H.

Proof: Let us prove the property fa&~ and H¢* (the proof forG™ and H¢™ is
symmetric). IfG is deducible fromH, Theorem 2 ensures that there is a homo-
morphism, sayr, from G to H° that maps, to H. SinceH*" is obtained from
H by adding positive literalsy maps all negative literals @¥ to H. Thusw maps
G~ toH. OJ

If we consider any subgraph ¢f without exchangeable pair (w.r.tG, H)),
we have a weaker relationship between this subgraph andletoms of H:

Theorem 3 Let G and H be two PGs, withif being consistent. Le&t’ be a sub-
graph of G without exchangeable pair w.rt{G, H). If G is deducible fromH,
then there is a completiol ¢ of H and a homomorphism frod to H¢ that maps
G'toH.

Proof: We suppose that is deducible fromH. Let R be the set of literalé such
that there is a completio®/ of H such thatl is a literal in H¢ \ H and there
is @ homomorphism frondZ to H¢ mapping a literal ofG’ to . R is consistent
sinceG’ contains no exchangeable pair w.r({z, H). Let H¢ be a completion
of H containing the complementary literals of all literals®f(such a completion
exists sinceR is consistent), and let be a homomorphism fron to H¢ (such
a homomorphism exists sin&g is deducible fromH). Let us show thatr maps
G’ to H. By definition of R, every literal ofG’ is mapped byr to eitherH or R.

However, asr is a homomorphism frondz to H¢, which contains no literal oRz,

no literal of G’ can be mapped t&, sor mapsG’ to H. O

14



Theorem 3 can be rephrased as followsifs deducible fromH, then each
subgraph’ of G without exchangeable pair can be mapped/tby a homomor-
phism that can be extended to a homomorphism f€oto a completion of/. We
give the following definitions and property for this notiohextensibility.

Definition 8 (Ground subgraph of G) A groundsubgraph ofG (w.rt. H) is a
graph obtained frontz by removing some literals whose relation name belongs to
the completion vocabulary (w.rt{G, H)).

Note thatG is a ground subgraph @f.

Definition 9 (Extensible homomorphism) A homomorphism from a ground sub-
graph G’ of G to H is extensible(w.r.t. (G, H)) if it satisfies

1. for any literal~r(u) in G\ G, ~7(7(u)) is not in H;
2. for any opposite literals-r(u) and—r(v) in G\ G', w(u) # 7(v).

Note that, agy’ is a ground subgraph @#, G’ contains all term nodes @, so
7(u) is defined for any literabor (u) in G\ G'.

Property 5 A homomorphisnm from a ground subgrapty’ of G to H is extensible
(w.rt. (G, H)) if and only if it can be extended to a homomorphism fiGrto a
completion off.

Proof: Let # be a homomorphism frod’ to H. Conditions 1 and 2 are obviously
necessary forr to be extendable to a homomorphism fraimto a completion of
H. Let us show that they are sufficient. We suppose thsatisfies conditions 1
and 2. LetH’ be the graph obtained frol by adding the literakr(7(u)) for
every literal~r(u) in G \ G’ such that~r(w(u)) is not already present if/.
For each added literd| the literall is not in H by condition 1, and is not another
added literal by condition 2. ThuF’ is consistent. Moreover, &’ is a ground
subgraph of7, the relation name of each literal (#\ G’ belongs to the completion
vocabulary. It follows thatf{’ can be completed into a completidh® of H and
thatw can be extended to a homomorphism fréhto H*. O
We obtain the following corollary of Theorem 3 and Property 5

Corollary 1 Let G and H be two PGs, withH being consistent. Let’ be a
ground subgraph ofs without exchangeable pair w.rtG, H). If G is deducible
from H, then there is an extensible homomorphism frghto H.
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Previous properties provide necessary deducibility domus, and therefore
sufficient non-deducibility conditions. For instance, bgr@llary 1, if we find a
ground subgraph ofr without exchangeable pair w.r.{G, H) such that there is
no extensible homomorphism fro6f to H then we know that is not deducible
from H.

The problem of checking whether there is an extensible hoomphism from
G’ to H (given PG5 and H and a ground subgragh’ of ) is NP-complete. It
is in NP since an extensible homomorphism fréthto H provides a polynomial
certificate, and itis complete for NP since in the case whi#re G, itis equivalent
to the NP-complete problem of checking homomorphism fi@io H.

4 Main complexity Results

We now focus on the role of exchangeable literals in the gmbtomplexity. It
follows immediately from previous properties that the pesb complexity falls
into NP if G has no exchangeable pair (see also Section 4.2). A natueatiqo
that arises then is whether a bounded number of exchangpablke affects the
complexity. The answer is yes, as we will show it.

To study this question, let us define the following family eblplems, wheré:
is the maximal number of exchangeable pairé-sirand is fixed for each problem.

DEDUCTION

Input: two PGsG and H, with H being consistent an@' possessing (at mosk)
exchangeable pairs w.(&, H).

Question:Is G deducible fromH ?

For any integers: and &’ such thatt < £/, DEDUCTIONy is at least as diffi-
cult as CEDUCTIONy, since any grapld: possessing at mostexchangeable pairs
also possesses at mastexchangeable pairs.

Please note for the following results that we make the usssuraption that
the arity of predicates is bounded by a constant.

4.1 Complexity of the recognition problem

A desirable property is that recognizing exchangeablealiseis not difficult com-
pared toPG-DEDUCTION complexity, which is indeed the case:

Property 6 Let EXCHANGEABLE be the problem that takes two PGsand H as
input and asks ify possesses an exchangeable pair w(, H). EXCHANGE-
ABLE is NP-complete.
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Proof: EXCHANGEABLE is in NP: a polynomial certificate is given by a pair of two
opposite literals in7, and the proof that it is exchangeable, i.e. two completans
H and two homomorphisms frof¥ to these completions which map the literals
to the “same place”. For NP-completeness, a reduction is fiooim positive PG-
HOMOMORPHISM (given two positive PG&/; and G, is there a homomorphism
from GG1 to G, ?). LetGy and G be two positive PGs. “Gadgets” are added to
G andGy, yielding G| and G, respectively, such that there is a homomorphism
from G to G2 if and only if G| possesses an exchangeable pair W&, GY).
Take, for instance, the graplisand H in Figure 2, and choose the relation names
r andp such that they do not occur ii; andGs. G (resp. G5) is obtained by
making the disjoint sufhof G; andG (resp. ofG, and H). The only candidate
exchangeable pair i) is {+p(x), —p(y)}. O
The polynomial certificate used in the previous proof can xtereled in a
straightforward way to a polynomial certificate for the pievh of deciding whether
a graph possesses “at leastxchangeable pairs” (wheteis fixed). It follows that
this problem is NP-complete too. Thus, the problem of dagdihether a graph
possesses at moktexchangeable pairs, i.e. the recognition problem assatiat
with DEDUCTIONy, is co-NP-complete.

Property 7 The problem that takes two P@s and H as input and asks itz
possesses at masexchangeable pairs w.r.t(G, H) is co-NP-complete.

The complexity of the recognition problem associated wi#tDDCTION; may
be seen as restricting practical use of the results in thpspadowever, besides the
fact that recognizing exchangeable pairs may be easieraictipe than in theory,
most of these results can be used in a weaker form by replagicigangeable pairs
by pairs of opposite (or opposite and unifiable) literalsjclittan be recognized in
linear time. For instance, Theorem 2 still hold<3f is replaced by the subgraph
of GG obtained fromG by removing all pairs of opposite and unifiable literalscgin
this graph is a subgraph ¢f;.

4.2 DEDUCTION; and DEDUCTION;

It follows from previous results thatEDUCTION, is NP-complete. We will show
that DEDUCTION; is also NP-complete.

Property 8 LetG and H be two PGs, witlG having no exchangeable pair w.r.t.
(G, H), and H being consistent( is deducible fromH if and only if there is a
homomorphism fronr to H.

5The disjoint sum of two graphsl and B is the graph obtained by making the union of two
disjoint copies ofA and of B.
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Figure 5: lllustration of Algorithm 1

Proof: If there is a homomorphism frord’ to H then G is deducible fromH
by Property 2. The converse follows from Theorem 2 siGte= G (or from
Theorem 3 with’ = G). O

Property 9 The problemDEDUCTION, is NP-complete.

It can be immediately checked thmeEbpucTION; is NP-difficult: it is at least
as difficult as the NP-complete problenEDUCTION,. It remains to prove that
DEDUCTION; is in NP.

Let us first explain the ideas of the proof on Figure G.possesses one ex-
changeable paif+p(x), —p(y)}. There is no homomorphism fro to H. But
G can be mapped to every completion Ef that contains—p(b) (with = andy
being respectively mapped toandbd). If a completion does not contaip(b),
then it contains+p(b), thus it remains to check th&t is deducible fromH; =
H + {+p(b)}. The same reasoning is applied Ai: there is no homomorphism
from G to Hy, butG can be mapped to every completionff that contains-p(c)
(with = andy being respectively mapped toand ¢); it remains to check that
is deducible fromH, = H; + {+p(c)}, which is the case since there is a homo-
morphism fromG to Hs. G can thus be seen as “sliding” on a growifg from a
place allowing to mag- \ {—p(y)} to a place allowing to mag@'\ {+p(z)}. Each
step after the first one uses the literal added at the pregetiap. We are sure that
this sliding process will succeed after a finite number gbst®nced cannot grow
infinitely.

These ideas directly lead to Algorithm 1.

Property 10 The algorithmDEDUCTION; is correct.

Proof: We first check that the recursive call satisfies the precmmit.e. that
if there is at most one exchangeable pair w.f@, H) then there is at most one
exchangeable pair w.rt(G, H + {~p(n(u))}) and the precondition oR p(u)
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Algorithm 1: DEDUCTION;

Data: G andH two PGs;H is consistent(s possesses at most one
exchangeable pair; if it has onep(u) is an exchangeable literal @&
otherwise~p(u) is a literal inG such that relation namebelongs to
the completion vocabulary w.r{G, H).

Result true if G is deducible fromH, false otherwise

begin

if there is no extensible homomorphism frém {~p(u)} to H then
| return false
else
let * be such a homomorphism
if ~p(m(u))isin H then
L return true
else
| return DEDUCTION; (G, H + {~p(n(u))}, ~p(u))

end

still holds. It is indeed the case, since any exchangeahlewat. (G, H +
{=p(m(u))}) is also an exchangeable pair w.r{G, H), as any completion of
H + {=p(m(u))} is also a completion off (note that the completions d@f and

of H + {=p(n(u))} are defined w.r.t. the same set of relation names sinceaelati
namep belongs to the completion vocabulary w.(&, H)).

We also check that the number of recursive calls is finitehasitimber of nodes of
H is incremented at each recursive call (the added litefalr(u)) is not already
present inH sincer is extensiblé), and is bounded by the number of literals in a
completion ofH.

Let us show by induction on the numbeof recursive calls that BbucTiON; (G, H, ~
p(u)) returns true ifG is deducible fromH, and false otherwise. & = 0, i.e. if
there is no recursive call, then either there is no exteadiiomomorphism from
G\ {~p(u)} to H (and then by Corollary 17 is not deducible fromH) and
DEDUCTION; (G, H, ~p(u)) returns false, orp(w(u)) is in H (and thenr can
be extended to a homomorphism fraghto H, so G is deducible fromH) and
DEDUCTION; (G, H, ~p(u)) returns true. Thus the property is true fo= 0. We
suppose that it is true fde recursive calls. Let us show that it is true fort 1
recursive calls. As there is at least one recursive capOCTION; (G, H, ~p(u))
returns true iff EDUCTION; (G, H + {~p(m(u))}, ~p(u)) returns true, i.e., by

"Here, asi? \ G’ is restricted to literak-p(u), conditions 1 and 2 of extensibility are restricted
to: ~p(mw(u)) is notin H.
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induction hypothesis, itz is deducible fromH + {~p(x(u))}. It remains to show
that G is deducible fromH iff G is deducible fromH + {~p(w(u))}. If G is
deducible fromH thenG is deducible fromH + {~p(w(u))} since every com-
pletion of H + {~p(w(u))} is a completion off. Conversely, we suppose that
is deducible fromH + {~p(m(u))}. As~ is an extensible homomorphism from
G\ {~p(u)} to H, it can be extended to a homomorphism fréio H + {~
p(m(u))}. ThusG can be mapped to every completion Bf+ {+p(m(u))} and
to every completion off + {—p(7(u))}, and therefore to every completion &f
(since any completion off contains eithet + {+p(m(u))} or H +{—p(mw(u))}.
Henced is deducible fromH . O
The following property immediately follows from Algorithrh.

Property 11 LetG and H be two PGs such that has (at most) one exchangeable
pair, containing literal~p(u) and H is consistent.G is deducible fron¥ if and
only if there is a sequender; );c1.,» such that:

1. m is an extensible homomorphism fr@im\ {~p(u)} to H; = H

2. Vie2.m—1,
m; is an extensible homomorphism fragh\ {~p(u)} to H; = H;—1 +

{~p(mi1(u))}

3. mp, Is @ homomorphism from@' to H,,, = Hy,—1 + {~p(mm—1(u))}.
We are now able to prove the NP-completenessefuCTION; .
Theorem 4 The problenDEDUCTION; is NP-complete.

Proof: The polynomial certificate follows directly from Propertyt.1indeed, the

lengthm of the sequence is bounded by )*, whereny is the number of term

nodes inH andk is the arity ofr (which is considered as bounded by a constant).
Il

4.3 DEDUCTION;

Let us now show that BbucTion;, falls into PV* for any value of parameter
k. The technique used to show that Deductia®m in NP does not seem to be
generalizable t& > 2. Instead, we will rely on Theorem 2. We first deduce from
this theorem a necessary and sufficient deducibility carditProperty 12), which
will be used in subsequent complexity proofs, and is alser@sting for itself.

Let us provide an idea of this condition on examples of Figideand 5. For
the graphs in Figure 2, j#(b) is known to be true (i.e. if literak-p(b) is added to
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H) thenG can be deduced (i.& can be mapped t& + {+p(b)}), and ifp(b) is
known to be false thetr can be deduced too (i.€: can also be mapped @ +
{—=p(b)}). Thus there are two extensible homomorphisms flémto H, which
can be extended to homomorphisms fréhto H + {+p(b)} andH + {—p(b)}
respectively, with the proposition(b) vV —p(b) being a tautology. Similarly, for the
graphs in Figure 5, there are three extensible homomorghisimr, andmrs from
G to H mappingGy to +r(a, b), +r(b, c) and+r(c, d) respectively, that can be
extended to homomorphisms frofhto H + {—p(b)}, H + {+p(b), —p(c)} and
H + {+p(c)} respectively, with the propositiorp(b) V (p(b) A —p(c)) V p(c)
being a tautology. We will build from the set of extensiblentfmmorphisms from
any ground subgrapf’ of G contained inG, to H a propositional formula that is
a tautology if and only if7 is deducible fromH.

Notations 1 Let G and H be two PGs, withi{ being consistent, and &’ be a
ground subgraph of5.

Py denotes the set of atoms®fH¢ \ H), whereH¢ is an arbitrary completion
of H, seen as the set of atoms of a language in propositional logic

For any extensible homomorphismfrom G’ to H, L¢/ () denotes the set of lit-
eralsi such that =~p(7(u)) for some literal~p(u) in G and! is not in H, and
C¢r(m) denotes the conjunction of the literals i (7) seen as a proposition on
Py

D¢ (G, H) denotes the disjunction of the propositiofig: (7) for all extensible
homomorphisms from G’ to H.

Omission of subscripf’ means that?’ is equal toG.

For instance, in the previous example of Figure 5 = {p(b),p(c)}
andG' = Gy, L(m) = {-p(®)}, L(m2) = {+p(b), —p(c)}, L( 3) = {+p(c)},
C(m) = =p(b), C(ma) = p(b) A ~p(c), Clrs) = p(c), D(G, H) = ~p(b) V
(p(b) A =p(c)) V p(c).

L¢(7) is the set of literals "missing" it/ for 7 to be extendable to a homomor-
phism fromG to H, and therefore it is the set of literals that have to be in any
completionH¢ of H such thatr can be extended to a homomorphism fréhto

He¢. This is stated in following Lemma 1.

Lemma l Let G and H be two PGs, let“ be a completion of, let G’ be a
ground subgraph of, and letr be an extensible homomorphism frathto H. =

can be extended to a homomorphism fiGto H¢ if and only if L¢/ () is a set of
literals in H¢.

Lemma 2 expresses the straightforward correspondencesbatiihe comple-
tions of H and the truth assignments éty;.
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Lemma 2 There is a bijectiory from the set of completions &f to the set of truth
assignments oy such that for any completiof ¢ of H, any ground subgraph
G’ of G and any extensible homomorphismfrom G’ to H, L¢/(7) is a set of
literals in H¢ if and only if f (H¢) satisfiesCq (7).

Proof: Let f be the mapping from the set of completionskfto the set of truth
assignments oy defined by: for every completioi ¢ of H, f(H¢) assigns the
value true to an atomp(u) in Py if +p(u) is a literal in H¢, and false otherwise
(i.e. if —p(u) is a literal inH¢). f clearly satisfies the desired conditions. [

Property 12 Let G and H be two PGs, withH being consistent, and l&¥’ be
a ground subgraph of7 contained inGs. G is deducible fromH if and only if
D¢ (G, H) is a tautology.

Proof: By Theorem 2 (sinc&s’ is contained inG,) and Property 5 (sincé&’ is
a ground subgraph af), G is deducible fromH iff for each completionH*¢ of
H, there is an extensible homomorphism fré#hto A that can be extended to a
homomorphism fronG to H¢. By Lemmas 1 and 2, the latter proposition can be
rephrased as: for each truth assignmeon Py, there is an extensible homomor-
phismz from G’ to H such thaw satisfieC¢/ (), i.e. Dg/ (G, H) is a tautology.
O

In order to prove that BbucTION; is in PP, we show how to compute
D(G, H) without explicitly computing all extensible homomorphisrfrom G
to H, whose number may be exponential in the size5of Let £ be the set of
exchangeable literals, ari} be the set of term nodes occurringdn The main
idea is that, for any extensible homomorphism fréin to H, the setL(x), and
therefore propositiorC'(7), only depend on the restriction afto 7¢. Thus, we
can definel.(p) andC/(y) for any mappingp from 7¢ to the setl’; of term nodes
in H, andD(G, H) is the disjunction of the propositiors(y) for every mapping
© from 7¢ to Ty that can be extend@do an extensible homomorphism frof,
to H. Algorithm 2 computeD (G, H) to determine whethef is deducible from
H, using Property 12.

If the number of exchangeable pairs is bounded by a conktdhen the num-
ber of mappings fronT¢ to the set of term nodes i becomes polynomial, which
makes DEDUCTION;, fall into PNP.

Theorem 5 For any integerk > 0, the problemDEDUCTION;, is in PNP,

8A mappingy from 7¢ to Ty can be extended to an extensible homomorphism fénio H
iff it satisfies both following independent conditions:dxan be extended to a homomorphism, say
w, from G, to H and 2)¢ satisfies conditions 1 and 2 of extensibility, which only eeg on the
restriction ofr to 7¢, i.e. ongp itself.
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Algorithm 2: Deduction (G, H)
Data: G andH two PGs, such thal/ is consistent
Result true if G is deducible fromH, false otherwise
begin
Let £ be the set of exchangeable literals w(., H)
Let 7¢ be the set of term nodes occurringdn
LetGs =G\ &
P — false

for every mappingy from 7¢ to the set of term nodes i do
if ¢ can be extended to an extensible homomorphism oo H

then
L b — <I>\/C((,D)

return Tautology(P)

end

Proof: It is sufficient to show that if the number of exchangeablespiai bounded
by k then Algorithm 2 can be executed in polynomial time with aypoimial
number of calls to a NP oracle. This is indeed the case since:

- to computef, it is sufficient to determine for each pair of opposite htsrof G
(whose number is polynomial) if it is exchangeable, whicmibIP,

- |7¢| < 2kr, wherer is the maximal arity of a relation name, so the number of
mappings front/g to the set of term nodes i is bounded byz%’;””, and therefore

is polynomial,

- determining if such a mapping can be extended to an extensible homomorphism
from G to H is in NP (such an extension provides a polynomial certificate

- determining if a proposition is not a tautology is in NP. O

4.4 DEDUCTION;

Let us now prove that BOUCTION; is co-NP-difficult for anyk > 3. Asitis also
NP-difficult, it is not likely in NP nor in co-NP.

Theorem 6 The problemDEDUCTION;3 is co-NP-difficult.

Proof: To prove that EDUCTION3 is co-NP-difficult, we define a reduction from
the co-NP-complete problem 3-DNF Tautology t@m@JCTION3.

3-DNF Tautology

Input: a 3-DNF propositional formulé, i.e. a propositior in disjunctive normal
form (disjunction of conjunctions of literals) such thatkaonjunction in® has
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at most 3 literals.
Question:Is ® a tautology?

The reduction uses Property 12. l&ebe a 3-DNF proposition. By Property 12, it
is sufficient to build two PG§&; and H in polynomial time, withH consistent and
with at most 3 exchangeable pairs, such that for some groubgraphG’ of G
contained inG, D¢ (G, H) is a tautology iff® also is.

It is rather easy to build such P@sand H with at most 9 exchangeable pairs. To
ensure that they have at most 3 exchangeable pairs, we hesfin®the construc-
tion. For this, we introduce the notion obrrect mapping w.r.t.®.

Let P be the set of atoms i®. A mappinga from P to {1,2,3} is said to be
correct (w.r.t. @) if for any conjunctionC' in ® and any positive literalp andp’
(resp. negative literalsp and—p’) in C, a(p) # «a(p’).

For instance, it = (-p A =s) V (s A =g A —=r) V (p A ¢ A r) then the mapping
a={(p,1),(q,2),(r,3),(s,2)} is correct. Note that there may be no correct map-
ping w.r.t. a givend. Forinstance, it = (p AgAr)V(pAgAs)V(rAs)thena
correct mappingv should satisfyx(r) = «(s) from the two first conjunctions, and
a(r) # a(s) from the third conjunction.

In the first step of the proof, we will describe how to build islynomial time from

a 3-DNF propositiorib both a 3-DNF propositio®’, such thath’ is a tautology iff
® is, and a correct mapping w.r.t. ® (which will necessarily exist). In the sec-
ond step, we will describe how to build PGsand H with at most 3 exchangeable
pairs from a 3-DNFP and a correct mapping w.r.&, such that for some ground
subgraph’ of G contained inG, D¢ (G, H) is a tautology iff® is.

1. Construction of @’ and «

For each atom in P, let h be the number of occurrences @in @, theseh oc-
currences are replaced lBynew atomspy, ps, ..., pn, and the 3-DNF formula
NEQ(p1,---,pn) = (Pr A=p2) V (p2 A=p3) V...V (ph—1 A =pp) V (Pr A —p1)
is added to the disjunction®’ is the obtained formula. For instance, @ =
(=pA=8)V (sA=gA=1)V(pAgAr)thend’ = (=py A=s1)V (soA—gr A=rp) V
(P2 AN g2 ANr2) V NEQ(p1,p2) V NEQ(q1,q2) V NEQ(r1,7m2) V NEQ(51, 52).
Note that a truth assignment satisfi¥&'Q(p1, . . . , pp) iff it does not assign the
same truth value tpq, . .., p,. It follows that®’ is a tautology iff it is satisfied by
each truth assignment assigning the same truth valge,to ., p,. Thus®’ is a
tautology iff & is.

A correct mappingy w.r.t. ®' is built as follows: for each conjunction &’ com-
ing from a conjunction inb (considered independently from the others), atoms of
positive (resp. negative) literals are mapped to consezuitegers starting from
1; o is the union of the mappings obtained for these conjunctidtf instance,
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if & = (—\pl A —\81) \V (82 VA7 AIAN —|7°1) V (pg N g2 N 7”2) V NEQ(pl,pg) V
NEQ(q1,q2) V NEQ(r1,72) V NEQ(s1, s2) then we independently defing =
{(p17 1)7 (317 2)}1 Qg = {(327 1)7 (q17 1)7 (Tl7 2)} anda?) - {(p27 1)7 (Q27 2)7 (T27 3)}1
anda = a; U as U ag. Itis easy to check thab’ anda can be computed in poly-
nomial time and thad is correct w.r.t.®’.

2. Construction of G and H

Let ® be a 3-DNF formula and: be a correct mapping w.rf. PGsG andH are
defined as follows (see Figure 6 for an illustration).

G is independent fron® and«. It has 6 variable nodes;, xs, x3, y1, y2 andys,
and 7 literals:+r(x1, z2, 23, y1, Y2, y3) and, for all in 1..3, +p(z;) and—p(y;).
H depends fromP anda. Letpy,...,p, be the atoms irb, and letCy, ..., C,
be the conjunctions i®. H hash + 2 constant nodes labeled with, . .. ,ap, ¢
andd, and it hasy + 2 literals: +p(c), —p(d) and, for alli in 1..q, +r(u;), with
U; = (32‘,17 5i,2, 5.3, ti71, ti72, ti73) being defined as follows. For allin l..q and all
jinl.3:

- if j = a(py) for some positive literapy, in C; (there is at most one such litera|
sincea is correct) thers; ; = a;, elses; ; = c,

- if j = a(py) for some negative literakpy, in C; (there is at most one such literal

—pi, Sincea is correct) ther; ; = a;, elset; ; = d.

For instance, consider the formula of the previous exartiplen —s) V (s A =g A
-r)V (p A g Ar). Letus rename, ¢, r ands into pi, p2, p3 andp, respec-
tively. We obtain® = (—p1 A =ps) V (ps A =p2 A =p3) V (p1 A p2 A p3). Let
a ={(p1,1),(p2,2),(ps,3), (ps4,2)}. Then the literals of labeled with+r are
+r(c,c e, a1, aq,d), +r(c,aq,c,d,az,a3) and+r(ay,as,as, d,d,d), as pictured
in Figure 6.

G andH can be constructed in polynomial time. The completion vataly is re-
stricted to{p}. LetG’ be the subgraph @¥ restricted to its literak-r (z1, x2, 23,91, Y2, y3).
G’ is a ground subgraph @f contained inG. It is easy to check thaDq (G, H)
is obtained from® by replacing each atom; by atomp(a;). For instance, in the
example of Figure 6, there are 3 extensible homomorphisom &' to H, and
De/(G, H) = (=p(ar) A=wp(aa)) V (plas) A=p(az) A —p(as)) V (p(a1) Ap(az) A
p(as)). ThusD¢/ (G, H) is a tautology iff® is.

It remains to show that there are at most 3 exchangeablewaits(G, H). There
are 9 pairs of opposite literals i@, namely the pair§+p(z;), —p(y;)} for i, j in
1..3. However, ifz; andy; are mapped to the same noaen H by two homo-
morphisms fromG to completions offH, then there is an integédr in 1..h such
that w is labeleday, with i = j = a(pg). Thus, each exchangeable pair is in
the form {+p(z;), —p(y;)}, with 7 in 1..3. As announced at the beginning of this
proof, using a correct mapping w.r®. to defineH allows to bound the number of
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(
{

—p1 A —pa) V (pa A —pa A =p3) V (p1 Ap2 A p3)
(p1,1), (p2,2), (p3,3), (p1,2)}

Figure 6: Reduction from 3-DNF Tautology toEDUCTION;
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exchangeable pairs to 3 instead of 9. O

4.5 When homomorphism checking is polynomial

Homomorphism checking becomes polynomial in the particodése wheres is
decomposable into a tree, for instanceifis a graph with treewidth less than a
fixed integerk (and in this case it corresponds to a formula of kheariables frag-
ment of FOL [KV00]); if G is seen as a hypergraph, with relation nodes becoming
hyperedges, another polynomial case is obtain&dig a hypergraph with hyper-
treewidth at most a fixed integér(and in this case it corresponds to a formula of
thek-guarded fragment of FOL) [GLSO01]. These particular casespecially rel-
evant in a query answering context, whéfaepresents a query arfd represents
a knowledge base composed of a set of facts. Indeed, one esgnably assume
that the query has a simple structure with respect to thdteobase.

Interestingly, our previous proofs allow us to completdbssify the complex-
ity of DEDUCTION and DEDUCTION, in the above special cases (excepthce 2
for which the complexity in the general case is unknown):

Theorem 7 WhenG has a special structure that makes homomorphism checking
polynomial, the following complexity results hold:

* DEDUCTION is co-NP-complete
e DEDUCTIONy and DEDUCTION; are in P

* DEDUCTION; is co-NP-complete for any > 3.

Proof: DEDUCTION is in co-NP since a completioi/ ¢ of H to which G can-
not be mapped is a polynomial certificate of the complemgrpanblem, NON-
DEDUCTION (the size ofH¢ is polynomial in the size off and the absence of
homomorphism frontz to H¢ can be checked in polynomial time by hypothesis).
DEeDuUCTION is complete for this complexity class because the proof &dfém 6
shows that EDUCTION3 remains co-NP-difficult when homomorphism checking
from G to any graph is polynomial (in the reduction, the gragtbuilt is a tree).
Hence, IEDUCTION; is also co-NP-complete for arly > 3. That DEDUCTION,
and DepucTION; are inP follows immediately from Property 8 and Algorithm 1
respectively. O

4.6 Pieces

We will now take advantage of some simple graph propertiesxtend previous
results. First note that' is deducible fromH if and only if each connected com-
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Figure 7: Pieces

ponent ofG' is deducible fromi . Secondly, by splittingconstant nodes i into
several nodes (in this cage is no longer normal), we do not change the logical
semantics ofy and we preserve the existence or not of a homomorphism €fom
to any normal graph.

Let us define particular subgraphs that we callglezesof G w.r.t. its constant
nodes. Let= be the following equivalence relation: givenand s two relation
nodes inGG, r & s if there is a path inG betweenr ands that does not go through
a constant node, i.e. a path(= r) ...z (= s) such that, fo0 < i < k, x; is not
a constant node. The pieces@fare the subgraphs composed of the literals whose
relation nodes are in the same equivalence classfdrhis definition is extended
to isolated term nodes by considering that each isolateé farh its own piece.
See Figure 7, which shows a PG on the left and its pieces ongihie The pieces
of G can be computed in linear time by a traversalof

Property 13 Let G and H be two PGs, withH being consistent( is deducible
from H if and only if each piece af is deducible fronH.

The constant nodes in pieces@fcan themselves be further split without any
impact on the existence of a homomorphism fréhto H. Some cycles in pieces

°Splitting a term node into » nodes, according to a partitidié, . . ., E,, } of the edges incident
to x, consists of deleting, creatingn term nodesc1, . . ., x,, with the same label as, and attaching
to eache; the edges irtZ;, i.e. for each edgér, j,7) in E;, an edg€z;, j, r) is created.
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can thus be broken. Homomorphism checking becomes polaiomihe partic-
ular case where all pieces 6f can be split to yield a graph decomposable into a
tree (cf. Section 4.5).

See for instance Figure & has 9 pairs of opposite literals, which may yield
9 pairs of exchangeable literals (depending /drand on edge labels i@, that
are omitted in Figure 7); each piece Gfhas no opposite literalsy fortiori no
exchangeable literals, thus to check whettiecan be deduced fromi, one just
has to check if each piece 6f can be mapped té&/. Furthermore, each piece of
G can be transformed into a logically equivalent tree by spijtconstant nodes,
thus this instance of the Deduction problem belongs to tignpmial cases.

In all previous complexity results; can be seen as representing the maximum
number of exchangeable pairs in a piec&-ahstead of inG.

5 Logical approach through resolution trees

In this section, we follow a logical approach and prove afaidamental results of
this paper, namely Theorems 2 and 3 and Property 12, usingsb&ition method
in propositional logic. These new proofs will be used in 88t6.1 to show that
these results (hence the complexity results built on theithineld when a preorder
on predicates is considered. Besides this use, the newspawefinteresting in
themselves, because they establish links between thaitiesomethod, which is
one of the main proof method in logics, and our method basdibamomorphism
and completions. The notion of a PG-resolution tree is ddfiménich allows to
clarify these links. In particular, all logical literals &g in a resolution tree “come
from” exchangeable literals i@ (see property 16 and its proof for details).

Let G and H be two PGs,withH being consistent. By Theorem &, can be
deduced fromH if and only if ®(H) £ ®(G), or equivalently,®(H) A =®(G)
is unsatisfiable. By Herbrand Theored(H) A =®(G) is unsatisfiable if and
only if the setF' of propositional formulas defined as follows is unsatis&abl
The set of atoms of the propositional language on wthitks defined is the set
of atomsp(u) wherep is a relation name IR andw is a tuple of terms that
are terms in®(H). F is the set of clauses (disjunctions of literals) equal to
Cy U Cg, whereCy is the set of clause®(H) (each clause is restricted to
a literal) andCy is the set of all clauses in the form(c(G)) wherec(G) is
the disjunction of the complementary literals of the literan ®(G) ando is a
substitution of the variables af(G) by terms of®(H). As usually done, we
represent a clause by the set of its literals. For instarfcé& and H are the
PGs shown in Figure 5y = {{p(a)},{r(a,b)},{r(b,c)},{r(c,d)},{-p(d)}},
c(G) = {-p(x),r(z,y),p(y)} and C¢ is the set of all clauses obtained from
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¢(@) by replacingz andy by elements ofa, b, ¢, d}. We recall a classical prop-
erty of unsatisfiable sets of propositional clauses.

Definition 10 (Resolution tree) A resolution tree of a sdt of propositional clauses
is an anti-rooted binary tred” (each internal node of’ has exactly two parents
in T') labeled with propositional clauses such that the antitrob7" is labeled
with the empty clause, each leaf’Bfis labeled with a clause of' and for each
internal nodey of 7" whose parents ifi” have respective labels and ¢, there
is a literal  in ¢; such thatl is a literal in c; and label(y) = Res(ci,co,1) =

(e \ {1}) U (e \ {1}).

Property 14 (Resolution) A set of propositional clauses is unsatisfiable if and
only if it has a resolution tree.

In the following we suppose thé&t is deducible fromH and we consider a resolu-
tion tree of F = C U Cy. Note that ife, is restricted to{/} thenRes(cy, ca,1) =
c1\{l}. Thus, clauses df'y allow to eliminate literals from clauses not belonging
to C'y (sinceH is consistent) without adding any literal. We may assumeowgl
that resolution operations involving clauseg4f are performed first, hence there
is a resolution tree whose leaves are labeled with claussnell from clauses of
C¢ by removing some literalssuch that{l} is a clause o€’;. Moreover, we may
assume thaall literals  such that{/} is a clause of”y are removed from these
clauses, since removing some literals from some clauses ohsatisfiable set of
clauses preserves its unsatisfiability, and thereforegpves the existence of a res-
olution tree of this set of claus¥s We may also assume that none of these clauses
contains complementary literals since such a clause istaltgy and removing
a tautology from an unsatisfiable set of formulas presengegrisatisfiability. We
obtain a resolution tree whose leaves are labeled with etaoistained from clauses
of C by removing all literals complementary to literals of clag®ofC'y, and con-
taining no complementary literals. For instanceZiand H are the PGs shown in
Figure 5, such a resolution tree is given in Figure 8. Not¢ i complementary
tree of a resolution tre@, i.e. the tree obtained frof by replacing in each label
each literall by, is still a resolution tree. The labels of this resolutiogetcontain
literals of (&) instead of their negation. Moreover, in order to come badké
PG point of view, we replace in labels of the obtained resmtutree logical literals
by PG literals.

Definition 11 (PG-resolution tree) A PG-resolution treés a treel” whose nodes
are labeled with sets of PG literals and such that the treeioled from7T' by

0please note that a clause that becomes empty is kept in the set
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{p(b)} {Tp(b), p(c)}
{p(c)} { To(e)}

{}

Figure 8: A resolution tree

replacing in each label each PG literatp(u) (resp. —p(u)) by the logical literal
p(u) (resp. —p(u)) is a resolution tree. Resolution operatidRes(ci, c2,1) is
renamed into PG-resolution operatidPG-Res(cq, c2,1).

For instance, the PG-resolution tree obtained from the ¢ementary tree of the
resolution tree shown in Figure 8 is given in Figure 9 The -amiit of a PG-

{=p(0)} {+p(b), -p(c)}

{-p(c)} {+p(c)}

T h

Figure 9: A PG-resolution tree

resolution tre€l” is denoted by:r(7'), and the set of its leaves is denotedbif").
We will use the following property of (PG-)resolution trees

Lemma 3 In any PG-resolution tred’, for any literal [ in the label of a node of
L(T), lis also a literal in the label of a node df(T).

Proof: Let z be a node of.(7") and let/ be a literal inlabel(z). Let i be the path
in T from z to ar (7)), lety be the first node of. from = such that is not a literal
in label(y), and letc = label(y) (y exists sinceur(T') is labeled with the empty
clause, and; # z sincel is a literal inlabel(x)). Lety; andy, be the parents of
y in T, with 41 on , labeled withc; andc, respectively. Ag is a literal inc; but
notine, c = PG-Res(cy, co,1) andl is a literal inc,, and therefore in the label of
some node of (7). O
In the same way as we identify term nodes of a®@ith the terms associated
with this node in®(G), we identify for each clause(c(G)) of Cq the substitution
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o of variables of®(G) by terms of®(H) with a mapping from the séf; of term
nodes ofG to the sefl’; of term nodes off (mapping each constant node®@fto

the constant node dff having the same label). Thus, we associate with each node
x of L(T") a mappingr, from T to T such thatabel(x) can be defined from,

as follows.

Definition 12 (PG-resolution tree of (G, H)) LetG and H be two PGs. AG-
resolution tree of G, H) is a structure(T', (7 ) ,e (7)) WhereT'is a PG-resolution
tree such that for each nodeof L(T), label(x) is consistent and, is a mapping
from T to Ty such thatlabel(x) = {~p(mz(u)) | ~p(u) is a literal in G and
~p(mz(u)) is not a literal in H }.

For instance the tre€ shown in Figure 9 is a PG-resolution tree (6f, H ),
whereG and H are the PGs shown in Figure 5: 4fis the node ofZ.(7") labeled
with {—p(b)} (resp. {+p(b), —p(c)}, {+p(c)}) thenr, is the mapping fronT
to Ty mapping term nodes andy to a andb (resp.b ande, ¢ andd).

Property 15 (PG-resolution) Let G and H be two PGs, with{ being consistent.
G is deducible fron¥ if and only if there is a PG-resolution tree ¢, H).

Proof: This follows from the discussion abovés is deducible fromH iff the
set F' equal toCq U C'y is unsatisfiable; by Property 14, is unsatisfiable iff it
has a resolution tree, and there is a resolution tre€ d@f and only if there is a
PG-resolution tree ofG, H). O

Property 16 LetG and H be two PGs, and (7', () ,e (7)) be a PG-resolution
tree of (G, H). For any noder of L(T"), , can be extended to a homomorphism
from GG to a completion off, and any such homomorphism mapgsto H.

Proof: Let « be a node ofL.(T"). Let us show thatr, can be extended to a ho-
momorphism fromG to a completion off, i.e that there is a completioA ¢ of
H such that for any literat-p(u) in G such that~p(m,(u)) is not a literal inH,
~p(mz(w)) is a literal in H¢. This is still equivalent to: there is a completidff
of H such thatabel(x) is a set of literals inH¢. To prove this, it is is sufficient to
show that the following propositions a) and b) hold:

a) H + label(z) is consistent,

b) each relation name ifmbel () is in the completion vocabulary w.r{G, H).

Let us show Proposition a). AF andlabel(z) are consistent, it is sufficient to
show that for any literal in label(z), I is not a literal inH. Let! be a literal in
label(z). By Lemma 3/ is in the label of a node of(T"), and therefore is not a
literal in H.

Let us show Proposition b). Letbe a relation name ifubel(z). Let us show
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that+p and —p have occurrences i@ and in H. By Lemma 3,+p and—p have
occurrences in labels of nodes bfT"), and therefore irtz. Since by Property 15
G is deducible fromH, every node of7 labeled with-+p (resp. —p) is mapped
by a homomorphism frond to H¢~ (resp. H") to a node ofH labeled with+p
(resp.—p). Hence Proposition b) holds, which completes the prodfthacan be
extended to a homomorphism froghto a completion of.

Let 7/, be a homomorphism frortr to a completion ofH extendingr,. Let us
show thatr!, mapsG to H, i.e that each literalp(u) in G such thatwp(7’,(u)) is
not a literal inH is exchangeable. Letp(u) be a literal inG such thatvp(n’ (u))
is not a literal inH. Then~p(x’,(u)) is a literal inlabel(x). By Lemma 3, there is
a nodey of L(T') such that~p(r’.(u)) is a literal inlabel(y). So there is a literal
~p(v) in G and a homomorphism; (extendingr,) from G to a completion off
such thatr, (u) = m,(v). It follows that{~p(u), ~p(v)} is an exchangeable pair,
hence~p(u) is exchangeable. O

We are now ready to give new proofs of Theorems 2 and 3.

Lemma4 Let G and H be two PGs. If there is a PG-resolution tree (&f, H)
then, foreachcompletionH¢ of H, there is a homomorphism frod to H¢ that
mapsG, to H.

Proof: We suppose that there is a PG-resolution (87 ),cr(r)) Of (G, H).
Let H¢ be a completion of{. Let us show that there is a homomorphism frém
to H¢ that mapsGs to H. By Property 16, it is sufficient to show that there is a
nodex of L(T') such thatr, can be extended to a homomorphism frého H¢,
i.e. such thatabel(z) is a set of literals inH¢. For any nodey of 7', let P(y)
denote the property:

P(y): label(y) is a set of literals inff .

In order to prove that there is a nodeof L(7") such thatP(z) holds, we build
a pathy from ar(T) to a leafz of T, p = (ar(T) = yo,¥1,....,Yyp = x) such
that for eachi from O top, P(y;) holds. We define); and proveP(y;) by induc-
tion oni. Fori = 0, yo = ar(T) and P(y) trivially holds. We suppose that
(ar(T) = yo,y1,-..,v;) is a path inT from ar(T") towards a leaf ofl" such that
P(y;) holds andy; is not a leaf of7T. Let > andz’ be the parents of; labeled
with ¢ and¢’ resp., andtp(w) such thatabel(y;) = PG-Res(c, ', +p(w)). Thus
label(z) C label(y;) U {+p(w)} andlabel(z") C label(y;) U{—p(w)}. Moreover,
either+p(w) or —p(w) is aliteral in H¢ since by Property 16+p(w) is a literal in
H'\ H for some completiorf{’ of H. We definey; 1 asz if +p(w) is a literal in
H¢, andz’ otherwise. It follows fromP(y;) and the definition ofj; ;1 that P(y;+1)
also holds. Hence there is a nadef L(7") such thatP(x) holds. O
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Theorem 2 Let G and H be two PGs, withH being consistent. I is de-
ducible fromH, then, foreachcompletionH ¢ of H, there is a homomorphism from
G to H¢ that maps7, to H.

Proof: This follows immediately from Property 15 and Lemma 4. O

Lemma5 LetG and H be two PGs. Let’ be a subgraph ofr without exchange-
able pair w.r.t. (G, H). If there is a PG-resolution tree ¢f+, H) then there are a
completionH ¢ of H and a homomorphism froid to H¢ that mapsG’ to H.

Proof: We suppose that there is a PG-resolution (87 ),cr(r)) Of (G, H).
Let us show that there is a completiéff of H and a homomorphism fro& to
He¢ that mapsa’ to H. By Property 16, it is sufficient to show that there is a node
x of L(T) such that for any literad-p(u) in G, ~p(m,.(u)) is a literal in H (since
in that case any homomorphism frathto a completion ofd extendingr, maps
G’ to H), i.e. such that for any literakp(u) in G', ~p(7,(u)) is not a literal in
label(x). For this, it is sufficient to show that there is a nadef L(7") such that a
stronger property?(z) holds, whereP(y) is defined for any nodg of T" by:

P(y): for any literal~p(u) in G’ and any homomorphism from G to a comple-
tion of H, ~p(w(u)) is not a literal inlabel (y).

In order to prove that there is a nodeof L(7") such thatP(z) holds, we build
a pathy from ar(T) to a leafz of T, pn = (ar(T) = yo,¥1,....,Yyp = x) such
that for eachi from O top, P(y;) holds. We define); and proveP(y;) by induc-
tion oni. Fori = 0, yo = ar(T) and P(yo) trivially holds. We suppose that
(ar(T) = yo,y1,---,y;) is a path inT from ar(T") towards a leaf ofl" such that
P(y;) holds andy; is not a leaf of7. Let z andz’ be the parents of; labeled
with c and¢ resp., andt-p(w) such thatabel(y;) = PG-Res(c, ', +p(w)). Thus
label(z) C label(y;) U{+p(w)} andlabel(z") C label(y;) U{—p(w)}. Moreover
asG' is without exchangeable pair, if there are a litefal(u) in G’ and a homo-
morphisms from G to a completion ofd such thatr(u) = w then for any literal
—p(u) in G’ and any homomorphism from G to a completion off, w(u) # w,
and therefore-p(w(u)) # —p(w). We definey; ., asz’ if there are a literak-p(u)
in G’ and a homomorphism from G to a completion ofd such thatr(u) = w,
and asz otherwise. It follows fromP(y;) and the definition ofy; 11 that P(y;+1)
also holds. Hence, there is a nadef L(7") such thatP(z) holds. O

Theorem 3 Let G and H be two PGs, withH being consistent. Le&®’ be a
subgraph ofG without exchangeable pair w.rt(G, H). If G is deducible from
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H, then there are a completioA“ of H and a homomorphism froidd to H¢ that
mapsG’ to H.

Proof: This follows immediately from Property 15 and Lemma 5. O

Note. The new proof of Theorem 2 (resp. Theorem 3) provides an ilfgorto
find from a PG-resolution tre of (G, H) a homomorphism fron@ to a given
completion ofH that maps~, to H (resp. a completion aff and a homomorphism
from G to this completion that maps a given subgrapldzofvithout exchangeable
pair to H) by construction of a path ifi' from its anti-root to one of its leaves.
The algorithm induced by the proof of Theorem 2 is simple sine only have to
decide at each step if a given literal is in the given compietr not. The algorithm
induced by the proof of Theorem 3 is more delicate since wet meside at each
step if there are a literdlin G’ and a homomorphism froif@ to a completion off
mappingl to a given literal, which is an NP-complete problem. But commyg a
PG-resolution tree ofG, H) is itself difficult, as the size of the sél; of clauses
is exponential in the number of variable nodeg:in

In Section 4, we deduced Property 12 from Theorem 2, usingnhasil and 2
to translate PG-deduction into conditions on propositidoanulas. We present a
new proof of Property 12 from Properties 15 and 16, using ttenal correspon-
dence between a PG-resolution tree and the associatedtresdfee to translate
PG-deduction into conditions on propositional formulas.

Lemma 6 LetG and H be two PGs, and lef’ be a ground subgraph d¥ con-
tained inG. There is a PG-resolution tree 667, H) iff D/ (G, H) is a tautology.

Proof: We suppose that there is a PG-resolution (87 ).cr(r)) Of (G, H).
Let us show thaD«/ (G, H) is a tautology. By Properties 5 and 16 for any node
x of L(T), m, can be extended to an extensible homomorphignfrom G’ to
H, and therefordabel(z) = Lo (nl). It follows that the sef” of labels of the
leaves of the complementary tré€ of the resolution tree associated withis the
set of clauses-Cg (7,) for all nodesz of L(T). As T’ is a resolution tree, by
Property 14F is unsatisfiable, so the negation of the conjunction of tlaeisgs
-Ce (7)) in F, i.e. the disjunctions of propositionSs () for all nodesz of
L(T), is a tautology. Henc®¢ (G, H) is a tautology.

Conversely, we suppose thB (G, H) is a tautology. Let us show that there is a
PG-resolution tree dfG, H). Let F' be the set of clausesC () for all extensible
homomorphisms from G’ to H. As D¢ (G, H) is a tautology,F is unsatisfiable,
and therefore has a resolution tréeby Property 14. Lefl” be the PG-resolution
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tree associated with the complementary tre& ofor each node of L(7") there
is an extensible homomorphismfrom G’ to H such thafabel(xz) = L/ (), and
thereforelabel (x) satisfies the condition required on labels of a PG-resaitttiee
of (G, H), with 7, equal to the restriction of to 7. Hence(T", (74)zer (1)) iS
a PG-resolution tree aiG, H). O

Property 12 Let G and H be two PGs, withH being consistent, and l&&’ be
a ground subgraph off contained inGs. G is deducible fron¥ iff Dq/ (G, H) is
a tautology.

Proof: This follows immediately from Property 15 and Lemma 6. d

6 Extensions

This section presents two extensions of previous resuitspe hand by integrating
a preorder on relation names, which allows to take a lighblogty into account,
and on the other hand by refining the notion of exchangeatadsals in order to
reduce their number.

6.1 Preordered predicates

In knowledge-based systems, an ontology describes thgaras (or classes of
objects) of an application domain, called concepts, angtssible relations be-
tween instances of these concepts. The set of conceptsabyugrovided with a
so-called subsumption or generalization/specializatedation, which is a partial
order, or a preorder in the case where several concepts caqudealent. The set
of relations can also be structured in the same way.

We show in this section that previous results can be extemml¢ake a light
ontology©® = (C, R, Z) into account, wher€ andR are preordered sets of con-
cepts and relations, respectively, dhds a set of individual names; only relations
with the same arity are comparable according to this preordibis ontology is
said to be light, because concepts and relations are atamilbg sense that they
do not have a definition) and the only relationship among tlienme preorder
(noted<). t, < t; means thats is a specialization of;, or ¢, is subsumed by .

A light ontology can be seen as the vocabulary (also callggpor) in conceptual
graphs, and as BBoxcomposed of inclusions between atomic concepts and binary
relations, called roles, in description logics.

Concepts are logically translated into unary predicates retations of arity
k into k-ary predicates. For simplicity, we use the same name fornaeqt or
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relationt and its predicate, and keep the symbkoffor the induced preorder on
predicates. The set of logical formul@g©) assigned to a light ontolog§ is as
follows: for all predicateg; andt, with the same arityk, if to < t1, one has the
formulaVay ... xp(ta(z1 ... 2k) — t1(x1 ... 2)).

All notions presented in Section 2 can be extended to a ligttlogy [MLO7].
Let Lo = (C UR,Z) be the logical language associated with a light ontolégy
There are several ways of extending PGs to encode{EOL —,} formulas on
Lo. A literal of form ~t(e), wheret is a concept predicate, can be represented in
the label of the term node assignedetain this case a term node is labeled by a
pair ({~t; ... ~t,},m), wheret, .. .t, is a set of concepts and € {x} UZ. For
this translation, we must extend the label comparison angtdtie piece notion. A
simpler translation involves considering concept pretisas unary relations and
leaving the labels of term nodes unchanged. For simplicéychoose this second
representation in this paper, and we dalh the set of relation names available in
PG labels. Thus, i© = (C,R,Z) thenRp = CUR.

Relation node labels are preordered as follows; < +r, (resp.—re < —rq)
if 1 < re, and+ry and —ry are incomparable. The definition of a homomor-
phism takes this order into account. In a PG homomorphismwve now have
la(m(r)) < lg(r). Let us point out that the preorder can be compiled, so that
labels can be compared in constant (or almost constant) tinus the preorder
does not introduce overhead complexity. Property 1 stililsowith “~p(o(u)) is
a literal in®(H)” being replaced with “there is a literabq(o(u)) in ®(H) with
~q <~p”". A PG is consistent if it does not contain contradictoneldls, i.e.
+r(u) and—s(u) with r < s. Given this extended definition of consistency, the
definitions of a complete PG and of a completion of a consis®&hw.r.t. a set of
relation namesR as well as the definition of PG-deduction are unchanged. -Theo
rem 1 still holds with®(H) = ®(G) being replaced wit(0), ®(H) = ®(G).
We have to adapt the definitions of opposite literals and @tttmpletion vocabu-
lary w.r.t. (G, H). We first give the following definition and Lemmas.

Definition 13 (H®) Let H be a consistent PG on a light ontolog}. H® denotes
the PG obtained fron#/ by adding each literak-g(u) not already present i
such that there is a literad-p(u) in H with ~p <~q.

Lemma 7 Let H be a consistent PG on a light ontology, and letL be a con-
sistent set of literals such that for any literiain L, [ is not a literal in H®. Then
HO + L is consistent.

Proof: We assume for contradiction that® + L is inconsistent. Let and!’ be
contradictory literals inH® + L. As L is consistent, at least one band/’, sayl,
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isin HO. Letl =~p(u), thenl!’ = ~g(u) for someq such that~p <~q. Hence
"is in H® and thereford’ in not in L. It follows that!’ is also inH®. As! and
I' are inHO, there are literalsp; (u) and~gy (u) in H with ~p; <~p <~q <~
q1, S0 ~p1(u) and~gi(u) are contradictory literals i, which contradicts the
consistency of. O

Lemma 8 Let H be a consistent PG on a light ontolody, and letR be a subset
of Ro. LetHf{r (resp. Hy ) be the PG obtained from by adding for each atom
p(u) not already occurring inH such thatp is in R andw is anarity(p)-tuple in
H:

+p(u) if +p(u) is a literal in H©,

—p(u) if —p(u) is aliteral in HC,

+p(u) (resp. —p(u)) if neither +p(u) nor —p(u) is a literal in HC.

Theangr (resp. Hz ") is a completion off w.r.t. R.

Proof: Let H® = Hg (resp. Hy; ). Itis sufficient to show that ¢ is consistent,
which immediately follows from Lemma 7 with being the set of literals i \
HO (L is consistent since it contains only positive (resp. negpfiterals). O

It follows from Lemma 8 that for any subs®& of R, a consistent PG has
at least one completion w.ri.

Lemma9 LetG and H be two PGs on a light ontolog§, with H being consis-
tent. If G is deducible fronH then each relation node label @ is also a label in
HO.

Proof: Let ~p be a label inG:, let H® = H;_ if ~p = +p and Hy' otherwise.
By Lemma 8,H¢ is a completion off w.r.t. Rp. Letw be a homomorphism from
G to He. As the polarity of~p is opposite to that of the literals iH¢ \ H®, each
node ofG with label ~p is mapped to a node df, and therefore-p is a label in
HO. O

Definition 14 (Weakly and strongly opposite literals) Letr ands be relation names
with » < s. Labels—r and+s (resp. literals—r(u) and+s(v)) are saidweakly
opposite and labelstr and —s (resp. literals+r(u) and—s(v)) are saidstrongly
opposite

Note that ifu = v then strongly opposite literalsr(u) and—s(u) are contra-
dictory, which is not the case for weakly opposite literalg(v) and +s(u). We
can now give the definition of the completion vocabularytw(z, H, O).
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Definition 15 (Completion vocabulary w.rt. (G, H, ©)) LetG andH be two PGs
on a light ontology®. Thecompletion vocabulary w.r{G, H, O) is the set of re-
lation names appearing in a pair of weakly opposite labgls-, +s} such that
both —r and+s have occurrences i¥ and in H°.

D

7
: @@@LG)@ :

Figure 10: PGs with preordered relation names

For instance, iiG and H are the PGs shown in Figure 10 wiph< ¢ then the
completion vocabulary w.r.{G, H, Q) is the sefR = {p, q}. G can be mapped to
each completion7© of H w.r.t. R: if H¢ contains the literal-p(b) thenz andy
can be mapped te andb, otherwise ifH¢ contains the literal-p(c) thenz andy
can be mapped thandc, and otherwise te andd. We will show that this holds if
and only ifG is deducible fromH, which justifies the definition of the completion
vocabulary w.r.t.(G, H,O). Note that if we had the order < p, then{+q, —p}
would be a pair of strongly opposite labels and the comptetimcabulary would
be empty, which is in accordance with the fact tGatvould not be deducible from
H.

Property 17 LetG and H be two PGs on a light ontolog§, with H being con-
sistent, and leRR be the completion vocabulary w.rtG, H, O). G is deducible
from H if and only ifG can be mapped to each completionfbfwv.r.t. R.

Proof: We have to show that can be mapped to each completionfbfw.r.t. Rop

iff G can be mapped to each completionfbiv.r.t. R. The implication from right
to left holds sincéR C R». We suppose thdt can be mapped to each completion
of Hw.rt. Ro. Let H¢ be a completion off w.r.t. R. Let us show thafz can be
mapped taH¢. For this we define fronf/¢ a completionH’ of H w.r.t. R, and
we will define from a homomorphism’ from G to H' a homomorphismr from
Gto HC.

Let H' be the PG obtained froni/¢ by adding for each atom(u) not already
present inf ¢ such thap is in Rp andu is anarity(p)-tuple in H:
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+p(u) if +p(u) is aliteral in(H¢)©,
—p(u) if —p(u)is a literal in(H)?,
otherwise,+p(u) if there isr € Rp such that- < p and—r is a label inG, and
—p(u) if there is no suchr.
Let us show thaf{’ is a completion of w.r.t. Re. It is sufficient to show that
H' is consistent.H¢ is consistent and for any literalin H' \ (H¢)°, 1 is not in
(H°)%, so by Lemma 7 it is sufficient to prove that' \ (H¢)? is consistent. We
suppose for contradiction thét’ \ (H¢)? is inconsistent. Let-p(u) and —q(u)
be contradictory literals i’ \ (F¢)?, i.e. withp < q. As+p(u) isin H'\ (H¢)°
there isr € R such thatr < p and—r is a label inG, sor < ¢ and therefore
—q(u) is notin H'"\ (H¢)?, a contradiction. Thugl’ is a completion off w.r.t.
Ro.
Let 7' be a homomorphism front to H'. We define fromz’ a homomorphism
7 from G to H¢ as follows. For any term nodeof G, =(t) = 7'(t). Letl be a
literal in G, andl’ = w(I) =~p(v). If I"is in (H®)? then there is a literal-q(v)
in H¢ with ~q <~p, and we definer(l/) =~¢(v). We suppose now thdt is
not in (H¢)°. I' # —p(v), otherwisel would be in the form—r(u) with » < p,
so —r would be a label i and —p(v) would not be a literal inf’ \ (H¢)°.
Sol’ = +p(v), andl is in the form+s(u) with p < s. As +p(v) is a literal in
H'"\ (HC)O, there isr € R such thatr < p and—ris alabel inG. By Lemma 9,
—r and+s are also labels if7®. It follows that {—r, +s} is a pair of weakly
opposite labels such that both and+s have occurrences i6' and in H%, so
sisin R, and therefore eithe#s(v) or —s(v) is a literal in H¢. —s(v) is not a
literal in H¢, otherwise+p(v) and —s(v) would be contradictory literals i’
So+s(v) is a literal in H¢, and we definer(l) = +s(v). Thus we have defined a
homomorphismr from G to H€. OJ
From now on, completions consider implicitly the complati@mcabulary w.r.t.
(G, H,O). The definition of an exchangeable pair is extended as fsllow

Definition 16 (Exchangeable pair w.r.t.(G, H, ©)) An exchangeablgair w.r.t.

(G,H,0) is a pair {—r(u),+s(v)} of weakly opposite literals iz, such that
there are two completions @f, sayH; and H,, and two homomorphisms and
o, respectively frondz to H; and fromG to Ha, with 7y (u) = ma(v), —r(mi(u))

is aliteral in H, and+r(m2(v)) is a literal in Ho.

Forinstance, ity andH are the PGsin Figure 10 with< ¢, then{+q(x), —p(y)}
is an exchangeable pair, sincendy can be mapped toby homomorphisms from
G to completions of containing+p(b) and—p(b) respectively.

This definition calls for a few comments. First, condition(m (u)) is a lit-
eral in H; and+r(m1(u)) is a literal in Hy” could be replaced by s(m(u)) is
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a literal in H; and+s(m1(u)) is a literal in Hy” or, for a symmetrical definition,
by the disjunction of these two conditions. As we aim at réugithe number of
exchangeable pairs as much as possible, we choose thiynmonedrical but more
restrictive definition. Secondly, a weaker definition of agleangeable pair could
have been considered: it is obtained from the flat case (Diefir®) by simply re-

placing “opposite” with “weakly opposite”, i.e. without dohg the condition that
—r(mi(u)) is a literal in H; and+r(71(u)) is a literal in Hy. This weaker def-
inition is not equivalent to the above Definition 16, even & add the condition
that neither—r(m(u)) nor +r(m(u)) is a literal in H. For instance, ifG and

H are the PGs shown in Figure 11 with< g, then the pai{+q(z), —p(y)} is

G (+g) H
BEOS NN OXT RO
P=<q

Figure 11: Weak exchangeability

“weakly” exchangeable but is not exchangeable. It is weakighangeable since
x andy can be mapped to by a homomorphism frond to a completion ofH
obtained by adding-p(c) and+q(c) (in this case H; = Hs). It is not exchange-
able because andy are necessarily both mappedddy 7, (or by 75), thus H,
necessarily containsp(c) and the only way of mapping p(y) is to have—p(c)
or —q(c)in Hy, which makes it inconsistent. Intuitively, the weaker diifam of an
exchangeable pair seems to be insufficient since it doesaweissarily involve the
law of the excluded-middle, which was the motivation foraatucing exchange-
able pairs. This intuition is confirmed by the logical resmo approach, in which
exchangeable pairs are represented by pairs of complemgéditégals involved in
resolution operations.

Given the extended definition of an exchangeable pair, thi@itiens of an
exchangeable literal (w.r.t{G, H,©)) and of the socl&7; of G (w.r.t. (H,Q))
are unchanged. Property 4 still holds, wittf* (resp. H¢™) becominnggr (resp.
HZ;") defined in Lemma 8, wherR is the completion vocabulary w.rtG, H, O).
Given the extended definitions of the completion vocabul@y.t. (G, H, O)),
the definition of a ground subgraph 6f (w.r.t. (H,Q)) is unchanged, and the
definition of an extensible homomorphism is extended asvia|

Definition 17 (Extensible homomorphism w.r.t.(G, H, ©)) Ahomomorphism
from a ground subgrapli”’ of G to H is extensiblew.r.t. (G, H, O)) if it satisfies
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1. for any literal~r(u) in G\ G', =7 (7 (u)) is notin HY;
2. for all strongly opposite literals-r(u) and —s(v) in G\ G, w(u) # 7 (v).

Property 5 still holds, with the following modification ofdtproof that condi-
tions 1 and 2 are sufficient for to be extendable to a homomorphism fr@mo
a completion ofH. We suppose that satisfies conditions 1 and 2. Létbe the
set of literals~r (7w (u)) for every literal~7(u) in G \ G’ such that~r(7(u)) is
not already present if/. By condition 1, for any literal in_, [ is not a literal in
HO, and by condition 2 is consistent. It follows by Lemma 7 th&® + L is
consistent, and therefol# + L is consistent. Hence, by Lemma@,+ L has a
completionH ¢, which is also a completion off sinceG’ is a ground subgraph of
G, andr can be extended to a homomorphism fréhto H¢.

Let us now consider Theorems 2 and 3, which are fundamentddéacomplex-
ity results. The proofs of these theorems given in Sectiort8nel to preordered
relation names with the weak definition of exchangeablespdiut they do not
with the above Definition 16. The reason is that the set of dementary literals
of the literals inR (with R being consistent) is no longer necessarily consistent,
sinceR may contain weakly opposite literals in the forar(u) and+s(u), whose
complementary literals are contradictory. However, thibe®rems still hold. To
show it, we extend the proofs given in Section 5, which use a¢¥@lution tree of
(G, H), as follows. Sinceb(H) = ®(G) is replaced with®(O), ®(H) = ¢(G),
the setF' = C¢ U C'y is replaced withC U Cr U Cr, WhereC is the set of all
clauses in the ford—r(u), s(u)} with » < s. In a resolution tree, clauses 6%
allow to increase literals, i.e. to replace a litergb(u) by ~q(u) with ~p <~q,
in clauses not belonging G (such an operation on a clause$ would result
into a clause of’» and therefore would be useless). We may assume w.l.0.g. that
resolution operations involving clauses@f; or C» are performed first, so there
is a resolution tree whose leaves are labeled with clausasell from clauses of
Cq by removing all literalg such that is a literal in®(H®) and increasing the
remaining literals. Thus, for any resolution operatiBas(c, ¢, p(w)) performed
in this resolution treeg contains the literap(w) obtained by increasing some lit-
eralr(w) with » < p and¢’ contains the literatp(w) obtained by increasing some
literal —~s(w) with p < s. Instead of increasing(w) to p(w) and—s(w) to —p(w),
we can leave(w) unchanged and increase(w) to —r(w), and do the resolution
operation w.r.t. the literat(w). In other words, we can increase only negative
literals. Let us show that moreover, there is such a reswiutiee”” such that
none of the clauses labeling its leaves contains a claus&dwhich is needed
to assure label consistency of the leaves in the PG-resnltriée associated with
the complementary tree @f). LetI" be a resolution tree whose leaves are labeled
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with clauses obtained from clauses@f by removing all literald such that is a
literal in ®(H®) and increasing the remaining negative literals, with theimum
number of clauses labeling the leaves,Hdbe the set of clauses labeling the leaves
of T', and letc be a clause . Let us show that does not contain any clause of
Co. We suppose for contradiction thatontains a clausé of C». Then the set
(F'\ {c}) U{c} is also unsatisfiable, and therefore has a resolutionZfedf ¢’
labels some leaves @f’, we can remove these leaves and increase some negative
literals for’7” to remain a resolution tree. We obtain a resolution tree etibsired
form whose leaves are labeled with clause$'of {c}, which contradicts the def-
inition of T'. Thus, the definition of a PG-resolution tree(6f, H) is extended as
follows.

Definition 18 (PG-resolution tree of (G, H,0)) Let G and H be two PGs. A
PG-resolution tree ofG, H, O) is a structure(T’, (7;)yc (1)) WhereT is a PG-
resolution tree such that for each nodeof L(T'), label(z) is consistent and
7, 1S @ mapping fronl to Ty such thatiabel(x) is obtained from the sef~
p(me(u)) | ~p(u) is a literal in G and ~p(,(u)) is not a literal in H} by re-
placing each positive literak-p(m,(u)) with a literal in the form-r (7 (u)) with
r < p.

For instance, itz and H are the PGs shown in Figure 10 with< ¢ then the
tree given in Figure 9 is a PG-resolution treg(6f, H, O). Property 15 still holds,
and Property 16 is extended as follows.

Property 18 LetG and H be two PGs on a light ontolog®, and let(T', () e (1))
be a PG-resolution tree ofG, H, ©). For any nodex of L(T), m, can be ex-
tended to a homomorphism fraghto a completion off containing each literal in
label(x), and any such homomorphism mapsto H.

Proof: Let z be a node ofL.(7"). Let us show thatr, can be extended to a ho-
momorphism fromG to a completion ofH containinglabel(x). For this, it is
sufficient to show that there is a completion i@f containinglabel(z). To prove
this, it is sufficient to show that the following Proposit®a) and b) hold:

a) H + label(x) is consistent,

b) each relation name ilabel () is in the completion vocabulary w.rtG, H, O),
since it follows from Proposition a) and Lemma 8 titat+ label(x) has a comple-
tion, which is also a completion df by Proposition b).

Let us show Proposition a)f andlabel(x) are consistent and by Lemma 3, for
any literall in label(x), [ is in the label of a node of(T'), and therefore is not a
literal in H®, so by Lemma 7 + label(z) is consistent.
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Let us show Proposition b). Letbe a relation name ifubel(z). By Lemma 3,
+r and —r have occurrences in labels of nodesIdf"), and therefore there is a
relation namep with » < p such thatt-p and—r have occurrences i@. By Prop-
erty 15 and Lemma 9+p and—r also have occurrences #i®. Hence Proposition
b) holds, which completes the proof that can be extended to a homomorphism
from G to a completion ofd containinglabel (x).

Let 7, be a homomorphism extending, from G to a completionH/, of H con-
taininglabel(z). Let us show that! mapsG, to H, i.e that each literakp(u) in G
such thatvp(r’.(u)) is not a literal inH® is exchangeable. Letp(u) be a literal
in G such thatvp(r’.(u)) is not a literal inH®. Then there is a literabr (1), (u))

in label (x) with ~r <~p (andr = p if ~p = —p). By Lemma 3, there is a node
of L(T') such thatr (7, (u)) is a literal inlabel(y). So there is a literaicg(v) in
G with ~q <~r (andr = ¢ if ~p = +p) and a homomorphism; (extendingrm,)
from G to a completionf; of H containinglabel(y) such thatr,(u) = 7, (v).
As ~q <~r and~r <~p, ~q <~p, SO~qG(v) and~p(u) are weakly opposite
literals inG, and asi;, containslabel (x) and H,, containslabel(y), ~r(m,(u)) is

a literal in H;, and~7(r,(u)) is a literal in H;, with —r being the negative label
in {~q, ~p}. It follows that{~g(v), ~p(u)} is an exchangeable pair, heneg(u)

is exchangeable. O

Property 18 is indeed an extension of Property 16 since ttlecadondition that the

considered completion df contains each literal itubel(x) is implicitly satisfied

in absence of preorder on relation names. This conditioeéessary to prove that

an extension ofr, mapsG; to H because of the condition in the definition of an

exchangeable pair thatr(7i(u)) is a literal in H; and+r (7 (w)) is a literal in

H,, which is also implicitly satisfied in absence of preorderelation names.
The proofs of Theorems 2 and 3 using PG-resolution tredshstd, if we re-

place in the proof of Lemma 5 the definition Bfy) by:

P(y): for any literal ~p(w) in label(y), any literal~q(u) in G" with p < ¢ if

~p = +p andp = g otherwise, and any homomorphistrfrom GG to a completion

of H containing the literabp(w), 7m(u) # w.

and the definition ofy; ;1 by:

y;+1 is defined ag’ if there are a literal-¢(u) in G' with p < ¢ and a homomor-

phism~ from G to a completion off containing+p(w) such thatr(u) = w, and

z otherwise.

Property 4 still holds, with7< (resp. H°™) being the completionﬁ@‘;r (resp.

HZ;") defined in Lemma 8, wher® is the completion vocabulary w.rtG, H, O).
Property 12 is extended by replacing formdba, (G, H) with D¢/ (G, H, O).
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Notations 2 Let G and H be two PGs on a light ontolog§?, with H being con-
sistent, and le?’ be a ground subgraph «f.

Py o denotes the set of atoms®fH® \ H®), whereH¢ is an arbitrary comple-
tion of H, seen as the set of atoms of a language in propositional logic

For any extensible homomorphisnfrom G’ to H, L () denotes the set of liter-
als ! such thatl =~p(r(u)) for some literal~p(u) in G and! is not in H®, and
C¢ () denotes the conjunction of the literals iz (7) seen as a proposition on
Py o.

D¢ (G,H,0) = D¢/ (G, H) VvV D(O), whereD¢/ (G, H) denotes the disjunction
of the propositiong’ () for all extensible homomorphismsfrom G’ to H and
D(0O) denotes the disjunction of the conjunctioris) A —s(u) for all atomsr(u)
ands(u) in Py o such that < s.

Omission of subscripf’ means that?’ is equal toG.

For instance, ifG and H are the PGs shown in Figure 10 with< ¢ then
D(G, H,O) is a disjunction in the formp(b) V (q(b) A —p(c)) V q(c) V (p(b) A
—q(b)) V (p(c) A —q(c)) v D', and therefore is a tautology.

Lemma 10 Let G and H be two PGs on a light ontology, and letG’ be a
ground subgraph ofr contained inGG. There is a PG-resolution tree ¢/, H, O)
iff Do (G, H, ©O) is a tautology.

Proof: Assuming that there is a PG-resolution (@ (;.),c (1)) of (G, H, O),

let us show thaDq/ (G, H, O) is a tautology. For any nodeof L(T'), 7, can be
extended to an extensible homomorphisfnfrom G’ to H, such thatabel(x) is
obtained fromL¢ (7,) by decreasing positive labels. L&t be the complemen-
tary tree of the resolution tree associated WithEach leaf off” is labeled with a
clause obtained from a clause in the fori' (7’,) by increasing negative pred-
icates. Then there is a resolution tré8 whose leaves are labeled with clauses
in the form —~C¢/(7,) and clauses of’p, that are negations of conjunctions in
D(0O). As the set of labels of the leaves Bf is unsatisfiable by Property 14,
D¢/ (G, H,O) is a tautology.

Conversely, we assume thBt./ (G, H, Q) is a tautology. Let us show that there
is a PG-resolution tree d¢f5, H, O). Let F' be the unsatisfiable set of clauses such
that -D¢ (G, H, O) is the conjunction of the clauses M. As discussed in the
paragraph preceding Definition 18, we can build from a regmiuree of /' a PG-
resolution tree of G, H, O). O
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Property 19 Let G and H be two PGs on a light ontolog{, with H being con-
sistent, and le&’ be a ground subgraph @f contained inG;. G is deducible from
H iff De(G, H, Q) is a tautology.

Complexity results of Section 4 are preserved since thdgviofrom Theo-
rems 2 and 3 and Property 12, from the NP-completeness ofdm@imorphism,
which is also preserved when relation names are preordanetiirom the fact that
any problem is at least as difficult as in absence of preordaelation names (in
particular DEDUCTION;3 is still co-NP-difficult).

6.2 Refining Completions and Exchangeability

In this section we see how to reduce the set of literals added to obtain a
completion of H, which in turn reduces the number of exchangeable pairs. We
already restricted the set of literals added by defining thrapmetion vocabulary
w.r.t. (G,H). The idea is that the obtained completionsifmust satisfy the
following fundamental property, denoted Bpompletion PropertyG is deducible
from H if and only if G can be mapped to each completionfdf By Theorem 2,

it is sufficient to add tdd literals such that at least one exchangeable literalin
can potentially be mapped {o It follows that any literall in a completion ofH
that is not inH and such that no exchangeable literatdrcan be mapped tbcan

be removed from this completion. This restriction on cortiptes of H induces a
reduction of the set of homomorphisms fraito completions of, and therefore
of the set of exchangeable pairs, so that new literals in ¢etiops of H become
useless and can be removed. This operation can be repeetieating both the
set of literals added in completions &f and the set of exchangeable pairs until
stability is obtained. We first refine the notion of complatimcabulary, then we
introduce exchangeable triples.

6.2.1 Completion Vocabulary

We defined the completion vocabulary w.i{7, H) as the set of relation names
with positive and negative occurrencesGhand in H, with an extension of this
definition and the proof of Completion Property (Property iti7the case of pre-
ordered predicates. We will give a general process leadirggtinclusion-smaller
completion vocabulary (and therefore an inclusion-smadiet of exchangeable
pairs) with a more general and simpler proof of Completioogerty.

The idea is that if a relation name in the completion vocalyudaes not appear
in any exchangeable literal then it can be removed from thepdetion vocabulary
R, which in turn will reduce the set of exchangeable literalstw (G, H,R),
i.e. defined with completions off w.r.t. R. Thus, we can successively restrict
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the completion vocabulary until it only contains relatioanmes of exchangeable
literals w.r.t.(G, H,R). The refined completion vocabulary, denoted®{G, H),
is defined by Algorithm 3.

Algorithm 3: R(G, H)
Data: G and H two PGs, withH being consistent.
Result the refined completion vocabula®(G, H).
begin
Let R be the set of relation names that have both positive andimegat
occurrences gz and in H
repeat
Ri <R
Let R be the set of relation names in exchangeable literals w.r.t.
(G,H,R)
until R = Ry ;
return’k

end

For instance, ifG¢ and H are the PGs shown in Figure &, is initialized with
{p} and is unchanged after one iteration of the repeat loop,{thpss the returned
value; in that cas® (G, H) is equal to the completion vocabulary as previously de-
fined (the refinement will be effective at the second steprissitin Section 6.2.2).
In the general casé is initialized with the completion vocabulary w.r{G, H)
and strictly decreases at each iteration of the repeat magpt the last one where
‘R is unchanged.

Let us show that all results of this paper still hold with thesv definition of the
completion vocabulary. It is sufficient to show that the gsogiven in Section 5
still hold (remember that they extend to preordered predg)a For this, we need
the following definition.

Definition 19 (PG-resolution tree of(G, H) onR) Let G and H be two PGs,
and letR be a set of relation names. RG-resolution tree ofG, H) on R is a
PG-resolution tree ofG, H) such that each relation name appearing in labels of
nodes ofL(T) isin R.

Property 16 and Lemmas 4, 5 and 6 still hold if we replace Psaltgion tree
of (G, H) by PG-resolution tree afG, H) onR and if completions, exchangeable
pairs, G5 and ground subgraphs are defined w.fR. instead of the previously
defined completion vocabulary, wheReis a arbitrary set of relation names. In the
proof of Property 16, Proposition b) becomes: "each ratatiame inlabel(x) is
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in R", which immediately follows from the definition of a PG-résion tree of
(G, H) onR. The rest of the proofs is unchanged. Thus, to show thatsllteof
this paper still hold with the refined completion vocabul®yG, H) (as well as
the Completion Property, which is a consequence of Theorgrit @ly remains
to prove that Property 15 also extends, i.e. that the folgwRroperty holds.

Property 20 (PG-resolution onR(G, H)) LetG and H be two PGs, with be-
ing consistent.(G is deducible fromH if and only if there is a PG-resolution tree
of (G,H) onR(G, H).

Proof: By Property 15 it is sufficient to show that there is a PG-nesoh tree of
(G, H) if and only if there is a PG-resolution tree ff, H) on R(G, H). The
implication from right to left is evident. Let7 (7.),cr (7)) b€ a PG-resolution
tree of (G, H). Let us show that it is a PG-resolution tree(6f, H) onR(G, H),
i.e. that each relation name in labels of noded.¢f") is in R(G, H). Let P(R)
be the property defined by:

P(R): each relation name in labels of nodes/dfl’) is in R.

Let us show thatP(R) is an invariant of the repeat loop in Algorithm 3(R)
trivially holds at the initialization of the loop. We supmothatP(R) holds. Let
R’ be the set of relation names in exchangeable literals wW®t.H, R). Let us
show thatP(R') holds. AsP(R) holds,(T', (7)< (1)) is @ PG-resolution tree of
(G,H) onR, so by the proof of extended Lemma 4 each relation name ifdabe
of nodes ofL(7") is a relation name in some exchangeable literal W&t.H, R),
and therefore isifR’. HenceP(R) is an invariant of the loop, and’, (7.) e (1))
be a PG-resolution tree ¢f7, H) onR(G, H). O

It follows that all results of this paper still hold witR (G, H) as completion
vocabulary. The definition oR (G, H) is unchanged in case of preordered pred-
icates. Note that the preceding proofs still hold if we repl&® (G, H) by one of
its supersets, and in particular by the completion vocaipda previously defined.
Thus they provide a new and simpler proof of Property 17.

In practice, computingR (G, H) may be too costly (remember that deciding
whetherG has an exchangeable pair is NP-complete), but it may belpedsi
identify some relation names that cannot be in any exchdmgeéiteral. For in-
stance, if the literal-r(e, e) is added taG and to H in the example of Figure 4,
r becomes an element of the initial getin Algorithm 3, but it is easy to see that
it is not the relation name of an exchangeable literal andosaremoved froniR.
Thus the repeat loop can be replaced by a while loop in the:form
while a relation name that is in no exchangeable literal w.r(t, H, R) can be
“found” do

remover from R
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The while loop stops when no such relation namgan be detected, which does
not mean that there is none. Hence, the obtained completicabulary may be
only partially refined, but is in any case at least as good agnitial completion
vocabulary.

6.2.2 Exchangeable triples

So far we have restricted the relation names of literals ddldeompletions of,
but not their arguments. We will now take these argumentsactount in order to
further reduce the set of added literals.

Definition 20 (Triple w.r.t. (G, H)) Atriplew.r.t. (G, H)isaset{+p(u), —p(v), w}
where+p(u) and —p(v) are opposite literals inG and w is anarity(p)-tuple of
term nodes off such that neither-p(w) nor —p(w) is a literal in H.

Definition 21 (completion w.r.t. 7) LetG and H be two PGs, wittH being con-
sistent, and le be a set of triples w.rt(G, H). A completion ofH w.r.t. 7 is

a consistent PG obtained frofd by adding, for each tripl§+p(u), —p(v),w} in

7, either the literal4-p(w) or —p(w).

Definition 22 (Exchangeable triple/pair w.r.t. (G, H, 7)) Let G and H be two
PGs, withH being consistent, and I1&f be a set of triples w.r.t(G, H). Anex-
changeable triple w.r.t.(G, H,7) is a triple {+p(u), —p(v),w} w.rt. (G, H)
such that there are two completions &f w.rt. 7, say H; and Hs, and two
homomorphismsr; and m», respectively fromz to H; and fromG to Hsy such
that 7 (u) = m2(v) = w. Anexchangeable pair w.rt(G, H,7) is a pair
{+p(u), —p(v)} that is a subset of an exchangeable triple w(, H, 7).

The set7 (G, H), which is at the same time the sgt of triples such that
completions ofH are defined w.r.t.7 and the set of exchangeable triples w.r.t.
(G,H,T), is defined by Algorithm 4.

Let us illustrate Algorithm 4 on the PGS and H pictured in Figure 4.7
is initialized with {{l1,l2,b},{l1,l2,d}}. It becomes{{l;,l2,b}} after the first
iteration of the repeat loop, and becomes empty after thenskeone, sincé; can
no longer be mapped top(b) by a homomorphism frond to a completion off
w.r.t. 7 since no such completion @f contains the literat-p(d). Hence, there is
no exchangeable pair w.r(G, H,7 (G, H)), and since there is no homomorphism
from GG to H, it follows thatG is not deducible fromH (provided that Property 8
still holds, which is checked below).

We prove that all results of this paper still hold in a similay as forR (G, H),
replacingR(G, H) by 7 (G, H) and defining a PG-resolution tree (@, H) onT
as follows.
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Algorithm 4: 7 (G, H)
Data: G and H two PGs, withH being consistent.
Result the set7 (G, H).
begin
Let 7 be the set of triple§+p(u), —p(v), w} w.r.t. (G, H) such that
{+p(u), —p(v)} is an exchangeable pair w.iG, H, R(G, H))
repeat
T T
Let 7 be the set of exchangeable triples w(@., H,7)
until 7 =77 ;
return7

end

Definition 23 (PG-resolution tree of (G, H) on7T) LetG andH be two PGs, and
let 7 be a set of triples w.r.t(G, H). A PG-resolution tree ofG, H) on7 is a
PG-resolution tree of G, H) such that for each literal in labels of nodes ok (7"),
there is a triple{+p(u), —p(v),w} in 7 such that is either equal to+p(w) or to

—p(w).

These results extend to preordered predicates, wherela wipt. (G, H)
is in the form{—r(u),+s(v), w} with —r(u) and+s(v) being weakly opposite
literals in G, and the definition of an exchangeable triple is obtainethftbat of
an exchangeable pair as above.

Note that, in Algorithm 4,7 can be initialized with any superset of the given
initialization set. In practice, we obtain a partially refthset of exchangeable
triples by successively removing triples that can be reamghas non exchange-
able. For instance, in the example of Figurg4, [5, d} is clearly non exchange-
able, and removing it makds;, l2, b} clearly non exchangeable.

7 Related Works and Conclusion

Let us now relate the present complexity results to previesslts obtained on the
various forms of FOK3, A, —,}-DEDUCTION.

Clause entailment. When the logical language includes function symbols, @daus
entailment is undecidable [SS88], even if both clauses araddlauses (i.e. with at
most one positive literal) [MP92]. In [Got87], a sufficiemdrition under which a
“subsumption test” (which can be identified with a homomdasphcheck) is com-
plete is exhibited. Translated inbEDUCTION, it says that if (1» does not contain
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opposite literals, or (2} is consistent ang does not contain opposite unifiable lit-
erals, thery can be deduced fror if and only if g can be mapped th. On one
hand, functions are allowed in this result, on the other hidmek exclude func-
tions, we obtain particular cases DEDUCTION;. To the best of our knowledge,
the I1¥’-completeness of clause entailment for clauses withouttioms had not
been pointed out.

Query containment. In database query languages, function symbols are natu-
rally excluded. The undecidability of query containmentdeveral kinds of Data-
log programs/queries has long been shown (see [Shm87]ddirth results). Con-
cerning the specific case of conjunctive queries with negathell? -completeness
of the containment problem is claimed in several papers ameep in [FNTUO7},
with a reduction from the validity problem of quantified beah formulas in the
form V*3*conj, whereconj is a conjunction of 3-clauses. It was also proven in
the framework of polarized graphs by Bagan (2004), with aictidn from a graph
problem called Generalized Ramsey Number [SU02] and tlusfps reported in
[Mug07] [CMO8]. In [LMQ7], it is proven that homomorphism ebking is suffi-
cient wheng has nodependentiterals, i.e. opposite literalg andis s.t. I; and

I, can be unified after a renaming of their common variables. Waio again a
particular case 0bEDUCTION,. Notions close to our extensible homomorphism
were used in algorithms for query containment checking i8] and defined in
[LMO7].

As far as we know, the notion of exchangeable literals gdizerall particular
cases exhibited so far. As already mentioned, weaker ieriteat yield an upper
bound for the number of exchangeable pairs and can be chéckaalynomial
time can be used instead of exchangeability. In previoudtsesf the notion of an
“exchangeable pair” is replaced by a “pair of opposite anifialle literals”, these
results are weaker but on the other hand any pair of term ncalede checked
in constant time. With this weaker condition, all complgxigsults are still new,
except forDEDUCTION;.

Finally, let us mention that exchangeable literals can Ipdogbed in algorithms
solvingbebucTION for general FOK3, A, —,} formulas. In [LMO7] an algorithm
is proposed for deciding inclusion of conjunctive querieghwiegation. Since
gueries are seen as PGs, this algorithm can be used withangelior deciding on

HBibliographical note: several database papers wronglytiorerihat [LS93] proves théll -
completeness of the query inclusion problem for conjurectjueries with negation. More precisely,
the IT5 -completeness result reported in [LS93] is for “conjunetiyueries with order constraints”
(and this result is due to van der Meyden). However, thereistraightforward proof that would
translate this result into one for conjunctive queries wigigation.
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deduction in FOK3, A, —,}. It explores a space of graphs leading frémto its
completions. This space is ordered as follows: given twplygsd/; and Hs in this
space,H, < H, if Hy is a subgraph of{,. The question “is there a homomor-
phism fromG to each completiorH¢” is reformulated as “is there eovering set

of completions, that is a subset of incomparable graphsesace Hy, . .., Hy}
such that (1) there is a homomorphism fréito eachH, ; (2) for eachH“ there

is aH; with H¢ < H;”. Some special subgraphs @f that are necessarily mapped
to H if G is deducible fromH, are used both in a filtering step (if one of these sub-
graphs cannot be mapped &b, then it can be concluded thétis not deducible
from H) and to guide the space exploration. These subgraphs dreuvibppo-
site literals. They can be replaced by subgraphs withoutaxgeable pairs (see
Theorem 3). Moreover, the set of relation names considere@dinpletions is re-
stricted to relation names occurring both positively angatiwely inG andH (see
Property 3): this set can be further restricted to relatiamas occurring in ex-
changeable literals d@f (Property 20), and the notion of completion can be further
refined, using exchangeable triples.

In this paper, we have solved the main issues concerningptbef exchange-
able literals in the complexity of FOE, A, -, }-DEDUCTION. We have shown
that, as soon as the number of exchangeable pairs is bouh@echmplexity falls
into PV¥ | and becomes even NP-complete if the bound is 1. Howeveomplete
the picture, some open issues remain to be solvedEesuCTION, complete for
PNP2 What is the complexity adbEDUCTION, ?
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